7 research outputs found

    The interaction between voice and appearance in the embodiment of a robot tutor

    Get PDF
    Robot embodiment is, by its very nature, holistic and understanding how various aspects contribute to the user perception of the robot is non-trivial. A study is presented here that investigates whether there is an interaction effect between voice and other aspects of embodiment, such as movement and appearance, in a pedagogical setting. An on-line study was distributed to children aged 11–17 that uses a modified Godspeed questionnaire. We show an interaction effect between the robot embodiment and voice in terms of perceived lifelikeness of the robot. Politeness is a key strategy used in learning and teaching, and here an effect is also observed for perceived politeness. Interestingly, participants’ overall preference was for embodiment combinations that are deemed polite and more like a teacher, but are not necessarily the most lifelike. From these findings, we are able to inform the design of robotic tutors going forward

    An empirical framework for human-robot proxemics

    Get PDF
    The work described in this paper was conducted within the EU Integrated Projects COGNIRON ("The Cognitive Robot Companion") and LIREC (LIving with Robots and intEractive Companions) and was funded by the European Commission under contract numbers FP6- 002020 and FP7-215554.An empirical framework for Human-Robot (HR) proxemics is proposed which shows how the measurement and control of interpersonal distances between a human and a robot can be potentially used by the robot to interpret, predict and manipulate proxemic behaviour for Human-Robot Interactions (HRIs). The proxemic framework provides for incorporation of inter-factor effects, and can be extended to incorporate new factors, updated values and results. The framework is critically discussed and future work proposed

    Designing Experiments for Children and Robots

    Get PDF
    The way in which a robot is presented to children can have a profound effect on their perception of its capabilities. A Poppy Humanoid robot was introduced to 43 children (aged 7-9) either as a robot that needed programming or as a member of the team which needed to learn. The children were asked to write down three actions they believed that the robot could complete. Thematic analysis was then used to categorise the data. When the robot was not humanised, 71% of the suggestions were about completing a physical action or sequence of actions and 14% required the robot to exhibit intelligence or learning. When humanised, 39% of the actions were physical and 35% were categorised as intelligent. Introducing the robot as human captured emotional and appearance actions not otherwise present

    A long-term Human-Robot Proxemic study

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”A long-term Human-Robot Proxemic (HRP) study was performed using a newly developed Autonomous Proxemic System (APS) for a robot to measure and control the approach distances to the human participants. The main findings were that most HRP adaptation occurred in the first two interaction sessions, and for the remaining four weeks, approach distance preferences remained relatively steady, apart from some short periods of increased distances for some participants. There were indications that these were associated with episodes where the robot malfunctioned, so this raises the possibility of users trust in the robot affecting HRP distance. The study also found that approach distances for humans approaching the robot and the robot approaching the human were comparable, though there were indications that humans preferred to approach the robot more closely than they allowed the robot to approach them in a physically restricted area. Two participants left the study prematurely, stating they were bored with the repetitive experimental procedures. This highlights issues related to the often incompatible demands of keeping experimental controlled conditions vs. having realistic, engaging and varied HRI trial scenarios

    Avoiding the uncanny valley : robot appearance, personality and consistency of behavior in an attention-seeking home scenario for a robot companion

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10514-007-9058-3This article presents the results of video-based Human Robot Interaction (HRI) trials which investigated people’s perceptions of different robot appearances and associated attention-seeking features and behaviors displayed by robots with different appearance and behaviors. The HRI trials studied the participants’ preferences for various features of robot appearance and behavior, as well as their personality attributions towards the robots compared to their own personalities. Overall, participants tended to prefer robots with more human-like appearance and attributes. However, systematic individual differences in the dynamic appearance ratings are not consistent with a universal effect. Introverts and participants with lower emotional stability tended to prefer the mechanical looking appearance to a greater degree than other participants. It is also shown that it is possible to rate individual elements of a particular robot’s behavior and then assess the contribution, or otherwise, of that element to the overall perception of the robot by people. Relating participants’ dynamic appearance ratings of individual robots to independent static appearance ratings provided evidence that could be taken to support a portion of the left hand side of Mori’s theoretically proposed ‘uncanny valley’ diagram. Suggestions for future work are outlined.Peer reviewe

    Human approach distances to a mechanical-looking robot with different robot voice styles

    No full text
    Findings are presented from a Human Robot Interaction (HRI) Demonstration Trial where attendees approached a stationary mechanical looking robot to a comfortable distance. Instructions were given to participants by the robot using either a high quality male, a high quality female, a neutral synthesized voice, or by the experimenter (no robot voice). Approaches to the robot with synthesized voice were found to induce significantly further approach distances. Those who had experienced a previous encounter with the robot tended to approach closer to the robot. Possible reasons for this are discussed

    Designing Sound for Social Robots: Advancing Professional Practice through Design Principles

    Full text link
    Sound is one of the core modalities social robots can use to communicate with the humans around them in rich, engaging, and effective ways. While a robot's auditory communication happens predominantly through speech, a growing body of work demonstrates the various ways non-verbal robot sound can affect humans, and researchers have begun to formulate design recommendations that encourage using the medium to its full potential. However, formal strategies for successful robot sound design have so far not emerged, current frameworks and principles are largely untested and no effort has been made to survey creative robot sound design practice. In this dissertation, I combine creative practice, expert interviews, and human-robot interaction studies to advance our understanding of how designers can best ideate, create, and implement robot sound. In a first step, I map out a design space that combines established sound design frameworks with insights from interviews with robot sound design experts. I then systematically traverse this space across three robot sound design explorations, investigating (i) the effect of artificial movement sound on how robots are perceived, (ii) the benefits of applying compositional theory to robot sound design, and (iii) the role and potential of spatially distributed robot sound. Finally, I implement the designs from prior chapters into humanoid robot Diamandini, and deploy it as a case study. Based on a synthesis of the data collection and design practice conducted across the thesis, I argue that the creation of robot sound is best guided by four design perspectives: fiction (sound as a means to convey a narrative), composition (sound as its own separate listening experience), plasticity (sound as something that can vary and adapt over time), and space (spatial distribution of sound as a separate communication channel). The conclusion of the thesis presents these four perspectives and proposes eleven design principles across them which are supported by detailed examples. This work contributes an extensive body of design principles, process models, and techniques providing researchers and designers with new tools to enrich the way robots communicate with humans
    corecore