93 research outputs found

    A nonparametric Bayesian approach toward robot learning by demonstration

    No full text
    In the past years, many authors have considered application of machine learning methodologies to effect robot learning by demonstration. Gaussian mixture regression (GMR) is one of the most successful methodologies used for this purpose. A major limitation of GMR models concerns automatic selection of the proper number of model states, i.e., the number of model component densities. Existing methods, including likelihood- or entropy-based criteria, usually tend to yield noisy model size estimates while imposing heavy computational requirements. Recently, Dirichlet process (infinite) mixture models have emerged in the cornerstone of nonparametric Bayesian statistics as promising candidates for clustering applications where the number of clusters is unknown a priori. Under this motivation, to resolve the aforementioned issues of GMR-based methods for robot learning by demonstration, in this paper we introduce a nonparametric Bayesian formulation for the GMR model, the Dirichlet process GMR model. We derive an efficient variational Bayesian inference algorithm for the proposed model, and we experimentally investigate its efficacy as a robot learning by demonstration methodology, considering a number of demanding robot learning by demonstration scenarios

    Action recognition in depth videos using nonparametric probabilistic graphical models

    Get PDF
    Action recognition involves automatically labelling videos that contain human motion with action classes. It has applications in diverse areas such as smart surveillance, human computer interaction and content retrieval. The recent advent of depth sensing technology that produces depth image sequences has offered opportunities to solve the challenging action recognition problem. The depth images facilitate robust estimation of a human skeleton’s 3D joint positions and a high level action can be inferred from a sequence of these joint positions. A natural way to model a sequence of joint positions is to use a graphical model that describes probabilistic dependencies between the observed joint positions and some hidden state variables. A problem with these models is that the number of hidden states must be fixed a priori even though for many applications this number is not known in advance. This thesis proposes nonparametric variants of graphical models with the number of hidden states automatically inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet Process as a prior over the model’s infinite dimensional parameter space. This thesis describes three original constructions of nonparametric graphical models that are applied in the classification of actions in depth videos. Firstly, the action classes are represented by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The formulation enables information sharing and discriminative learning of parameters. Secondly, a hierarchical HMM with an unbounded number of actions and poses is used to represent activities. The construction produces a simplified model for activity classification by using logistic regression to capture the relationship between action states and activity labels. Finally, the action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of intermediate hidden states learned from data. Tractable inference procedures based on Markov Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with multiple benchmark datasets confirm the efficacy of the proposed approaches for action recognition

    Latent variable models for understanding user behavior in software applications

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 147-157).Understanding user behavior in software applications is of significant interest to software developers and companies. By having a better understanding of the user needs and usage patterns, the developers can design a more efficient workflow, add new features, or even automate the user's workflow. In this thesis, I propose novel latent variable models to understand, predict and eventually automate the user interaction with a software application. I start by analyzing users' clicks using time series models; I introduce models and inference algorithms for time series segmentation which are scalable to large-scale user datasets. Next, using a conditional variational autoencoder and some related models, I introduce a framework for automating the user interaction with a software application. I focus on photo enhancement applications, but this framework can be applied to any domain where segmentation, prediction and personalization is valuable. Finally, by combining sequential Monte Carlo and variational inference, I propose a new inference scheme which has better convergence properties than other reasonable baselines.by Ardavan Saeedi.Ph. D

