
Advances in Statistical Machine Learning Methods for Neural Data Science

Ding Zhou

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2021

© 2021

Ding Zhou

All Rights Reserved

Abstract
Advances in Statistical Machine Learning Methods for Neural Data Science

Ding Zhou

Innovations in neural data recording techniques are revolutionizing neuroscience and

presenting both challenges and opportunities for statistical data analysis. This dissertation

discusses several recent advances in neural data signal processing, encoding, decoding, and

dimension reduction. Chapter 1 introduces challenges in neural data science and common

statistical methods used to address them. Chapter 2 develops a new method to detect

neurons and extract signals from noisy calcium imaging data with irregular neuron shapes.

Chapter 3 introduces a novel probabilistic framework for modeling deconvolved calcium

traces. Chapter 4 proposes an improved Bayesian nonparametric extension of the hidden

Markov model (HMM) that separates the strength of the self-persistence prior and transition

prior. Chapter 5 introduces a more identifiable and interpretable latent variable model for

Poisson observations. We develop efficient algorithms to fit each of the aforementioned

methods and demonstrate their effectiveness on both simulated and real data.

Table of Contents

List of Figures . vi

List of Tables . ix

Acknowledgments . x

Dedication . xii

Chapter 1: Introduction and background . 1

1.1 Neural data science . 1

1.1.1 Recordings . 1

1.1.2 Signal pre-processing . 2

1.1.3 Neural encoding and decoding . 2

1.2 Dimension reduction methods for neural data 3

1.2.1 Linear dimension reduction . 3

1.2.2 Nonlinear dimension reduction . 4

1.3 Latent variable models for time-series data dimension reduction 6

1.3.1 Models . 7

1.3.2 Inference . 8

1.4 Dissertation outline . 10

i

Chapter 2: Demixing for calcium imaging data . 12

2.1 Introduction . 12

2.2 Methods . 14

2.2.1 Initialization via pure superpixels . 16

2.2.2 Local NMF . 17

2.2.3 Further implementation details . 19

2.3 Results . 20

2.3.1 Voltage imaging data . 20

2.3.2 Bessel dendritic imaging data . 26

2.4 Discussion . 28

2.4.1 Related work . 28

2.4.2 Future work . 29

2.5 Appendix . 29

2.5.1 Video captions . 29

2.5.2 Datasets details . 30

Chapter 3: A zero-inflated gamma model for deconvolved calcium imaging traces . . . 33

3.1 Introduction . 33

3.2 Results . 35

3.2.1 Nonnegative deconvolution methods applied to calcium fluorescence
traces produce a mixture of zeros and positive real-valued output, well-
captured by the zero-inflated gamma model 35

3.2.2 The ZIG model is applicable to the outputs of multiple deconvolution
methods, applied to data from multiple calcium indicators 36

3.2.3 Constructing encoding models for simulated calcium responses 37

ii

3.2.4 The ZIG encoding model leads to improved Bayesian decoding in sim-
ulated data . 39

3.2.5 Application to real imaging data . 40

3.3 Discussion . 41

3.4 Materials and Methods . 43

3.4.1 Density models of the deconvolved calcium trace 43

3.4.2 In vivo datasets . 44

3.4.3 Fitting encoding models to the data 45

3.4.4 Shuffling analysis . 47

3.5 Appendix . 47

Chapter 4: Disentangled sticky hierarchical Dirichlet process hidden Markov model . . 60

4.1 Introduction . 60

4.2 Background on Bayesian HMM and HDP-HMM 62

4.3 Limitations of the HDP-HMM and sticky HDP-HMM 64

4.4 Disentangled sticky HDP-HMM . 65

4.5 Gibbs sampling inference . 67

4.5.1 Direct assignment sampler . 67

4.5.2 Weak-limit sampler . 68

4.6 Results . 69

4.6.1 Simulated data . 70

4.6.2 Inferring rat hippocampal population codes 73

4.6.3 Segmenting mouse behavior video . 74

4.7 Discussion and conclusion . 76

iii

4.8 Appendix . 78

4.8.1 Notation . 78

4.8.2 Proof of Theorem 1 . 79

4.8.3 Derivation of Gibbs samplers . 80

4.8.4 Details of prior in ARHMM . 85

4.8.5 Simulation results for Gaussian emission 85

Chapter 5: Learning identifiable and interpretable latent models of high-dimensional
neural activity using pi-VAE . 87

5.1 Introduction . 87

5.2 Model . 89

5.2.1 Generative model . 89

5.2.2 Inference algorithm . 93

5.3 Results . 94

5.3.1 Validation using synthetic data . 94

5.3.2 Applications to neural population data 95

5.3.3 Comparison to alternative methods 102

5.4 Discussion . 103

5.5 Appendix . 104

5.5.1 Proof of identifiability for pi-VAE . 104

5.5.2 Network architecture . 105

5.5.3 Synthetic data simulations . 106

5.5.4 Monkey reaching data: session 2 . 106

5.5.5 Alternative methods . 107

iv

References . 112

v

List of Figures

2.1 Denoising helps extract more complete superpixels in voltage imaging data. . 18

2.2 An example frame illustrating demixing on voltage imaging data. 23

2.3 Components extracted from voltage imaging data. 24

2.4 Comparison of spatial components extracted from Bessel dendritic imaging
data. 25

2.5 Comparison to simulated ground truth based on Bessel dendritic imaging data. 26

2.6 Quantification of comparisons on simulated Bessel dendritic imaging data. . 27

2.7 In vivo volumetric imaging of dendrites in the mouse brain. 30

3.1 Illustration of the zero-inflated gamma (ZIG) model: deconvolved calcium
responses typically consist of a mixture of zero responses plus a continuous
component that is well-modeled as a gamma distribution, in both simulated
and real imaging data. 48

3.2 The ZIG model is robust with respect to the details of different deconvolution
methods. 49

3.3 The ZIG model is robust with respect to data collected with different calcium
indicators. 50

3.4 The encoding-decoding modeling framework. 51

3.5 The ZIG model captures the means and variances of deconvolved calcium
responses in the simulated data. 52

3.6 The ZIG model leads to improved decoding performance on simulated data. 53

3.7 The ZIG model best captures the means and variances of deconvolved calcium
responses in the ADN dataset. 54

vi

3.8 Encoding results for hippocampus data during running. 55

3.9 Decoding results for head direction (ADN) dataset. 56

3.10 Decoding results for hippocampus data. 57

3.11 The ZIG model provides a good fit to the deconvolved calcium responses of
simulated data based on a AR(2) model and a more biophysical realistic model. 58

3.12 The ZIG model provides a good fit to the conditional probability distribution
of deconvolved calcium responses given stimulus. 59

4.1 Graphical models for sticky HDP-HMM (a) and disentangled sticky HDP-
HMM (b). 64

4.2 The DS-HDP-HMM provides good fits to the simulated data with different
self-persistence (ρ1, ρ2 small), same transition (α large), and multinomial emis-
sion. 72

4.3 Results for the simulated data with same self-persistence (ρ1, ρ2 large), differ-
ent transition (α small) and multinomial emission. 73

4.4 Results for rat hippocampal data. 75

4.5 Results for mouse behavior data. 77

4.6 Results for simulated data with different self-persistence (ρ1, ρ2 small), same
transition (α large) and Gaussian emission. 86

5.1 The model framework and generative model. 89

5.2 Example numerical experiments, suggesting that pi-VAE, but not VAE, could
identify latent structure. 95

5.3 Results for monkey reaching data. 98

5.4 Results for hippocampus CA1 data. 100

5.5 Results from alternative methods based on monkey reaching data. 102

5.6 Results for monkey reaching data (Session 2). 109

5.7 Related to Figure 5.3, on reaching data. 110

5.8 Related to Figure 5.4, on Hippocampus CA1 data. 110

vii

5.9 Results from several alternative methods based on hippocampus data. 111

viii

List of Tables

4.1 Notation for HDP-HMM, S-HDP-HMM and DS-HDP-HMM 79

ix

Acknowledgements

I first would like to thank my advisor Prof. Liam Paninski. I appreciate his brilliant

ideas and guidance on my research, as well as his continuous encouragement for me to talk

with more people. I learned from him how to think independently and complete a research

project.

I have been incredibly lucky to work in an amazing group. I enjoy the academic atmo-

sphere in our group. I would like to acknowledge my friends and collaborators: Dr. Yuanjun

Gao, for your support and company; Prof. Xuexin Wei, for your insights and many delicious

foods; Prof. Pengcheng Zhou, for your enthusiasm and for opening me the door of this great

group. It has been my pleasure collaborating with them on various exciting projects. I

also benefit a lot from talking with my excellent group members. I would like to thank Dr.

Kenneth Kay, Ian Kinsella, Dr. Matthew Whiteway, Dr. Ari Pakman, Prof. Xinyi Deng,

Dr. Joshua Glaser, among others, for their generous help and fruitful conversations.

I would like to thank my thesis committee: Prof. Tian Zheng, Prof. John Cunningham,

Prof. John Paisley, and Prof. Xuexin Wei, for their constructive suggestions. Prof. Tian

Zheng and Prof. John Cunningham also served on my oral exam committee and gave me

useful comments. Prof. John Paisley gave me helpful advice on my HMM project.

I would also like to thank Prof. Jingchen Liu and Prof. Zhiliang Ying for their guidance

and support in my early Ph.D. stage. I am grateful to the department administrators Dood

Kalicharan and Anthony Cruz for always being there for me.

I appreciate my mentors: Dr. Li Pan, Dr. Xu Gao, Dr. Tianwen Chen, Dr. Scott Rome,

x

and Dr. Hongcheng Wang, for their help during and after my summer internships at Google

and Comcast Applied AI Lab. These two enjoyable summer internships have broadened my

views of many interesting statistics questions in the real world.

I am grateful to my friends Owen Ward, Chengliang Tang, Alejandro Quintos Lima,

Bridget Ratcliffe, Dr. Haochen Xu, Dr. Siliang Zhang, Dr. Guanhua Fang, Zhi Wang,

Chaoyu Yuan, Gengyu Guo, Xinlu Xiao, Fangyuan Chang, among others, for their kind help

and support throughout my Ph.D. journey.

Finally, I would like to thank my parents for their patience, support, encouragement, and

unconditional love. This Ph.D. would not be possible without them.

xi

To my parents.

xii

Chapter 1: Introduction and background

1.1 Neural data science

Innovations in large-scale multi-neuronal data recording (e.g. electrophysiological record-

ings and calcium imaging) are revolutionizing neuroscience. Captured recordings are com-

posed of noisy observations of neural spike trains for multiple neurons. Each neural spike

train is a time series of discrete events at which a neuron fires. The size of noisy recorded

data poses both challenges and opportunities for subsequent statistical data analysis.

1.1.1 Recordings

Electrophysiological recordings simultaneously record electrical signals of large neural

populations by inserting multiple electrodes into animals’ brain tissues. Each electrode

records the electrical activities of several nearby neurons. Calcium imaging is another widely-

used technique for recording activities of large neural populations simultaneously at single-

neuron resolution [1, 2, 3, 4]. The idea behind calcium imaging is that it provides a slow,

nonlinear encoding of underlying spike trains through the fluorescence emitted by calcium

indicators. Compared to electrophysiological recordings, calcium imaging has several impor-

tant advantages [5]: it offers high spatial resolution, can achieve cell-type specificity, and has

been proven to be scalable to record up to O(104) neurons simultaneously in vivo (which is

over an order of magnitude more than electrophysiological recordings). However, this high

spatial resolution and large scale come at a cost since calcium imaging records neural spikes

with lower temporal precision than electrophysiological recordings.

