211,832 research outputs found

    Representing temporal dependencies in human activity recognition.

    Get PDF
    Smart Homes offer the opportunity to perform continuous, long-term behavioural and vitals monitoring of residents, which may be employed to aid diagnosis and management of chronic conditions without placing additional strain on health services. A profile of the resident’s behaviour can be produced from sensor data, and then compared over time. Activity Recognition is a primary challenge for profile generation, however many of the approaches adopted fail to take full advantage of the inherent temporal dependencies that exist in the activities taking place. Long Short Term Memory (LSTM) is a form of recurrent neural network that uses previously learned examples to inform classification decisions. In this paper we present a variety of approaches to human activity recognition using LSTMs and consider the temporal dependencies that exist in binary ambient sensor data in order to produce case-based representations. These LSTM approaches are compared to the performance of a selection of baseline classification algorithms on several real world datasets. In general, it was found that accuracy in LSTMs improved as additional temporal information was presented to the classifier

    Human activity recognition from inertial sensor time-series using batch normalized deep LSTM recurrent networks

    Get PDF
    In recent years machine learning methods for human activity recognition have been found very effective. These classify discriminative features generated from raw input sequences acquired from body-worn inertial sensors. However, it involves an explicit feature extraction stage from the raw data, and although human movements are encoded in a sequence of successive samples in time most state-of-the-art machine learning methods do not exploit the temporal correlations between input data samples. In this paper we present a Long-Short Term Memory (LSTM) deep recurrent neural network for the classification of six daily life activities from accelerometer and gyroscope data. Results show that our LSTM can processes featureless raw input signals, and achieves 92 % average accuracy in a multi-class-scenario. Further, we show that this accuracy can be achieved with almost four times fewer training epochs by using a batch normalization approach

    Human Activity Recognition using Deep Learning Models on Smartphones and Smartwatches Sensor Data

    Get PDF
    In recent years, human activity recognition has garnered considerable attention both in industrial and academic research because of the wide deployment of sensors, such as accelerometers and gyroscopes, in products such as smartphones and smartwatches. Activity recognition is currently applied in various fields where valuable information about an individual’s functional ability and lifestyle is needed. In this study, we used the popular WISDM dataset for activity recognition. Using multivariate analysis of covariance (MANCOVA), we established a statistically significant difference (p < 0.05) between the data generated from the sensors embedded in smartphones and smartwatches. By doing this, we show that smartphones and smartwatches don’t capture data in the same way due to the location where they are worn. We deployed several neural network architectures to classify 15 different hand and non-hand oriented activities. These models include Long short-term memory (LSTM), Bi-directional Long short-term memory (BiLSTM), Convolutional Neural Network (CNN), and Convolutional LSTM (ConvLSTM). The developed models performed best with watch accelerometer data. Also, we saw that the classification precision obtained with the convolutional input classifiers (CNN and ConvLSTM) was higher than the end-to-end LSTM classifier in 12 of the 15 activities. Additionally, the CNN model for the watch accelerometer was better able to classify non-hand oriented activities when compared to hand-oriented activities

    Human Activity Recognition using Deep Learning Models on Smartphones and Smartwatches Sensor Data

    Get PDF
    In recent years, human activity recognition has garnered considerable attention both in industrial and academic research because of the wide deployment of sensors, such as accelerometers and gyroscopes, in products such as smartphones and smartwatches. Activity recognition is currently applied in various fields where valuable information about an individual’s functional ability and lifestyle is needed. In this study, we used the popular WISDM dataset for activity recognition. Using multivariate analysis of covariance (MANCOVA), we established a statistically significant difference (p < 0.05) between the data generated from the sensors embedded in smartphones and smartwatches. By doing this, we show that smartphones and smartwatches don’t capture data in the same way due to the location where they are worn. We deployed several neural network architectures to classify 15 different hand and non-hand oriented activities. These models include Long short-term memory (LSTM), Bi-directional Long short-term memory (BiLSTM), Convolutional Neural Network (CNN), and Convolutional LSTM (ConvLSTM). The developed models performed best with watch accelerometer data. Also, we saw that the classification precision obtained with the convolutional input classifiers (CNN and ConvLSTM) was higher than the end-to-end LSTM classifier in 12 of the 15 activities. Additionally, the CNN model for the watch accelerometer was better able to classify non-hand oriented activities when compared to hand-oriented activities