    Discriminative, generative, and imitative learning

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.Includes bibliographical references (leaves 201-212).I propose a common framework that combines three different paradigms in machine learning: generative, discriminative and imitative learning. A generative probabilistic distribution is a principled way to model many machine learning and machine perception problems. Therein, one provides domain specific knowledge in terms of structure and parameter priors over the joint space of variables. Bayesian networks and Bayesian statistics provide a rich and flexible language for specifying this knowledge and subsequently refining it with data and observations. The final result is a distribution that is a good generator of novel exemplars. Conversely, discriminative algorithms adjust a possibly non-distributional model to data optimizing for a specific task, such as classification or prediction. This typically leads to superior performance yet compromises the flexibility of generative modeling. I present Maximum Entropy Discrimination (MED) as a framework to combine both discriminative estimation and generative probability densities. Calculations involve distributions over parameters, margins, and priors and are provably and uniquely solvable for the exponential family. Extensions include regression, feature selection, and transduction. SVMs are also naturally subsumed and can be augmented with, for example, feature selection, to obtain substantial improvements. To extend to mixtures of exponential families, I derive a discriminative variant of the Expectation-Maximization (EM) algorithm for latent discriminative learning (or latent MED).(cont.) While EM and Jensen lower bound log-likelihood, a dual upper bound is made possible via a novel reverse-Jensen inequality. The variational upper bound on latent log-likelihood has the same form as EM bounds, is computable efficiently and is globally guaranteed. It permits powerful discriminative learning with the wide range of contemporary probabilistic mixture models (mixtures of Gaussians, mixtures of multinomials and hidden Markov models). We provide empirical results on standardized data sets that demonstrate the viability of the hybrid discriminative-generative approaches of MED and reverse-Jensen bounds over state of the art discriminative techniques or generative approaches. Subsequently, imitative learning is presented as another variation on generative modeling which also learns from exemplars from an observed data source. However, the distinction is that the generative model is an agent that is interacting in a much more complex surrounding external world. It is not efficient to model the aggregate space in a generative setting. I demonstrate that imitative learning (under appropriate conditions) can be adequately addressed as a discriminative prediction task which outperforms the usual generative approach. This discriminative-imitative learning approach is applied with a generative perceptual system to synthesize a real-time agent that learns to engage in social interactive behavior.by Tony Jebara.Ph.D

    Probabilistic Learning by Demonstration from Complete and Incomplete Data

    No full text
    In recent years we have observed a convergence of the fields of robotics and machine learning initiated by technological advances bringing AI closer to the physical world. A prerequisite, however, for successful applications is to formulate reliable and precise offline algorithms, requiring minimal tuning, fast and adaptive online algorithms and finally effective ways of rectifying corrupt demonstrations. In this work we aim to address some of those challenges. We begin by employing two offline algorithms for the purpose of Learning by Demonstration (LbD). A Bayesian non-parametric approach, able to infer the optimal model size without compromising the model's descriptive power and a Quantum Statistical extension to the mixture model able to achieve high precision for a given model size. We explore the efficacy of those algorithms in several one- and multi-shot LbD application achieving very promising results in terms of speed and and accuracy. Acknowledging that more realistic robotic applications also require more adaptive algorithmic approaches, we then introduce an online learning algorithm for quantum mixtures based on the online EM. The method exhibits high stability and precision, outperforming well-established online algorithms, as demonstrated for several regression benchmark datasets and a multi-shot trajectory LbD case study. Finally, aiming to account for data corruption due to sensor failures or occlusions, we propose a model for automatically rectifying damaged sequences in an unsupervised manner. In our approach we take into account the sequential nature of the data, the redundancy manifesting itself among repetitions of the same task and the potential of knowledge transfer across different tasks. We have devised a temporal factor model, with each factor modelling a single basic pattern in time and collectively forming a dictionary of fundamental trajectories shared across sequences. We have evaluated our method in a number of real-life datasets.Open Acces

    Action recognition in depth videos using nonparametric probabilistic graphical models

    Get PDF
    Action recognition involves automatically labelling videos that contain human motion with action classes. It has applications in diverse areas such as smart surveillance, human computer interaction and content retrieval. The recent advent of depth sensing technology that produces depth image sequences has offered opportunities to solve the challenging action recognition problem. The depth images facilitate robust estimation of a human skeleton’s 3D joint positions and a high level action can be inferred from a sequence of these joint positions. A natural way to model a sequence of joint positions is to use a graphical model that describes probabilistic dependencies between the observed joint positions and some hidden state variables. A problem with these models is that the number of hidden states must be fixed a priori even though for many applications this number is not known in advance. This thesis proposes nonparametric variants of graphical models with the number of hidden states automatically inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet Process as a prior over the model’s infinite dimensional parameter space. This thesis describes three original constructions of nonparametric graphical models that are applied in the classification of actions in depth videos. Firstly, the action classes are represented by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The formulation enables information sharing and discriminative learning of parameters. Secondly, a hierarchical HMM with an unbounded number of actions and poses is used to represent activities. The construction produces a simplified model for activity classification by using logistic regression to capture the relationship between action states and activity labels. Finally, the action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of intermediate hidden states learned from data. Tractable inference procedures based on Markov Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with multiple benchmark datasets confirm the efficacy of the proposed approaches for action recognition
    corecore