1

1.1.2 Signal pre-processing

Neural spike trains encode external stimuli and behavioral variables that the brain pro-

cesses. To understand how the brain works, scientists must first extract the spike train sig-

nals of interest from recordings. Modern neural data recording techniques produce datasets

with hundreds or even thousands of neurons, which requires reliable, automated signal pre-

processing methods for these recordings.

In electrophysiological recordings, we need to detect spiking activities within the signals

recorded by each electrode and assign these spikes to individual neurons responsible for them.

This pre-processing step is called spike sorting. State-of-the-art spike sorting pipelines apply

clustering methods to obtain waveform templates for each recorded neuron first [6, 7] followed

by a deconvolution step with these waveform templates to infer spike times for each neuron [8,

7]. See [9, 10] for the detailed review of these methods.

For calcium imaging, it is standard to decompose recordings into a library of spa-

tial shapes and temporal calcium traces corresponding to the imaged neurons. This pre-

processing procedure is known as demixing, for which matrix factorization based methods

are commonly applied [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Neurons with promi-

nent axons and dendrites have irregular shapes that traditional demixing methods struggle

to effectively extract. Chapter 2 develops a novel demixing method, which extends these

techniques to be especially useful for axonal and dendritic imaging data.

Once neuron shapes and fluorescence traces are extracted from raw calcium data, scien-

tists often wish to infer the underlying spike train for each neuron. There is an expansive

literature focusing on methods which deconvolve the fluorescence trace in order to infer the

spiking activity [22, 23, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32].

1.1.3 Neural encoding and decoding

Neural encoding characterizes how spike trains will change when varying external inputs

(e.g. stimuli or behavioral variables), and neural decoding considers the reverse problem of

2

predicting external inputs from neural population responses. Traditionally, generalized linear

models (GLMs) and Bayesian posterior inference are applied to perform neural encoding and

decoding analyses [33, 34]. More recently, nonlinear regression models have been applied to

solve the neural encoding and decoding problem [35, 36]. These models express neural firing

rates as a function of external inputs, which is the encoding model; and they can be inverted

to decode external inputs from neural activities through Bayesian analysis.

Although there exist intensive analyses for neural spike trains from electrophysiological

recordings, the analysis for deconvolved calcium “spikes” receives much less attention. Con-

sequently, there does not yet exist a “standard model” for deconvolved “spikes”. Chapter 3

introduces a new probabilistic framework to fill in this gap.

1.2 Dimension reduction methods for neural data

Large-scale neural data is usually high-dimensional, presenting an opportunity for re-

search focused on extracting meaningful low-dimensional signals which underlie neural ac-

tivities. Statistical dimension reduction methods are widely used to find structures in neural

data. See [37] for a perspective.

1.2.1 Linear dimension reduction

Linear dimension reduction methods factorize the data X in the following way,

X ≈ Z · L, (1.1)

where X ∈ RT×p, Z ∈ RT×k, L ∈ Rk×p, k � p. Here T is the number of samples, p is

the dimension of high-dimensional observations, and k is the dimension of low-dimensional

factors. Note that for neural spike trains, T is the number of time steps, and p is the number

of neurons.

The most commonly used dimension reduction methods are principal component analysis

3

(PCA) and more-general factor analysis (FA). These methods factorize the data X into a

product of low-dimensional factors Z which preserve the variation of the data as much as

possible and loadings L which represent weights of the data on each factor. See applications

of PCA and FA to neural spike trains in [38, 39].

Independent component analysis (ICA) [40] linearly transforms the data into maximally

independent factors. For an application of ICA to calcium imaging demixing see [11].

Sometimes it is necessary to impose constraints on factors and loadings to model proper-

ties of the data. A popular choice of constraint is to impose nonnegativity on factors and/or

loadings, and the method for doing so is called nonnegative matrix factorization (NMF).

NMF is commonly used for imaging data analysis because the imaging data is nonnegative

and meaningful factors and loadings should also be nonnegative. One natural application of

NMF is to calcium imaging demixing [13, 14, 15, 18, 19, 20].

Another linear dimension reduction method for the data with labels is linear discriminant

analysis (LDA) [41], which maps the data to the direction which separates different classes

most. [42, 43] provide examples of applying LDA to neural spike trains.

1.2.2 Nonlinear dimension reduction

Nonlinear dimension reduction methods may outperform linear dimension reduction met-

hods by finding more complicated structures within the data.

Autoencoders (AEs) [44] map the data into a smaller space that maintains distance

between dissimilar points and preserves significant global structures of the original data. An

AE first projects the original data X into the low-dimensional space through the nonlinear

encoder f : Rp → Rk, then reconstructs X by projecting the low-dimensional data back

to the original space through another nonlinear decoder g : Rk → Rp. Both f and g are

4

parameterized by feed-forward neural networks. The model is defined as

encoder: Z = f(X),

decoder: X ′ = g(Z), (1.2)

where Z consists of low-dimensional factors, X ′ is the reconstructed data, and an AE learns

f, g together by minimizing the Euclidean distance between the original and reconstructed

data. [45] provides an example of applying an AE to cortical neural populations.

Variational autoencoders (VAEs) [46, 47] generalize AEs to probabilistic encoders and

decoders. A VAE is specified as

Zt ∼ pθ(z),

probabilistic decoder : Xt ∼ pθ(x|Zt), t = 1 · · ·T,

probabilistic encoder : qφ(Zt|Xt), (1.3)

where Zt ∈ Rk is an unobserved random variable (i.e. a latent variable) which is indepen-

dently generated from the prior distribution pθ(z). The t-th observation Xt ∈ Rp is assumed

to be generated from the conditional distribution pθ(x|Zt). Here θ are parameters of the

generative model. For example, the latent prior pθ(z) can be specified as N (µ0, diag (σ2
0)),

where the mean µ0 and standard deviation σ0 are both in Rk. The conditional distribu-

tion pθ(x|Zt) can be defined as N (g (Zt) , diag (ψ2 (Zt))), where g, ψ are parameterized using

feed-forward neural networks from Rk → Rp, and determine the mean and standard devia-

tion of the conditional distribution respectively. The conditional distribution p(x|Zt) is also

referred to as a probabilistic decoder. To perform inference, the intractable true posterior

p(Zt|Xt) is approximated with the recognition model qφ(Zt|Xt), which is also parameterized

by feed-forward neural networks. This is also known as a probabilistic encoder. More details

are shown in the Inference section 1.3.2 next.

5

Nonlinear latent variable models, such as VAEs, are expressive and flexible, so they are

capable of extracting complex nonlinear structures which would be lost to linear methods.

However, VAEs are often unidentifiable as shown in [48, 49]. Inferred latent structures can

differ from the ground truth up to random nonlinear transformations; hence, latent variables

these models extract usually lack interpretability. Previously, some efforts have been made

to encourage disentanglement and enhance model interpretability [50, 51, 52]. However,

none of these methods offer a theoretical guarantee of identifiability.

Recently, some literature has been developed to address this identifiability issue [49,

53, 54, 55]. Chapter 5 generalizes a recently proposed identifiable variational autoencoder

(iVAE) [49, 53] to Poisson observations and applies it to analyze high-dimensional neural

spike trains. The proposed method integrates external inputs (e.g. stimuli or behavioral

variables) in generalized linear models and latent variable models, together achieving model

identifiability and improved interpretability.

Another class of nonlinear methods, such as Isomap [56] and locally-linear embedding

(LLE) [57], maps similar data points closer together thus preserving local structures of the

high dimensional data. See applications of Isomap in [58] and LLE in [59, 60] to neural spike

trains.

The third class of nonlinear methods preserves both global and local structures of the

data, e.g. t-SNE [61] and UMAP [62]. These two methods learn low-dimensional represen-

tations with the structure as similar as possible to the high-dimensional data. There are

parameters in these two methods to adjust the balance between the global structure and

local structure. See [63] for an application of t-SNE to spike sorting.

1.3 Latent variable models for time-series data dimension reduction

Neural spike trains usually exhibit strong temporal correlation; therefore, modeling tem-

poral structures of neural spike trains is important. Regression-based methods (e.g. gener-

alized linear models for the neural encoding and decoding problem) directly input stimuli or

6

behavioral variables to the model and assume that observed neural spike trains are tempo-

rally independent given those inputs. However, sometimes we believe that there exist other

unobserved variables which may affect neural activities. In this case, both latent variables

and model parameters need to be estimated from the data. These latent variable models

further provide flexibility for dimension reduction by assuming that low-dimensional repre-

sentations have some temporally dependent distributions.

1.3.1 Models

In general, these latent variable models assume that observed high-dimensional neural

activities are modulated by underlying unobserved low-dimensional latent variables, and

latent variables are usually assumed to follow a Markov process. Two commonly used latent

variable models with a Markov process prior are the hidden Markov model (HMM) [64] and

state-space model (SSM) [65].

The HMM is specified as follows:

Zt ∼ multinomial
(
πZt−1

)
,

Xt ∼ p (x|θZt) , (1.4)

where Xt ∈ Rp, Zt ∈ Rk, k � p are the observed and latent variables at time step t respec-

tively. The latent state Zt follows a multinomial distribution with the probability mass func-

tion π depending on Zt−1. Given Zt, the observation Xt is independent from previous latent

states Z1:t−1 and follows the probability density function p with the parameters θ determined

by Zt. The probability density function p is usually chosen as a multinomial or Gaussian

distribution. For neural spike trains, it is usually switched to a Poisson distribution [66, 67].

Instead of fixing the number of latent states as in the parametric HMM, Bayesian nonpara-

metric HMMs, e.g. the hierarchical Dirichlet process HMM (HDP-HMM) [68], assume that

there is an infinite number of latent states and can automatically learn the number of states

7

from the data. In Chapter 4, we present a detailed introduction to the HDP-HMM and

propose an improved method called the disentangled sticky HDP-HMM (DS-HDP-HMM),

which separates the strength of the self-persistence prior and transition prior.

With similar notation as the HMM, the SSM can be defined as follows:

Zt ∼ N (AZt−1 + b,Q) ,

Xt ∼ N (CZt + d,Σ) , (1.5)

where Zt follows an autoregressive process of order 1 (AR(1) process), and Xt is a linear

transformation of Zt with Gaussian noises. The evolution matrix A ∈ Rk×k sets the linear

dynamics of Zt, while the coefficient matrix C ∈ Rk×p controls the dependence of Xt on Zt.

The intercepts b ∈ Rk and d ∈ Rp control the long-term mean of Zt and Xt respectively,

while the covariance matrices Q ∈ Rk×k and Σ ∈ Rp×p set the noise level of Zt and Xt

respectively. This model is well known as the classic Kalman filter [65]. There are many

variants of this simple linear SSM. For example, when modeling neural spike trains, the

conditional distribution of Xt given Zt is usually switched to a Poisson distribution [69, 70,

71, 72, 73]. The linear transformations in the latent prior and conditional distribution can

both extend to nonlinear functions. This extension can be viewed as a connection between

the VAE and SSM [71, 72, 74].

1.3.2 Inference

The expectation-maximization (EM) algorithm [75] is the traditional inference method

for the HMM and Kalman filter models. However, in many cases, e.g. an SSM with Poisson

observations, the posterior p(Z|X) is intractable, so there is no analytical solution for the EM

algorithm. When this happens, approximate inference methods are required for inference.