    Human Action Recognition in Videos using Convolution Long Short-Term Memory Network with Spatio-Temporal Networks

    Get PDF
    Two-stream convolutional networks plays an essential role as a powerful feature extractor in human action recognition in videos. Recent studies have shown the importance of two-stream Convolutional Neural Networks (CNN) to recognize human action recognition. Recurrent Neural Networks (RNN) has achieved the best performance in video activity recognition combining CNN. Encouraged by CNN's results with RNN, we present a two-stream network with two CNNs and Convolution Long-Short Term Memory (CLSTM). First, we extricate Spatio-temporal features using two CNNs using pre-trained ImageNet models. Second, the results of two CNNs from step one are combined and fed as input to the CLSTM to get the overall classification score. We also explored the various fusion function performance that combines two CNNs and the effects of feature mapping at different layers. And, conclude the best fusion function along with layer number. To avoid the problem of overfitting, we adopt the data augmentation techniques. Our proposed model demonstrates a substantial improvement compared to the current two-stream methods on the benchmark datasets with 70.4% on HMDB-51 and 95.4% on UCF-101 using the pre-trained ImageNet model. Doi: 10.28991/esj-2021-01254 Full Text: PD

    Video-Based Human Activity Recognition Using Deep Learning Approaches

    Get PDF
    Due to its capacity to gather vast, high-level data about human activity from wearable or stationary sensors, human activity recognition substantially impacts people’s day-to-day lives. Multiple people and things may be seen acting in the video, dispersed throughout the frame in various places. Because of this, modeling the interactions between many entities in spatial dimensions is necessary for visual reasoning in the action recognition task. The main aim of this paper is to evaluate and map the current scenario of human actions in red, green, and blue videos, based on deep learning models. A residual network (ResNet) and a vision transformer architecture (ViT) with a semi-supervised learning approach are evaluated. The DINO (self-DIstillation with NO labels) is used to enhance the potential of the ResNet and ViT. The evaluated benchmark is the human motion database (HMDB51), which tries to better capture the richness and complexity of human actions. The obtained results for video classification with the proposed ViT are promising based on performance metrics and results from the recent literature. The results obtained using a bi-dimensional ViT with long short-term memory demonstrated great performance in human action recognition when applied to the HMDB51 dataset. The mentioned architecture presented 96.7 ± 0.35% and 41.0 ± 0.27% in terms of accuracy (mean ± standard deviation values) in the train and test phases of the HMDB51 dataset, respectively

    Human Activity Recognition for AI-Enabled Healthcare Using Low-Resolution Infrared Sensor Data

    Get PDF
    This paper explores the feasibility of using low-resolution infrared (LRIR) image streams for human activity recognition (HAR) with potential application in e-healthcare. Two datasets based on synchronized multichannel LRIR sensors systems are considered for a comprehensive study about optimal data acquisition. A novel noise reduction technique is proposed for alleviating the effects of horizontal and vertical periodic noise in the 2D spatiotemporal activity profiles created by vectorizing and concatenating the LRIR frames. Two main analysis strategies are explored for HAR, including (1) manual feature extraction using texture-based and orthogonal-transformation-based techniques, followed by classification using support vector machine (SVM), random forest (RF), k-nearest neighbor (k-NN), and logistic regression (LR), and (2) deep neural network (DNN) strategy based on a convolutional long short-term memory (LSTM). The proposed periodic noise reduction technique showcases an increase of up to 14.15% using different models. In addition, for the first time, the optimum number of sensors, sensor layout, and distance to subjects are studied, indicating the optimum results based on a single side sensor at a close distance. Reasonable accuracies are achieved in the case of sensor displacement and robustness in detection of multiple subjects. Furthermore, the models show suitability for data collected in different environments
    • …
    corecore