8,071 research outputs found

    Modelling Human Locomotion

    Get PDF
    This report is a coverage of my 16 weeks practical training at the Center for Sensori-Motor Interaction of the Aalborg University (Denmark). One of their research topics is on the ?eld of the biomedical modelling, where they want to answer the question of the functional behavior of the proprioceptive feedback system of the human body. A valid/good biomedical model could support their hypotheses which are results from different measurements. The original intention of the project was to build a complete walking lower body model to ?nd the reason for proprioceptive feedback during walking. In the middle of the project this original goal was a too high, because of the additional work of redesigning previous work of Huber [26]. The goal is adjusted to design the mechanical and muscle model and a well documented report, so a next project can continue immediately. The mechanical and muscle model appeared to work correct and are veri?ed with measured data. The forward activation of the muscle/mechanical model is not completely the same as expected. This is because the used method does not take co-activation of antagonistic muscle into account. For the continuation of this project a complete measured data set is necessary, because the veri?cation is not 100% valid. This performed veri?cation uses data that is not correlated in the sense that is measured at the same conditions and persons

    Optimal control models of the goal-oriented human locomotion

    Full text link
    In recent papers it has been suggested that human locomotion may be modeled as an inverse optimal control problem. In this paradigm, the trajectories are assumed to be solutions of an optimal control problem that has to be determined. We discuss the modeling of both the dynamical system and the cost to be minimized, and we analyze the corresponding optimal synthesis. The main results describe the asymptotic behavior of the optimal trajectories as the target point goes to infinity

    Development of human locomotion

    Get PDF
    Neural control of locomotion in human adults involves the generation of a small set of basic patterned commands directed to the leg muscles. The commands are generated sequentially in time during each step by neural networks located in the spinal cord, called Central Pattern Generators. This review outlines recent advances in understanding how motor commands are expressed at different stages of human development. Similar commands are found in several other vertebrates, indicating that locomotion development follows common principles of organization of the control networks. Movements show a high degree of flexibility at all stages of development, which is instrumental for learning and exploration of variable interactions with the environment

    Towards understanding human locomotion

    Get PDF
    Die zentrale Frage, die in der vorliegenden Arbeit untersucht wurde, ist, wie man die komplizierte Dynamik des menschlichen Laufens besser verstehen kann. In der wissenschaftlichen Literatur werden zur Beschreibung von Laufbewegungen (Gehen und Rennen) oftmals minimalistische "Template"-Modelle verwendet. Diese sehr einfachen Modelle beschreiben nur einen ausgewählten Teil der Dynamik, meistens die Schwerpunktsbahn. In dieser Arbeit wird nun versucht, mittels Template-Modellen das Verständnis des Laufens voranzubringen. Die Analyse der Schwerpunktsbewegung durch Template-Modelle setzt eine präzise Bestimmung der Schwerpunktsbahn im Experiment voraus. Hierfür wird in Kapitel 2.3 eine neue Methode vorgestellt, welche besonders robust gegen die typischen Messfehler bei Laufexperimenten ist. Die am häfigsten verwendeten Template-Modelle sind das Masse-Feder-Modell und das inverse Pendel, welche zur Beschreibung der Körperschwerpunktsbewegung gedacht sind und das Drehmoment um den Schwerpunkt vernachlässigen. Zur Beschreibung der Stabilisierung der Körperhaltung (und damit der Drehimpulsbilanz) wird in Abschnitt 3.3 das Template-Modell "virtuelles Pendel" für das menschliche Gehen eingeführt und mit experimentellen Daten verglichen. Die Diskussion möglicher Realisierungsmechanismen legt dabei nahe, dass die Aufrichtung des menschlichen Gangs im Laufe der Evolution keine große mechanische Hürde war. In der Literatur wird oft versucht, Eigenschaften der Bewegung wie Stabilität durch Eigenschaften der Template-Modelle zu erklären. Dies wird in modifizierter Form auch in der vorliegen Arbeit getan. Hierzu wird zunächst eine experimentell bestimmte Schwerpunktsbewegung auf das Masse-Feder-Modell übertragen. Anschließend wird die Kontrollvorschrift der Schritt-zu-Schritt-Anpassung der Modellparameter identifiziert sowie eine geeignete Näherung angegeben, um die Stabilität des Modells, welches mit dieser Kontrollvorschrift ausgestattet wird, zu analysieren. Der Vergleich mit einer direkten Bestimmung der Stabilität aus einem Floquet-Modell zeigt qualitativ gute Übereinstimmung. Beide Ansätze führen auf das Ergebnis, dass beim langsamen menschlichen Rennen Störungen innerhalb von zwei Schritten weitgehend abgebaut werden. Zusammenfassend wurde gezeigt, wie Template-Modelle zum Verständnis der Laufbewegung beitragen können. Gerade die Identifikation der individuellen Kontrollvorschrift auf der Abstraktionsebene des Masse-Feder-Modells erlaubt zukünftig neue Wege, aktive Prothesen oder Orthesen in menschenähnlicher Weise zu steuern und ebnet den Weg, menschliches Rennen auf Roboter zu übertragen.Human locomotion is part of our everyday life, however the mechanisms are not well enough understood to be transferred into technical devices like orthoses, protheses or humanoid robots. In biomechanics often minimalistic so-called template models are used to describe locomotion. While these abstract models in principle offer a language to describe both human behavior and technical control input, the relation between human locomotion and locomotion of these templates was long unclear. This thesis focusses on how human locomotion can be described and analyzed using template models. Often, human running is described using the SLIP template. Here, it is shown that SLIP (possibly equipped with any controller) cannot show human-like disturbance reactions, and an appropriate extension of SLIP is proposed. Further, a new template to describe postural stabilization is proposed. Summarizing, this theses shows how simple template models can be used to enhance the understanding of human gait

    Human locomotion energy harvesting

    Get PDF

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library

    The visual perception of human locomotion

    Get PDF
    To function adeptly within our environment, we must perceive and interpret the movements of others. What mechanisms underlie our exquisite visual sensitivity to human movement? To address this question, a set of psychophysical studies was conducted to ascertain the temporal characteristics of the visual perception of human locomotion. Subjects viewed a computer-generated point-light walker presented within a mask under conditions of apparent motion. The temporal delay between the display frames as well as the motion characteristics of the mask were varied. With sufficiently long trial durations, performance in a direction discrimination task remained fairly constant across inter-stimulus interval (ISI) when the walker was presented within a random motion mask but increased with ISI when the mask motion duplicated the motion of the walker. This pattern of results suggests that both low-level and high-level visual analyses are involved in the visual perception of human locomotion. These findings are discussed in relation to recent neurophysiological data suggesting that the visual perception of human movement may involve a functional linkage between the visual and motor systems.peer-reviewe
    • …
    corecore