One class of approximate inference methods is the Markov chain Monte Carlo (MCMC)

sampling. This class contains classical methods such as the Metropolis-Hastings algo-

8

rithm [76, 77] and Gibbs sampler [78] which have been widely used to fit Bayesian models;

see [79] for a detailed review. The MCMC sampling constructs a Markov Chain whose sta-

tionary distribution is the true posterior p(Z|X). Upon convergence, the MCMC sampling

generates exact samples from the target posterior, and we can use these samples to approx-

imate the posterior. In practice, it suffers from a slow convergence rate and is hard to scale

to large data [79].

Variational inference (VI) [80, 81] has been proposed as an alternative method to MCMC.

The VI algorithm approximates the posterior with a simpler distribution family, such as

Gaussian distributions, known as the variational family. The algorithm finds the candidate

distribution closest to the posterior within the variational family by maximizing a lower

bound of the evidence log p(X). The objective function is called the evidence lower bound

(ELBO), and is defined as

ELBO(q) = Eq[log p(X,Z)− log q(Z)], (1.6)

where q is the candidate approximate distribution. The VI algorithm takes advantage of

optimization methods such as stochastic optimization [82] and is, therefore, computation-

ally faster than the MCMC sampling. As a trade-off, the VI algorithm can only find an

approximation to rather than the exact true posterior.

However, the VI algorithm still requires that the expectation with respect to the approx-

imate distribution in the ELBO equation (1.6) has desirable analytical solutions, which is

intractable in many cases, for example, when the link function f is a feed-forward neural

network as in a VAE. The auto-encoding variational Bayes (AEVB) algorithm [46] has been

proposed to perform inference for these intractable cases. The AEVB algorithm models the

approximate distribution as a probabilistic encoder, and uses a reparametrization trick in

the ELBO equation (1.6) to optimize it through stochastic gradient descent. It is generally

faster and more scalable than the VI algorithm.

9

For the latent variable models proposed in Chapter 4 and 5, we develop efficient MCMC

and AEVB algorithms respectively to fit them.

1.4 Dissertation outline

A brief overview of the rest of the dissertation is as follows.

Chapter 2 relates to [20, 83], which develops a new demixing method for calcium imaging.

This includes a fast initialization and subsequent constrained NMF approach that is espe-

cially effective on axonal and dendritic imaging data. We apply this new demixing method

to two challenging applications: dendritic calcium imaging data and voltage imaging data in

the context of optogenetic stimulation. In both cases, we show that our new approach leads

to better extraction of activity from the video data.

Chapter 3 corresponds to [84], which introduces a novel probabilistic framework for the

modeling of deconvolved calcium traces. Much effort has been devoted to developing “pre-

processing” tools for calcium video data, addressing the important issues of e.g., motion cor-

rection, denoising, compression, demixing, and deconvolution. However, statistical modeling

of deconvolved calcium signals (i.e., the estimated activity extracted by a pre-processing

pipeline) is just as critical for interpreting calcium measurements, and for incorporating

these observations into downstream probabilistic encoding and decoding models. Surpris-

ingly, these issues have to date received significantly less attention. In this work, we examine

the statistical properties of the deconvolved activity estimates and compare probabilistic

models for these random signals. In particular, we propose a zero-inflated gamma (ZIG)

model, which characterizes the calcium responses as a mixture of a gamma distribution and

a point mass that serves to model zero responses. We apply the resulting models to neural

encoding and decoding problems. We find that the ZIG model outperforms simpler models

(e.g., Poisson or Bernoulli models) in the context of both simulated and real neural data,

and can therefore play a useful role in bridging calcium imaging analysis methods with tools

for analyzing activity in large neural populations.

10

Chapter 4 corresponds to [85], which develops an improved Bayesian nonparametric

HMM. The hierarchical Dirichlet process hidden Markov model (HDP-HMM) has been used

widely as a natural Bayesian nonparametric extension of the classical Hidden Markov Model

for learning from sequential and time-series data. A sticky extension of the HDP-HMM has

been proposed to strengthen the self-persistence probability in the HDP-HMM. However, the

sticky HDP-HMM entangles the strength of the self-persistence prior and transition prior

together, limiting its expressiveness. Here, we propose a more general model: the disentan-

gled sticky HDP-HMM (DS-HDP-HMM). We develop novel Gibbs sampling algorithms for

efficient inference in this model. We show that the disentangled sticky HDP-HMM outper-

forms the sticky HDP-HMM and HDP-HMM on both synthetic and real data, and apply

the new approach to analyze neural data and segment behavioral video data.

Chapter 5 corresponds to [86], which introduces a more identifiable and interpretable

latent variable model for Poisson observations. Recently, deep generative models have been

proposed to fit neural population responses. While these methods are flexible and expres-

sive, the downside is that they can be difficult to interpret and identify. To address this

problem, we propose a method that integrates key ingredients from latent models and tra-

ditional neural encoding models. Our method, pi-VAE, is inspired by recent progress on

identifiable variational autoencoder, which we adapt to make appropriate for neuroscience

applications. Specifically, we propose to construct latent variable models of neural activity

while simultaneously modeling the relation between the latent and task variables (non-neural

variables, e.g. sensory, motor, and other externally observable states). The incorporation of

task variables results in models that are not only more constrained, but also show qualita-

tive improvements in interpretability and identifiability. We validate pi-VAE using synthetic

data and apply it to analyze neurophysiological datasets from rat hippocampus and macaque

motor cortex. We demonstrate that pi-VAE not only fits the data better but also provides

unexpected novel insights into the structure of the neural codes.

11

Chapter 2: Demixing for calcium imaging data

This chapter was included as a part of a larger joint work “Penalized matrix decompo-

sition for denoising, compression, and improved demixing of functional imaging data” [20]

in collaboration with E. Kelly Buchanan, Ian Kinsella, Rong Zhu, Pengcheng Zhou, Felipe

Gerhard, John Ferrante, Ying Ma, Sharon H. Kim, Mohammed A Shaik, Yajie Liang, Rong-

wen Lu, Jacob Reimer, Paul G Fahey, Taliah N Muhammad, Graham Dempsey, Elizabeth

Hillman, Na Ji, Andreas S Tolias, and Liam Paninski. We thank Darcy Peterka and Jack

Bowler for helpful discussions.

2.1 Introduction

To analyze calcium imaging data, scientists need to first detect neurons (also known as

regions-of-interest (ROIs)) and extract temporal signals corresponding to each neuron from

calcium imaging. These two goals together are called demixing. Calcium imaging records

large neural populations, and the recorded neurons can overlap with each other, which

makes the manual neuron identification infeasible. Hence, developing a reliable, automated

demixing method is crucial.

There is an expansive literature focusing on this demixing problem. Most of these meth-

ods are based on matrix factorization. [11] proposed a PCA-ICA pipeline, which applied

principle component analysis (PCA) to denoise the data first followed by independent com-

ponent analysis (ICA) to extract signals. [12] developed a matrix factorization method based

on a sparse dictionary learning [87]. [13] first introduced the nonnegative matrix factoriza-

tion (NMF) method to solve the demixing problem. However, none of these methods can

automatically determine the number of neurons or provide compact neuron shape estimates.

12

[14] added several key constraints to NMF, e.g. local constraints on neuron shapes, to

better extract signals from calcium imaging, and the proposed method is known as the con-

strained NMF (CNMF) approach. The CNMF approach provides state-of-the-art denoising

and demixing of calcium imaging, but it can leave significant visible signal behind in the

residual (discarding potentially valuable signal) and is highly dependent on the initialization

of the matrix factorization. Many efforts have been made towards improving the CNMF ap-

proach. For example, Suite2p [15] imposed different constraints and background models on

the original CNMF approach. CNMF-E [19] extended the CNMF method to better handle

the one-photon data with large background activities. [16] proposed a more robust method

to noise and background contamination based on a one-sided Huber estimator. SCALPEL

[18] presented a better initialization method for neuron shapes. Several other attempts have

been made for demixing, such as the activity-based method in [17] and graph-based method

in [21]. [88, 89] also developed online demixing methods for real-time analysis.

The NMF model used in the literature is very natural for calcium imaging applications,

since each neuron has a shape that is fixed over the timescale of a typical imaging experiment

(and these shapes can be represented as non-negative images, i.e., an element of the A

matrix), and a corresponding time-varying calcium concentration that can be represented as

a non-negative vector (an element of C): to form a movie we simply take a product of each of

these terms and add them together with noise and background, i.e., form Y = AC +B +E.

However, current NMF-based approaches still leave room for improvement in several key

directions. First, since NMF is a non-convex problem, good initializations are critical to

obtain good results via the standard alternating optimization approaches (similar points are

made in [18]). Good initialization approaches have been developed for somatic or nuclear

calcium imaging, where simple Gaussian shape models are useful crude approximations to the

elements of A [14], but these approaches do not apply to dendritic or axonal imaging. Second

(related), it can be hard to separate weak components from noise using current NMF-based

approaches. Finally, voltage imaging data does not neatly fit in the NMF framework, since

13

voltage traces typically display both positive and negative fluctuations around the baseline

resting potential.

To improve the robustness of NMF approaches for demixing functional data, we make

use of the growing literature on “guaranteed NMF” approaches — methods for computing a

non-negative matrix factorization that are guaranteed to output the “correct” answer under

suitable conditions and assumptions [90, 91, 92, 93]. In practice, these methods work well

on clean data of sufficiently small dimensionality, but are not robust to noise and scale

poorly to high-dimensional data. We can solve both of these issues by “superpixelizing” the

denoised version of Y ; the resulting NMF initialization method improves significantly on

state-of-the-art methods for processing dendritic and axonal data.

The rest of this chapter is organized as follows. We first introduce a novel demixing

method, which consists of the “superpixel” initialization and a subsequent new constrained

NMF method. Next, we apply the proposed method to two challenging applications: den-

dritic calcium imaging data and voltage imaging data in the context of optogenetic stimula-

tion. In both cases, we show that our new approach leads to faster and much more robust

extraction of activity from the video data. Finally, we conclude this chapter with discussions

and future works.

Open source code for the proposed method is available at https://github.com/paninski-

lab/funimag.

2.2 Methods

We begin by defining notation. Our starting point is an imaging dataset that has been

motion-corrected (i.e., we assume that there is no motion of visible cellular components from

frame to frame of the movie) and then “unfolded” into a d × T matrix Y , where T is the

number of frames in the movie and d is the number of pixels per frame (or voxels per frame

if we are performing imaging in three dimensions). Now the typical approach is to model

the data Y as Y = AC+B+E, where the columns of A ∈ Rd×K model the locations of each

14

https://github.com/paninski-lab/funimag
https://github.com/paninski-lab/funimag

source (with K sources total), the rows of C ∈ RK×T model the time-varying fluorescence

of each source, B ∈ Rd×T is a “background” term to handle signals that can not easily

be split into single-neuronal components, and E ∈ Rd×T denotes temporally and spatially

uncorrelated noise.

It is useful to break the processing pipeline into three sub-problems:

1. Denoising: separation of neural signal Y ∗ = AC +B from noise E;

2. Compression of signal Y ∗;

3. Demixing: factorization of Y ∗ into its constituent components A,C, and B.

Most prior work has attempted to solve these sub-problems simultaneously, e.g., to re-

cover A and C directly from the raw data Y . As emphasized above, this direct approach

involves a challenging non-convex optimization problem; the solution to this problem typ-

ically misses some structure in Y , is highly sensitive to initialization and hyperparameter

settings, and can be particularly unstable in low-SNR regimes. We have found empirically

that a sequential approach is more robust and effective. First we compute the compressed

and denoised estimate Ŷ = UV ; here U and V are chosen so that Ŷ captures all of the signal

in Y while retaining minimal noise (i.e., Ŷ ≈ Y ∗) and also U and V are highly-structured,

compressible matrices, but we do not enforce any constraints between (U, V) and (A,C,B).

The computation of U and V essentially solves sub-problems 1 and 2 simultaneously. The

output matrices U and V are low-rank compared to Y , and U is additionally highly sparse

(since U is formed by appending spatial components u from multiple local spatial patches,

and each uk is zero outside of its corresponding patch). Second, we exploit U , V , and the

resulting denoised Ŷ to facilitate the solution of problem 3.

The first two sub-problems are investigated in [20] using a novel Penalized Matrix De-

composition (PMD) approach. We directly apply the PMD method, get the denoised data

Ŷ , and build an effective and scalable demixing algorithm for problem 3 on Ŷ . We elaborate

our demixing algorithm 1 in detail below.

15

2.2.1 Initialization via pure superpixels

The first step of the initialization procedure is to identify groups of highly correlated

spatially connected pixels – “superpixels.” The idea is that a pixel within a neuron should

be highly correlated with its neighbors, while a pixel containing mostly noise should have

a much lower neighbor correlation. These neighbor correlations, in turn, can be estimated

much more accurately from the denoised compared to the raw data. The superpixelization

procedure results in a set of non-overlapping groups of pixels which are likely to be contained

in good neural components. Then we want to extract “pure” superpixels, i.e., the subset of

superpixels dominated by signal from just one neural component. We will use the temporal

signals extracted from these pure superpixels to seed C in the NMF decomposition.

To identify superpixels, we begin with the denoised data Ŷ = UV . Since the compression

process discussed in the previous section is rather conservative (aiming to preserve the full

signal, at the expense of retaining a modest amount of noise), there is room to apply a more

aggressive lossy denoiser in the initialization stage to further reduce any remaining noise in

Ŷ . We soft-threshold signals in each pixel that are not sufficiently large — less than the

median plus δ× the median absolute deviation (MAD) within each pixel, with δ ≈ 1 or 2.

(This thresholding serves to extract mostly spiking activity from functional imaging data.)

We identify two neighboring pixels to be from the same superpixel if their resulting denoised,

soft-thresholded temporal signals have a correlation larger than a threshold ε, with ε ≈ 0.9.

Superpixels that contain fewer than τ pixels are discarded to further reduce noise and the

total number of superpixels. We then apply rank 1 NMF on the signals from each superpixel

to extract their (thresholded) temporal activities.

To extract pure superpixels, we apply the Successive Projection Algorithm (SPA) [94] to

the temporal activities of superpixels. This algorithm removes “mixed” superpixels whose

temporal activity can be modeled as a nonnegative linear combination of activity in other

superpixels (up to some R-squared level larger than 1−κ, where we use κ ≈ 0.2) and outputs

the remaining “pure” superpixels. See Algorithm 1 for pseudocode.

16

Note that running SPA on superpixels rather than raw pixels improves performance

significantly here, since averaging signals within superpixels boosts SNR (making it easier to

separate signal from noise and isolate pure from mixed pixels) and also greatly reduces the

dimensionality of the non-negative regression problem SPA has to solve at each iteration.

(To keep the problem size small we also run SPA just on small local spatial patches, as in the

previous section.) Finally, while we have obtained good results with SPA, other approaches

are available [95] and could be worth further exploration in the future. See Figure 2.1 for a

visual summary of the full procedure.

2.2.2 Local NMF

Next we run NMF, using the temporal signals extracted from the “pure” superpixels

to initialize C. Given the initial C, the typical next step is to regress onto the data to

initialize A. (Note that pure superpixels typically capture just a subset of pixels within the

corresponding neuron, so it is not efficient to initialize A with the pure superpixels.) However,

given the large number of pixels in a typical functional imaging video, direct regression of C

onto Y is slow and overfits, providing poor estimates of A.

This issue is well-understood [14], and several potential solutions have been proposed.

For somatic imaging it makes sense to restrict the support of A to remain close to their

initial values (we could use a dilation of the superpixel support for this). But for data with

large dendritic or axonal components this approach would cut off large fractions of these

components. Sparse regression updates are an option here, but these do not enforce spatial

structure in the resulting A directly; this often results in “speckle” noise in the estimated

spatial components (c.f. Figure 2.4 below).

We have found the following approach to be more effective. We initialize the support

set Ωk as the support of the k-th “pure” superpixel. Given C, we compute the correlation

image for each component k as the correlation between the denoised data Ŷ and the k-th

temporal component, Ck. We truncate this correlation image below a certain threshold ε1 to

17

A

B

C

D

E

F

G

H

Figure 2.1: Denoising helps extract more complete superpixels in voltage imaging data (see
Appendix for full dataset details). (A) Mean intensity projection of detrended data Y . (A
spline detrender was applied to the raw data prior to analysis; see Appendix for details. This
detrending should not be confused with an application of the trend filtering denoiser.) (B)
Local correlation image of detrended data Y . (C) Superpixels extracted in detrended data
Y with correlation cut-off ε = 0.2, size cut-off τ = 10. (D) Mean intensity projection of
denoised data Ŷ . (E) Mean intensity projection of soft-thresholded denoised data. (F) Local
correlation image of soft-thresholded denoised data; note that neural shapes are much clearer
here than in panel A. (G) Superpixels extracted in soft-thresholded data with correlation
cut-off ε = 0.95, size cut-off τ = 15. Note that we are using much more stringent criteria for
defining superpixels here compared to panel C, but nonetheless (due to denoising) extract a
much more complete superpixelization. (H) “Pure” superpixels extracted in soft-thresholded
data with τ = 0.2. See the superpixelization video for a time-varying illustration of these
processing steps.

zero, then update Ωk as the connected component of the truncated correlation image which

overlaps spatially with the previous Ωk. We use the modified fastHALS algorithm in [88] to

18

https://drive.google.com/open?id=1VPnDlG2Z0XRrSFl9HEUROl1rsKD15Du5

update A, C, and B to locally optimize the objective

min
A,C,b
‖Ŷ − AC −B‖2

F , s.t. Axk = 0 ∀x 6∈ Ωk, A > 0, C > 0, B = b1T , b > 0. (2.1)

Here we have modeled the background B as a simple temporally-constant vector; we discuss

generalizations to time-varying backgrounds below. Also note that we are approximating Ŷ

directly here, not the thresholded version we used to extract the superpixels above.

Finally, we incorporate a merge step: we truncate the correlation image below certain

threshold ε2 to zero, and automatically merge neurons if their truncated correlation images

are highly overlapped. The full algorithm is shown in Algorithm 2.

2.2.3 Further implementation details

Multi pass strategy: As in [19], we find it effective to take a couple passes over the data;

particularly in datasets with high neuron density, the first NMF pass might miss some dim

neurons. We decrease the MAD threshold δ and re-run Algorithm 1 on the residual to

find additional components, and then run a final merge and NMF update to complete the

pipeline.

Improvements from denoising and compression: Compressed data leads to faster NMF

updates, since we can replace Ŷ as UV ; in fastHALS, we can regress each ak on U or ck

on V first instead of directly onto Y . Similarly, when calculating the correlation image, we

can compute the correlation between the low rank V and ck first. As emphasized above,

denoising also improves the estimation of the correlation images, which in turn improves the

estimation of the support sets Ωk.

Time-varying background: It is straightforward to generalize the objective 2.1 to include

a time-varying background, using either a low-rank model (as in [14]) or a ring-structured

model (as in [19]). For the low-rank background model, we have found that performing an

SVD on the data excluding the support of the superpixels provides an efficient initialization

19

for the background temporal components.

Handling 3D imaging data: We also have 3D movie dataset, in which calcium signals at

different depths of the brain are recorded simultaneously. Our initialization method can be

easily adapted to extracting 3D supervoxels.

Incorporating temporal penalties: Note that we are only imposing nonnegativity in C

here; after denoising to obtain Ŷ , we have found that this simple nonnegative constraint is

sufficient for the datasets examined here. However, it is certainly possible to incorporate

temporal penalties or constraints on C (e.g., a TF penalty or a non-negative auto-regressive

penalty as in [14]), either within each iteration or as a final denoising step.

Post-processing: We find that sorting the extracted components by their “brightness,”

computed as max ak · max ck, serves to separate dim background components from bright

single-neuronal components. We also found it useful to drop components whose temporal

trace has skewness less than 0.5; traces with high skewness correspond to components with

significant spiking activity, but low-skewness traces corresponded to noise.

2.3 Results

We have applied the denoising and compression approach described above to a wide

variety of functional imaging datasets (See [20] for full details):

• Dendritic: two-photon Bessel-beam calcium imaging of dendrites in somatosensory

cortex of mouse in vivo

• Voltage: one-photon in vitro voltage imaging under optogenetic stimulation.

2.3.1 Voltage imaging data

We begin with an analysis of a challenging voltage imaging dataset. Voltage imaging (VI)

data presents a few important challenges compared to calcium imaging (CI) data: currently-

available VI data typically has much lower SNR and displays much stronger bleaching effects

20

Algorithm 1 Pseudocode for the complete proposed pipeline.
Input: Motion corrected data Y ∈ Rd×T , MAD threshold δ, minimum size of superpixels τ ,

correlation threshold for superpixels ε, R2 threshold in SPA κ.
1: σ(x)← estimated noise for each pixel x of Y ;
2: µ(x)← mean for each pixel of Y ;
3: Y ← (Y − µ(x)) /σ(x);
4: (Ŷ , U, V)← PMD(Y);
5: n← 0; A← [], C ← [], b ← median for each pixel of Ŷ ;
6: while n < maximum number of passes do
7: R← Ŷ − AC − b;
8: σmed(x)← median absolute deviation for each pixel of R;
9: µmed(x)← median for each pixel of R;

10: Ỹ ← max (0, R− µmed(x)− δ · σmed(x));
11: corr(x,x∗)← corr

(
Ỹ (x, t), Ỹ (x∗, t)

)
for all neighbouring pixel pairs (x,x∗);

12: Extract superpixels: connect x and x∗ together if corr(x,x∗) > ε to construct
connected components and discard those smaller than τ , forming superpixels Ωk, k =
1, · · · , K;

13: (ak, ck)← rank 1 NMF of Ỹ on support Ωk, k = 1, · · · , K;
14: [i1, i2, · · · , iS] ← SPA([c1, c2, · · · , cK], κ); i1, i2, · · · , iS are indices of pure superpix-

els;
15: A0 ← [A,ai1 ,ai2 , · · · ,aiS];
16: C0 ← [CT , ci1 , ci2 , · · · , ciS]T ;
17: b0 ← b;
18: (A,C, b)← LocalNMF(U, V,A0, C0, b0);
19: δ ← δ − 1;
20: n← n+ 1;
21: end while
22: η(k)← estimated noise for ck using average of high frequency domain of PSD;
23: (Optional) Denoise temporal components, e.g. by `1 trend filter: ck ←

min
c̃k
‖c̃k‖1, s.t. ‖c̃k − ck‖F 6 η(k)

√
T , k = 1, · · · , K;

24: Output: A,C, b

than CI data. The dataset we focus on here has another challenging feature: the preparation

was driven with time-varying full-field optogenetic stimulation, resulting in highly correlated

subthreshold activity in the visible cells, which are highly overlapping spatially. In prelim-

inary analyses of this data we applied variants of CNMF-E [19] but did not obtain good

results (data not shown), due to the strong bleaching and optogenetic stimulation-induced

correlations present in this data.

Thus we pre-processed this data by applying a spline-based detrending to each pixel (see

21

Algorithm 2 Pseudocode for LocalNMF.
Input: Compressed factors U ∈ Rd×r, V ∈ RT×r (r = rank(Ŷ)); initial constant background

b0, spatial components A0 = [a1,0, · · · ,aK,0] ∈ Rd×K , and temporal components C0 =
[c1,0, · · · , cK,0]T ∈ RK×T ; truncation threshold when updating support ε1, truncation
threshold when merging ε2, overlap threshold when merging ε3.

1: Ωk ← supp(ak,0) is spatial support for k-th component, k = 1, · · · , K;
2: Â← A0, Ĉ ← C0, b̂ ← b0;
3: ν(x)← standard deviation for each pixel of Ŷ = UV ;
4: V̄ ← mean for each column of V ;
5: while not converged do

6: P ← [U,−b]
([
V
1T
]
ĈT

)
;

7: Q← ĈĈT ;
8: for k = 1 : K do
9: Update spatial: âk(Ωk)← max

(
0, âk(Ωk) + P (Ωk,k)−Â(Ωk)Q(:,k)

Q(k,k)

)
;

10: end for
11: Update constant background: b̂ ← max

(
0, 1

T
(UV − ÂĈ)1

)
;

12: P ←
[
V T , 1

] (
[U,−b]T Â

)
;

13: Q← ÂT Â;
14: for k = 1 : K do
15: Update temporal: ĉk ← max

(
0, ĉk + P (:,k)−ĈQ(:,k)

Q(k,k)

)
;

16: end for
17: for every 4 iterations do
18: for k = 1 : K do
19: corr(k,x)← 1

T ·ν(x)·sd(ck)U(x, :)
(
(V − V̄)(ck − c̄k)

)
;

20: Update spatial support: Ωk ← biggest connected component in
{x|corr(k,x) > ε1} that spatially overlaps with {ak > 0};

21: âk(Ωc
k)← 0;

22: ρ(k,x)← (corr(k,x) > ε2);
23: end for
24: Merge overlapping components k1, k2 if ∑x (ρ(k1,x) ∗ ρ(k2,x)) /∑x ρ(ki,x) > ε3;
25: (ã, c̃) ← rank-1 NMF on [âk1 , · · · , âkr][ĉk1 , · · · , ĉkr] for merged components

k1, · · · , kr;
26: Â←

[
Â\{ak1 , · · · ,akr}, ã

]
, Ĉ ←

[
ĈT\{ck1 , · · · , ckr}, c̃

]T
;

27: update number of components K;
28: end for
29: end while
30: Output: Â, Ĉ, b̂

[20] for full details). This served to attenuate the highly-correlated bleaching signals and

subthreshold fluctuations in the raw data, leaving behind spiking signals (which were not per-

22

A

B

C

D

E

F

Figure 2.2: An example frame illustrating demixing on voltage imaging data. (A) Detrended
data Y . (B) Denoised data Ŷ . (C) Extracted signals AC; each component k is assigned a
unique color, and the intensity of each pixel at each time is determined by the corresponding
value of AC. (D) Constant background b. (E) Residual Ŷ −AC−b1T . (F) Noise removed in
the denoising step. See the voltage imaging demixing video for a time-varying representation
of the results here.

fectly correlated at the millisecond resolution of the video data here) along with uncorrelated

noise as the dominant visible signals in the data. Figure 2.1 shows that the denoiser (followed

by soft-thresholding) serves to significantly improve the separability of neural signals from

noise in this data: the superpixels obtained after denoising and soft-thresholding provide

excellent seeds for the constrained NMF analysis. Figures 2.2 (and the corresponding video)

and 2.3 demonstrate that the full demixing pipeline achieves good performance, extracting

components with high spatial and temporal SNR and leaving relatively little residual signal

behind despite the limited SNR and the multiple overlapping signals visible in the original

(detrended) data. Note that in the final step we project the estimated spatial components

back onto the original data, recovering the (highly correlated) temporal components includ-

23

https://drive.google.com/open?id=1kJjZ60QfDwkEKLKwgDhGXgUAgUKclXdO

A

B

C

D

E

Figure 2.3: Components extracted from voltage imaging data. (A) Mean intensity projection
of Ŷ . (B) Extracted spatial components (each assigned a unique color). (C) Details of the
spatial components extracted in the zoomed-in patch (red outline in panel B), sorted in
decreasing order of brightness. (D) Raw temporal components corresponding to the spatial
components shown in C (blue lines). Note that the highly-correlated subthreshold activity
and the strong bleaching trends visible in these components. (E) Optogenetic stimulation
(consisting of three steps of increasing amplitude followed by a ramp; black line).

ing strong bleaching components (panel D of Figure 2.3). Finally, we achieved a speedup in

the NMF iterations here that was roughly proportional to the ratio of the rank of Y com-

pared to the rank of U . A variant of the proposed method has also been applied to extract

signals from the 1-photon voltage imaging in vivo [96].

24

Proposed pipeline NMF on Ŷ NMF on Y

Figure 2.4: Comparison of spatial components extracted from Bessel dendritic imaging data.
Each row shows best-matching components extracted by our proposed method (first column),
sparse NMF on denoised data Ŷ (second column) and sparse NMF on raw data Y (third
column). See the Bessel dendritic imaging demixing video for further details. The proposed
pipeline extracts components that are significantly more localized and less noisy than the
components extracted by sparse NMF; also note that denoising helps sparse NMF extract
cleaner spatial components.

25

https://drive.google.com/open?id=1BLx2aEBkKCJDO7x-mB6iIY5kLcvrhvH8

Ground truth Proposed pipeline NMF on Ŷ NMF on Y

Figure 2.5: Comparison to simulated ground truth based on Bessel dendritic imaging data.
Spatial components are arranged as in the previous figure, with the addition of ground
truth components shown in the first column. Note that the proposed pipeline recovers the
ground truth simulated components much more accurately than do the sparse NMF baseline
approaches.

2.3.2 Bessel dendritic imaging data

The VI dataset analyzed in the preceding subsection contained a number of large visible

axonal and dendritic components, but also displayed strong somatic components. For our

next example we focus on a CI dataset dominated by dendritic components, where the

simple Gaussian spatial filter approach introduced in [14] for initializing somatic components

is ineffective. (Indeed, in dendritic or axonal imaging datasets, a search for “hotspots” in

the images is biased towards pixels summing activity from multiple neurons — and these

“non-pure” pixels are exactly those we wish to avoid in the demixing initialization strategy

26

Spatial components Spatial support Temporal components

Figure 2.6: Quantification of comparisons on simulated Bessel dendritic imaging data. Com-
ponents are ordered by brightness; top 17 brightest components shown here. First column
shows the correlation between true vs spatial components estimated by proposed pipeline
(o), sparse NMF on Ŷ (+), and sparse NMF on Y (x). Second column shows the corre-
lation between the supports of the true and estimated spatial components. Third column
shows the correlation between the true vs estimated temporal components. (The baseline
NMF approaches missed some dimmer, weaker neurons, so the corresponding symbols are
set to zero here.) Note that components extracted by proposed pipeline typically have higher
correlation with true components than sparse NMF baseline approaches.

proposed here.)

Figure 2.4 illustrates several of the spatial components extracted by our pipeline (again,

see the corresponding video for a more detailed illustration of the demixing performance);

these components visually appear to be dendritic segments and match well with the signals

visible in the data movie. Notably, no parameter tuning was necessary to obtain good

demixing performance on both the VI and CI datasets, despite the many differences between

these data types. Additionally, as a baseline comparison we applied a simple sparse NMF

approach with random initialization (similar to the method described in [14]) to both the

denoised and raw data (Ŷ and Y , respectively). As shown in the right columns of Figure 2.4,

this baseline approach extracted components that were much more mixed and noisy than the

components extracted by our proposed demixing pipeline; we also found that the baseline

approach was more prone to missing weaker, dimmer components than was the proposed

pipeline (data not shown).

The above analyses depended on qualitative visual examinations of the obtained com-

27

ponents and demixing video. We also generated simulated data with characteristics closely

matched to the raw data, in order to more quantitatively test the demixing performance

against a known (albeit simulated) ground truth. To generate simulated data Y , we used

the A and C estimated from the raw data, and further estimated the conditional distribution

of the residual as a function of the denoised data AC in the corresponding pixel x and time

bin t; then we added independent noise samples from this signal-dependent conditional dis-

tribution (but with the noise scale multiplied 2x, to make the simulation more challenging) to

AC. See the simulated Bessel dendritic imaging video for comparison of real and simulated

data. We ran the three demixing pipelines on this simulated data. Typical results of these

simulations are shown in Figure 2.5: again we see that the proposed pipeline captures the

ground truth components much more accurately than do the baseline methods, similar to

the results shown in Figure 2.4. Quantitatively, components extracted by proposed pipeline

have higher correlation with ground truth components than do those extracted by sparse

NMF approaches, as shown in Figure 2.6.

2.4 Discussion

We have presented new scalable approaches for demixing functional imaging data. The

new demixing methods proposed here are particularly useful for data with many dendritic

and axonal processes, where methods based on simple sparse NMF are less effective.

2.4.1 Related work

There are also some interesting connections between the demixing approach proposed in

[18] and our approach to initializing NMF, which is based on the sparse projection algorithm

(SPA). [97, 95] discuss the relationships between SPA and group-sparse dictionary selection

methods related to the approach used in [18]; thus the methods we use to compute “pure”

superpixels and the methods used in [18] to select neural dictionary elements are closely

related. However, our denoise-then-superpixelize approach to seeding the dictionary of neural

28

https://drive.google.com/open?id=1dPrbxEJftKQ2FuYJ3GHviFZDohoUcKXY

temporal components is in a sense converse to the clustering approach developed in [18] for

seeding the dictionary of neural spatial components. There may be room to fruitfully combine

these two approaches in the future.

2.4.2 Future work

In the near future we plan to incorporate our code into the CaImAn and CNMF-E

packages for calcium imaging analysis.

We can continue to develop a real-time online version of our demixing algorithm as in [89].

We may also explore alternative methods (e.g. using artificial neural network) for improving

identifying superpixels in initialization and constructing spatial support in localNMF.

2.5 Appendix

2.5.1 Video captions

1. Superpixelization video

Panels from top to bottom: (1) detrended movie Y; (2) denoised movie Ŷ; (3) MAD

soft-thresholded movie; (4) rank-1 NMF approximation within superpixels; (5) super-

pixels; (6) pure superpixels.

2. Voltage imaging demixing video

Panels from top to bottom: (1) detrended movie Y; (2) denoised movie Ŷ; (3) esti-

mated signal AC; (4) background B; (5) residual Ŷ −AC − B; (6) estimated noise

Y − Ŷ.

3. Bessel dendritic imaging demixing video

Top: (left) motion corrected movie Y; (middle) denoised movie Ŷ; (right) estimated

signal AC; Bottom: (left) background B, (middle) residual Ŷ−AC−B, and (right)

estimated noise Y − Ŷ.

29

https://github.com/flatironinstitute/CaImAn
https://github.com/zhoupc/CNMF_E
https://drive.google.com/open?id=1VPnDlG2Z0XRrSFl9HEUROl1rsKD15Du5#sup_videosuperpixelization
https://drive.google.com/open?id=1kJjZ60QfDwkEKLKwgDhGXgUAgUKclXdO#sup_videovoltage
https://drive.google.com/open?id=1BLx2aEBkKCJDO7x-mB6iIY5kLcvrhvH8#sup_videodendritic

Figure 2.7: In vivo volumetric imaging of dendrites in the mouse brain. (a) Maximum
intensity projection of a 3D volume (635 µm × 694 µm × 100 µm) of dendrites. The
sampling size was 0.33 µm/pixel. Post-objective power: 24 mW. (b) Image of the same
volume collected by scanning a Bessel focus with 0.60 µm lateral FWHM and 71 µm axial
FWHM. The effective volume rate was 3.7 Hz. Post-objective power: 120 mW. Excitation
wavelength: 970 nm. Scale bar: 100 µm.

4. Simulated Bessel dendritic imaging video

Top: (left) Motion corrected real movie; (right) simulated movie. Bottom: (left)

estimated noise from real movie; (right) simulated noise.

2.5.2 Datasets details

Bessel dendritic imaging data All surgical procedures were in accordance with protocols

approved by the Howard Hughes Medical Institute Janelia Research Campus Institutional

Animal Care and Use Committee.

C57BL/6J mice over 8 weeks old at the time of surgery were anesthetized with isoflurane

anesthesia (1–2%). A craniotomy over nearly the entire left dorsal cortex (from Bregma

+3 mm to Bregma −4.0 mm) was performed with the dura left intact, with the procedure

30

https://drive.google.com/open?id=1dPrbxEJftKQ2FuYJ3GHviFZDohoUcKXY#sup_videosimulatedendritic

described in detail previously in [98]. AAV2/9-synapsin-flex-GCaMP6s (2.5×1013 GC/ml)

was mixed with AAV2/1-synapsin-Cre (1.5×1013 GC/ml, 1000×dilution with PBS) at 1:1 to

make the working viral solution for intracerebral injections. 30 nl viral solution was slowly

injected into exposed cortex at 0.5 mm below dura. Injection sites were evenly spaced (at

0.7-0.9 mm separation) along two lines at 2.3 mm and 3.3 mm parallel to the midline. A

custom-made glass coverslip (450 µm thick) was embedded in the craniotomy and sealed

in place with dental acrylic. A titanium head bar was attached to the skull surrounding

the coverslip. After recovery from surgery, the mice were habituated to head fixation. Four

weeks after surgery, the head-fixed mouse was placed on a floating ball in the dark. The

spontaneous neural activity as indicated by GCaMP6s fluorescence signal was recorded in

the somatosensory cortex.

Volumetric imaging of dendrites was achieved by scanning an axially extended Bessel

focus in [99] and [100]. An axicon-based Bessel beam module was incorporated into a 2-

photon random access mesoscope (2p-RAM) in [99]. Details of the 2p-RAM have been

described previously in [98]. Briefly, the system was equipped with a 12kHz resonant scanner

(24 kHz line rate) and a remote focusing unit that enabled fast axial movements of the focal

plane. The system has an excitation numerical aperture (NA) of 0.6 and a collection NA of

1.0. The measured lateral full width at half maximum (FWHM) of the Gaussian focus at

the center of the field of view was 0.65 µm. The lateral and axial FWHMs of the Bessel

focus were 0.60 µm and 71 µm, respectively. Scanning the Bessel focus in two dimensions,

therefore, probed brain volumes within a 100 µm axial range. The volumetric dendritic

data presented in this paper were obtained by placing the center of the Bessel focus at 62

µm below dura to probe structures at 12 µm to 112 µm below dura (Figure 2.7). Dendrites

within this volume were imaged at an effective volume rate of 3.7 Hz, with each image having

1924×2104 pixels at 0.33 µm/pixel in the x-y plane. The wavelength of the excitation light

was 970 nm and the post-objective excitation power was 120 mW. Images were spatially

decimated and cropped for the analyses shown here.

31

Voltage imaging data Q-State’s proprietary Optopatch all optical electrophysiology plat-

form was used to record fluorescence recordings from induced pluripotent stem (iPS) cell-

derived NGN2 excitatory neurons from a cohort of human subjects [101]. Stimulation of

action potentials was achieved with a blue light-activated channelrhodopsin (CheRiff). Flu-

orescent readout of voltage was enabled by an Archaerhodopsin variant (QuasAr). NGN2

neurons were produced at Q-State using a transcriptional programming approach. Record-

ings were performed with an ultra-widefield instrument with a resolution of 800× 80 pixels

(corresponding field of view of 2 mm2) at a frame rate of 987 Hz.

The obtained data displayed breaks during stimulus resets and photobleaching. To

remove these effects from the raw data, we removed frames during stimulus resets, ex-

tracted slow trends with a robust B-spline regression (with knots chosen to allow for non-

differentiability at stimulus change-points and discontinuity at stimulus resets), and then a

quadratic regression against frames with no stimuli to capture and then remove photobleach-

ing effects.

32

Chapter 3: A zero-inflated gamma model for deconvolved calcium

imaging traces

This chapter was published as “A zero-inflated gamma model for deconvolved calcium

imaging traces” [84] in Neurons, Behavior, Data Analysis and Theory (NBDT) 2020 with

Xue-Xin Wei, Andres Grosmark, Zaki Ajabi, Fraser Sparks, Pengcheng Zhou, Mark Brandon,

Attila Losonczy, and Liam Paninski. We thank Tian Zheng and John Cunningham for helpful

discussions.

3.1 Introduction

Calcium imaging is one of the primary methods for measuring the activities of large

neural populations at single-cellular resolution [1, 2, 3, 4, 102]. Calcium imaging has several

important advantages: it offers high spatial resolution and can be coupled with various

genetic tools to achieve cell-type specificity; it has proven to be scalable and can monitor

hundreds/thousands of neurons in vivo simultaneously; finally, it allows for longitudinal

tracking of cellular activity across multiple days or weeks [103, 104, 105].

At the same time, calcium imaging presents some important analysis challenges: calcium

signals represent a slow, nonlinear encoding of the underlying spike train signals of interest,

and therefore it is necessary to denoise and temporally deconvolve temporal traces extracted

from calcium video data (e.g., ∆ F/F) into estimates of neural activity. These issues have

received extensive attention in the literature [22, 23, 14, 24, 25, 26, 27, 28, 29, 30, 31, 32].

Some of these deconvolution approaches estimate spiking probabilities directly [22, 14, 24, 28,

29, 32], but many approaches instead estimate the influx of calcium in each time bin, rather

than a spiking probability [23, 14, 26, 27, 30, 31, 106]; these non-probabilistic approaches

33

tend to be faster and are therefore popular in practice.

What is a proper statistical model for the output of these non-probabilistic calcium

deconvolution approaches? Defining such a model is the first step in any likelihood-based

downstream analyses, e.g., Bayesian decoding, probabilistic latent factor modeling, and/or

estimation of neural encoding models [5] — but somewhat surprisingly, no “standard model”

has emerged yet for the deconvolved output.

The simplest approach is to simply threshold the output and treat the resulting super-

threshold events as “spikes” (corresponding to a Bernoulli statistical model for these spikes),

but this approach clearly discards information about the number of spikes per bin, and there

is no obvious optimal way to set the threshold. Another naive approach would be to apply

standard point-process models (e.g., Poisson regression models) to the deconvolved output

— but as we will see below, the Poisson model is a poor approximation here, not least

because the deconvolved output can take continuous values, while the Poisson distribution

is supported on the integers.

In this chapter, we investigate statistical models to characterize the deconvolved calcium

activity. (To be clear, we do not propose any new deconvolution approaches here; instead,

we restrict our attention to modeling the output of existing deconvolution methods.) In

particular, we propose a zero-inflated gamma (ZIG) model, a two-component mixture model

including a “spike” of probability at zero response and another continuous component for

modeling positive responses, specified by a gamma distribution. We apply this model to

simulated data and real imaging datasets from hippocampus and thalamus, and find that it

provides good fits across a wide variety of deconvolution parameters and data types. Next

we show that the ZIG model can be embedded within “encoding models” to characterize

the probability of calcium responses given time-varying covariates such as the location or

orientation of the animal during behavior. Finally, we demonstrate that the ZIG-based

encoding model leads to more accurate Bayesian decoding of these covariates.

34

3.2 Results

3.2.1 Nonnegative deconvolution methods applied to calcium fluorescence traces produce

a mixture of zeros and positive real-valued output, well-captured by the zero-inflated

gamma model

We begin with simple simulated data (Figure 3.1a-d): we generate a Poisson spike train,

then push this spike train through a standard auto-regressive AR(1) model for calcium re-

sponse [23] and add noise to generate simulated fluorescence traces, and then run a popular

non-negative deconvolution method [22, 26] to obtain the post-deconvolution response, de-

noted as ŝt. With experimentally relevant signal-to-noise levels, the resulting histogram

of deconvolved responses ŝt typically has a “spike-and-slab” form (Figure 3.1b-d, right):

significant mass is placed exactly at zero (the “spike”), with the remaining mass forming

a continuous “slab” on the positive real axis. (This spike-and-slab structure of ŝt is un-

surprising: the deconvolution approach applied here enforces sparsity and non-negativity

constraints on ŝt, forcing ŝt to be exactly zero for many timesteps t.) Empirically, a shifted

gamma model suffices to capture the shape of the slab (green traces in Figure 3.1b-d, right);

the shift is fixed to be equal to the minimum spike size allowed by the deconvolution algo-

rithm (“smin”), and therefore the gamma distribution is still specified by two parameters.

We denote the resulting three-parameter distribution (with the third parameter correspond-

ing to the probability of a non-zero response) as the “zero-inflated gamma” (ZIG) model.

As we will see below, it is critical to use at least a two-parameter distributional family for

the slab, to capture changes in the mean and variance. The gamma family is a convenient

two-parameter family that provides a good fit to the data, but other distributional families

beyond the gamma could also be suitable here.

In these simulations, we have made several simplifying assumptions, including: i) a simple

AR(1) model for the generative process of the calcium fluorescence; ii) the a priori knowl-

edge about the time constant of the AR process; iii) the increase of calcium concentration

35

following each spike has a constant, deterministic size. Presumably, any deviations from

these assumptions would make the estimated “spikes” ŝt noisier, thus making the continuous

part of the response histogram smoother. On the other hand, increasing the signal-to-noise

ratio (SNR) and/or making the neurons burstier can introduce multiple “bumps” in the

continuous part of the distribution (not shown). This multiple-bump case could potentially

be handled by incorporating a multiple-component mixture model for the slab in our spike-

and-slab model, but (as we will discuss next), in practice for real data we have not found

this to be necessary and have not pursued this direction systematically.

We turn next to real data. In most real datasets, the ground truth spiking (the first part

of our simulation pipeline outlined in Figure 3.1a) is not available, but nonetheless we can

run the same deconvolution algorithm on the observed fluorescence trace to obtain ŝt. The

resulting histogram of ŝt is again well-fit by the ZIG model, for two example neuron cases

shown in Figure 3.1e-f.

3.2.2 The ZIG model is applicable to the outputs of multiple deconvolution methods, ap-

plied to data from multiple calcium indicators

We next seek to determine whether the observations made in Figure 3.1 are specific to a

particular deconvolution method or calcium indicator.

In Figure 3.2, we check three deconvolution methods, including an L1-penalized method

with a soft threshold [23, 14], a method with a hard threshold (i.e., positive minimal spike size

“smin”) [26], and an L0-penalized method [107, 27]. Each method has a free parameter which

controls the sparsity of the inferred responses; varying this parameter leads to corresponding

changes in the histograms of the deconvolved responses ŝt, with more or less probability

mass assigned to ŝt = 0. Over a range of parameters, the ZIG model provides a good fit to

the output histogram for all three of the algorithms examined here. We also found that the

ZIG model provides a good fit to the output of deconvolution applied to data generated from

an AR(2) model as well as the more biopysically detailed model from [108] (see Appendix

36

Figure 3.11).

Next, in Figure 3.3, we examine data shared through the SpikeFinder challenge [30],

including traces recorded using four calcium indicators (GCamp6s, jRCAMP1a, OGB-1,

jRGECO1a). Again, we find that the ZIG model provided a good fit across a wide range of

data.

3.2.3 Constructing encoding models for simulated calcium responses

We have seen above that the ZIG model provides a good fit to the marginal distribution

of the deconvolved responses ŝt. Now we want to exploit this probabilistic model to perform

neural data analysis tasks. The first step is to fit encoding models: ie, what is p(ŝt|θt), for

some observed covariate θt such as a stimulus or movement. In general, θt may be multi-

dimensional, but in the example applications here θt will be one dimensional. Once these

encoding models are fit and validated, we can use them to perform tasks like decoding of θt

given the observed deconvolved responses ŝt. The overall approach is illustrated in Figure

3.4.

To fit the ZIG model to p(ŝt|θt), we need to fit three parameters, each of which may

depend on θ: the probability of non-zero response q(θ), the scale parameter a(θ), and the

shape parameter k(θ) for the gamma component, specifically

p (ŝt|θt) = (1− q(θt)) · δ(0) + q(θt) · gamma (ŝt; k(θt), a(θt), loc) , (3.1)

where again we fix the location parameter loc for the gamma component as the minimum

spike size smin. (The mean of the ZIG model with parameters (q, k, a, loc) is q(ka+ loc), and

the variance is qka2 +q(ka+ loc)2(1−q).) We model these parameters as nonlinear functions

of θt; we use neural networks to parameterize these nonlinearities, and then estimate the

weights of these networks by maximum likelihood (see Section 3.4 for full details).

It is worth pausing to note two points here. First, the general problem of estimating

37

a mixture model whose parameters depend on θt would be rather challenging; however, in

our case we are fitting a very particular two-component mixture model in which the first

component (corresponding to δ(0)) is trivial to estimate, since we merely need to count

zero values in ŝt, resulting in a much easier estimation problem. Second, in the previous

sections we showed that the ZIG provides a good marginal fit to p(ŝt), marginalized over the

whole dataset — but there is no guarantee that the same model provides a good conditional

fit to p(ŝt|θt). We have checked this fit empirically, and it turns out that the ZIG model

also provides a good fit to the conditional distributions considered here, in both real and

simulated data (see Appendix Figure 3.12 for an example).

To test this conditional estimation approach, we generate artificial calcium imaging

datasets with hundreds of simulated neurons (Figure 3.4). We first construct tuning curves

of individual neurons that tile the space of θ values. In the real data examples presented

below, θ will be a one-dimensional variable (e.g., the animal’s head direction), so we use a

one-dimensional θ in these simulations. Next we take a empirically measured time series θt

(the head direction of a mouse), and compute the time-varying firing rates for individual

neurons by plugging θt into the tuning curves. We then generate binned spike trains with

different noise characteristics; we experiment with spike counts drawn from a Poisson dis-

tribution or a negative binomial (NB) distribution, as both have been proposed to model

empirically observed spike responses [110, 111, 112]. Next we plug these simulated binned

spike trains into the same generative model for calcium fluorescence traces discussed above,

then deconvolve the resulting traces to obtain simulated responses ŝt. Finally, we fit the ZIG

encoding model to the resulting responses ŝt.

We compare the ZIG model against simpler Poisson, Bernoulli, and gamma models (see

Section 3.4 for full details). Figure 3.5 shows the results from a simulated dataset with

negative binomial spiking. (We find that the results on the Poisson dataset are qualitatively

similar; data not shown.) Overall, for both the Poisson or NB simulated datasets, we find

that all of these models except for the Bernoulli model can capture the data mean well (the

38

Bernoulli model is only effective for data in which the mean of ŝt in each bin is bounded below

1; this model fails to capture the responses in bins with high firing rates). However, only

the ZIG model can properly capture both the mean and variability of ŝt. (The ZIG model

also provides a good empirical fit to the full conditional distribution; data not shown.) The

alternative models tend to either over- or under-estimate the variance, therefore providing

poor descriptions of the distributions of the deconvolved responses; thus, the extra flexibility

(due to the larger number of parameters) in the ZIG model is necessary to capture basic

statistics of the data.

3.2.4 The ZIG encoding model leads to improved Bayesian decoding in simulated data

In the previous section we showed that the ZIG encoding model is flexible enough to

capture the mean and variance of ŝt across a wide range of firing rate regimes, in simulated

data. Can we exploit this encoding model to obtain an improved decoder for θt? We use

a classic Bayesian decoding approach to address this question: we compute the posterior

distribution of θt, under the different encoding models for ŝt discussed above, and then

quantify how well the resulting posterior distributions capture the uncertainty in θt given

the observed ŝt.

We quantify the performance of the resulting decoders on simulated data in Figure 3.6.

Overall, the ZIG model leads to the smallest decoding error over a wide range of deconvolu-

tion sparsity parameters. Interestingly, accuracy degrades monotonically as a function of the

sparsity of the output ŝt: i.e., the decoders can take advantage of even very small outputs ŝt

to improve the decoding accuracy. (In Figure 3.6 we use the deconvolution approach from

[26], with a hard-threshold on the minimal spike size; results based on the soft-threshold de-

convolution approach from [14] are similar.) The decoder based on the ZIG encoding model

also achieves the highest coverage rate (i.e., the posterior credible interval covers the true

value of θt with highest probability). In contrast, the decoders based on the Poisson and

gamma models output credible intervals with mis-calibrated coverage rates (i.e., the credible

39

interval based on these models was narrower than it should have been), due to a mismatch

between the true versus the modeled distribution of ŝt. In other words, a Bayesian statis-

tician using a Poisson or gamma encoding model would be (mistakenly) overly confident in

her predictions.

3.2.5 Application to real imaging data

In the previous section we developed the encoding-decoding analysis pipeline on simulated

data. Next we apply these methods to real data. We focus on two calcium imaging datasets

in this section. The first is a single-photon imaging dataset collected from thalamic region

ADN, and the second is a two-photon dataset from hippocampal region CA1. Both datasets

are collected in animals performing spatial navigation tasks (see Section 3.4 for full details).

Our aim is to decode head direction (during free behavior) in the ADN data and location

along a circular track (during head-fixed behavior) in the hippocampal data; thus in both

cases the variable θ is one-dimensional, as in the simulated data. The proposed method has

also been applied to decode the visual stimulus orientation [113].

We begin in Figure 3.7 by fitting encoding models to the ADN data (see Figure 3.8 for

the results of hippocampal data). The results are similar to those shown in Figure 3.5: of

the models examined here, only the ZIG model can capture both the mean and the variance

of the empirical data. Further, in panel c we examine the tuning curves from this population

of neurons. We compute the mean firing rates as a function of θ (leftmost panel) and plot

these next to the estimated a(θ) and q(θ) curves (middle and right panels); recall that the

mean of ŝ as a function of θ scales proportionally with a(θ)q(θ) in the ZIG model. We

see that the parameters a(θ) and q(θ) covary across this population, indicating that there

may be some statistical benefit in fitting these parameters with a hierarchical model that

can share information between a(θ) and q(θ); however, we have not pursued this direction

systematically.

Next we turn to decoding (Figures 3.9 and 3.10). Again, the results of the real data

40

analysis are largely consistent with the simulated results presented in Figure 3.6: in both

datasets, the ZIG encoding model leads to more accurate Bayesian decoding, with higher

credible interval coverage rates. Again, the decoding accuracy improves as the sparsity of ŝ

decreases.

One major difference between the simulated and real data is that the coverage proba-

bilities are no longer well-calibrated, for any of the encoding models. In other words, the

Bayesian posterior based on these encoding models is overly confident. We believe this is

due to model mismatch: in our Bayesian decoder we model the responses ŝt as conditionally

independent across neurons and time given θt, i.e.,

p ({ŝti}|θt) =
∏
it

p (ŝti|θt) ,

where ŝti denotes the observed response at time t from cell i. This assumption makes a

testable prediction: ŝti should be uncorrelated with ŝtj (where i and j index two different

neurons) if we restrict attention to responses within a single bin of θ values. We find that

these “noise correlations” are empirically not zero (invalidating the conditional indepen-

dence assumption), and in fact if we perform a shuffling analysis in which we randomize the

responses ŝti within each θ bin (thus preserving the relationship between ŝti and θt while

destroying noise correlations between ŝti and ŝtj; see Section 3.4 for full details), then we find

that the calibration of the credible interval is restored (data not shown). We leave further

detailed modeling of these noise correlations to future work.

3.3 Discussion

The primary conclusion of this work is that the ZIG model provides a significantly im-

proved fit to the distribution of the post-deconvolved calcium responses ŝt: the ZIG model is

sufficiently flexible to capture the zero-inflation and varying mean and dispersion of the data

across a wide variety of indicators, deconvolution methods, and behavioral settings. More-

41

over, it is straightforward to extend this into a θt-dependent encoding model, and in turn to

use this encoding model for Bayesian decoding. The improved encoding fits provided by the

ZIG lead directly to more accurate decoding, with better-calibrated posterior uncertainties.

Finally, somewhat surprisingly, we find that setting the deconvolution hyperparameter to

minimize the sparsity of ŝt consistently leads to the most accurate decoder (consistent with

results in [31]); i.e., attempting to discard small “noisy spikes” in ŝt may be counterproduc-

tive. Overall, the ZIG model fills a crucial gap for calcium imaging analyses, by providing a

firm statistical foundation for encoding and decoding models based on the estimated activity

ŝt.

Of course the two-step approach followed here — to deconvolve the observed fluorescence

traces, fit a probabilistic model to the deconvolved output, and then use this model to

compute likelihoods in downstream encoding and decoding models — is not the only option.

Another approach would be to use a full statistical model of the observed fluorescence traces

(instead of treating the deconvolved output ŝt as the observed data, as we did here), as in e.g.

[115, 29, 28, 116]. This “end-to-end” modeling approach has the advantage that it can model

more complex temporal dependencies in ŝt, and can potentially use side information to obtain

better estimates of the neural activity from noisy fluorescence observations (see [22, 23, 117,

118, 14] for further examples along these lines). Conversely, there are a number of cases for

which deconvolution or sophisticated statistical modeling is not required at all to address

the scientific question at hand. The two-step approach pursued in this chapter can be seen

as a useful compromise between these two extremes: if the researcher’s scientific question

requires more temporal resolution than is available from the raw fluorescence measurements

(i.e., deconvolution is necessary), but the researcher lacks the time or expertise needed to

develop, estimate, and test a full end-to-end statistical model, then the two-step approach

developed here offers a quick, effective, practical compromise.

Open source code implementing the methods presented here along with the sample

datasets is available at https://github.com/zhd96/zig. We hope these methods will be

42

https://github.com/zhd96/zig

useful for the variety of downstream analyses that are currently being pursued by the calcium

imaging community.

3.4 Materials and Methods

3.4.1 Density models of the deconvolved calcium trace

ZIG model We model the density of the devonvolution output as

ŝti ∼ (1− qti) · δ(0) + qti · gamma(kti, ati, loci), (3.2)

where qti denotes the probability of non-zeros, ati is the scale parameter of the gamma

distribution, and kti is the shape parameter of the gamma distribution, for neuron i and

time t. loci is the location parameter of the gamma distribution for neuron i, fixed as the

minimum spike size smin. We denote ai = (a1i, · · · , aT i)> ∈ RT+ as the scale parameters

for neuron i. Parameters q and k are defined similarly. We denote this family of density

functions as ŝ ∼ ZIG(q, k, a). Note that when smin = 0, the ZIG density family has a useful

scale-invariance property: if ŝ ∼ ZIG(q, k, a), then cŝ ∼ ZIG(q, k, ca), for any constant

c > 0. This is convenient because in general the scale factor connecting spikes to increases

in calcium concentration is unknown (and will typically vary from cell to cell); however, the

scale invariance of the ZIG model implies that we do not need to estimate this scale factor

explicitly.

(Scaled-)Poisson model The Poisson model places all of its probability mass on the

non-negative integers, and is therefore inappropriate for modeling ŝt, which has range R+.

Nonetheless, as discussed below, it is possible to assign a pseudolikelihood under the Pois-

son model to real-valued observations ŝt, and to fit the Poisson rate λ by maximizing this

pseudo-likelihood. However, the Poisson model does not have the scale-invariance property

enjoyed by the ZIG model, and therefore some care must be taken in defining a scale for

43

ŝt (empirically, we find that the performance of the Poisson encoding and decoding models

are highly sensitive to scaling of ŝt). We experiment with two scaling approaches. In the

first scheme, the deconvolved trace is normalized by the noise standard deviation of the

raw calcium trace, using methods proposed previously [14]. In the second approach, the

deconvolved trace ŝt is normalized by its Fano factor. Either of these normalizations leads

to similar performance in terms of encoding or decoding accuracy (data not shown).

Bernoulli model The Bernoulli model can be considered as a special case of the ZIG

model, by collapsing the positive responses into a delta function at 1. The responses are first

binarized by thresholding; as discussed in the main text, we explore a range of different smin

values in the deconvolution step, and set the binarization threshold equal to smin. As in the

ZIG model, we define qi = (q1i, · · · , qT i)> ∈ RT+ as the non-zero probability for neuron i.

Gamma model For completeness, we also fit a gamma model to the deconvolved re-

sponses. (Note that the gamma distribution can not capture the strong bimodality that we

typically observe in ŝt.) The gamma distribution exhibits a singularity at 0 when the shape

parameter k is less than 1. To avoid this issue, we slightly shift the observations away from

0 by adding a small positive number ε (ε = 10−4) to ŝ before fitting the gamma(k, a) model.

As in the ZIG model, we denote ai = (a1i, · · · , aT i)> ∈ RT+ as the scale parameters for neuron

i.

Parameter estimation We estimate the parameters of the above models via maximum

(pseudo-)likelihood. Details appear in Section 3.4.3.

3.4.2 In vivo datasets

Two in vivo datasets are analyzed here. Both datasets are about 15 minutes long; in

each case GCaMP6f was utilized as the calcium indicator. Traces are extracted using the

CNMF-E software described in [19].

44

The first dataset is from area ADN of mouse thalamus. During stereotaxic surgery a male

B6/C57j mouse was injected in ADN with the viral vector AAV9-hSyn-GCaMP6f (Molecu-

lar Tools Platform, Laval University). These mice were then implanted with a GRIN relay

lens that was 500 microns in diameter and 4.0 mm in length (Inscopix, Inc.). The lens was

positioned such that the bottom surface of the lens terminated just dorsal to the ADN. Base-

plates used to attach the miniaturized fluorescent imaging endoscope (‘UCLA Miniscope’,

miniscope.org) were cemented to the skull and imaging was performed using miniscopes while

following the guidelines on the miniscope.org website. Recording sessions were conducted on

a plus-maze (with each arm being 70cm long and 7.5 cm wide) in which animals were trained

to alternate between arms. A webcam mounted above the maze tracked the position of a

green and red light emitting diode that were attached to the miniscope. These were used

to determine position and head direction of the mouse. Images were acquired at 30Hz. All

experimental procedures followed the guidelines approved by the McGill University Animal

Care Committee.

The second dataset is from area CA1 of mouse hippocampus. This dataset was collected

using 2-photon imaging, while the head fixed male mouse was running for a stably placed

hidden (non-cued) water reward on a 2 meter belt containing discrete tactile landmarks as

in [119]. Images were acquired at 60Hz (post hoc temporally decimated to 30Hz).

3.4.3 Fitting encoding models to the data

We use a similar maximum likelihood-based fitting procedure for both the simulated data

and the two real datasets. We denote θ = (θ1, · · · , θT)> ∈ (−180, 180]. We split the data

into 60% training data, 20% validation data, and 20% test data, for two simulation datasets

and ADN data. For the CA1 data, only the data from running state are used, and the data

are split it into 70% training data, 10% validation data, and 20% test data.

45

ZIG model There are three parameters, i.e., the scale parameter a and shape parameter

k for the gamma component, and the probability of non-zero responses q. We parameterize

the scale a and probability of non-zero responses q as a function of stimulus (sin(θ), cos(θ))

using neural networks, i.e.,

(at1, · · · , atN , qt1, · · · , qtN) = (f1(θt), · · · , fN(θt), g1(θt), · · · , gN(θt)) ,

where f = (f1, · · · , fN), g = (g1, · · · , gN) are the output layer for a and q respectively. We

use 2 hidden layers, each with tanh non-linearity, in the neural network. For the output

layer, we use a logistic link function for f and an exponential link function for g. 30 nodes

in hidden layers are used for the two simulated datasets and the ADN data; 15 nodes are

used for the hippocampal data. We fix the shape parameter k to be a constant for individual

neurons (i.e., k is neuron-dependent but not θ-dependent).

We optimize all the parameters by maximizing the log-likelihood using a variant of gra-

dient descent, i.e., Adam [120]. Specifically, the objective function can be expressed as

arg max
k,a,q

N∑
i=1

T∑
t=1

log (1− qti) 1(ŝti = 0)+(
log qti + (ki − 1) log(ŝti − smin)− ŝti − smin

ati
− ki log ati − log γ(ki)

)
1(ŝti > smin).

(3.3)

Poisson model We parameterize the Poisson mean λ using a neural network with the

same structure as described for the ZIG model above, with an exponential link function in

the output layer. Note that for the Poisson model, the likelihood function is not a proper

likelihood because the the Poisson density can not be evaluated for non-integer values. We

use a “psuedo-likelihood” function instead for the maximum likelihood estimation:

arg max
λ

N∑
i=1

T∑
t=1

ŝti log λti − λti. (3.4)

46

Bernoulli model The probability of positive response q is parameterized using a neural

network with the same structure as in the ZIG model, with a logistic link function in the

output layer. Formally, the objective function can be defined as

arg max
q

N∑
i=1

T∑
t=1

(1− ŝti) log (1− qti) + ŝti log qti. (3.5)

Gamma model The scale parameter a and the shape parameter k are parameterized with

the same neural network structure as in the ZIG model, except using an exponential link in

the output layer. The objective function can be expressed as

arg max
k,a

N∑
i=1

T∑
t=1

(ki − 1) log ŝti −
ŝti
ati
− ki log ati − log γ(ki). (3.6)

3.4.4 Shuffling analysis

In section 3.2.5 we performed a shuffling analysis to investigate the conditional indepen-

dence assumption used by the Bayesian decoder. Details of this analysis are provided here.

We started with the original T -by-N matrix ŝti (with T denoting the number of observed

video frames, and N the number of extracted cells), then made a new matrix s̃ti as follows.

For each time point t and each cell i, we randomly chose a timestep u (u depends on (t, i))

such that θt = θu, and then set s̃ti = ŝui. The new matrix s̃ has the same marginal distribu-

tion of p(ŝt|θt), so the encoding models will be the same, but the correlations between cells

will be destroyed.

3.5 Appendix

47

0.74 (probability of
 zero responses)

0.67

0.64

0.26

0 100 200 300
0

0
0

0.47

[a.u.]

probability of responsescalcium traces +
deconvolved responses

small

large

noise

simulated
data

real data

a thalamus neuron

a hippocampal neuron

b

c

d

e

f

deconvolved activityframe number

spike train
 observed
�uorescence trace

 deconvolution
 output

a

ŝt

Figure 3.1: Illustration of the zero-inflated gamma (ZIG) model: deconvolved calcium re-
sponses typically consist of a mixture of zero responses plus a continuous component that is
well-modeled as a gamma distribution, in both simulated and real imaging data. (a) Pipeline
of the simulations for the generation of artificial data. The spike train is sampled from a
inhomogeneous Poisson process. The calcium concentration is then determined by a auto-
regressive process (AR(1) process, with decay time constant 450ms), driven by the spike
train. The observed calcium trace is determined by the calcium concentration plus inde-
pendent Gaussian noise. The deconvolved calcium responses are obtained using the OASIS
deconvolution algorithm described in [26]. (b,c,d) Left: observed fluorescence trace (blue),
ground truth spikes (black), and the deconvolved output (orange). Each frame = 30ms.
Right: the histogram of the deconvolved output (blue) and the ZIG fit (green); the number
on each histogram represents the proportion of zero responses. The additive noise level of
the simulated fluorescence increases from panel b to panel d. (e) Observed fluorescence and
deconvolved response of a neuron from ADN (see Section 3.4 for full experimental details).
(f) Same as panel e but from the hippocampus (again, see Section 3.4 for full experimental
details). (Conventions as in b-d but we no longer have access to the true spikes.) In each
case, the ZIG model provides a good fit to the deconvolved outputs.

48

0.48

0.76

0.58

0.76

0.91

0
0

0.68

0
0

0.73

0
0

0.83

0
0

0.90

0
0

0.88

0 100 200 300 0
0

0.82

soft
threshold

hard
threshold

L -penalized

simulated data

a

b

c

frame number deconvolved activity

0.83

real data

d

e

f

0 300

frame number deconvolved activityŝt ŝt

0

Figure 3.2: The ZIG model is robust with respect to the details of different deconvolution
methods. We consider three deconvolution methods, including a L1-penalization method
with soft threshold (panel a,d) [14], a method with non-zero minimal spike size or hard
threshold (panel b,e) [26], and an L0-penalized method (panel c,f) [27]. We apply these
methods to both simulated (panel a,b,c) and real data (panel d,e,f; same traces as in Figure
3.1). Each method has a hyper-parameter controlling the sparseness of the deconvolved
activity. Two values of the sparseness parameter are examined for each method. Conventions
as in Figure 3.1.

49

0.22 0.21 0.36 0.33

0.37 0.400.34

0.60 0.65 0.54 0.58

0.57 0.60

0.31 0.27 0.31 0.29

0.25 0.77 0.82 0.81

0.52 0.74 0.49 0.30

GCamp6s jRCAMP1a

jRGECO1a
0.71 0.65 0.77 0.69

0.67 0.70 0.69 0.69

0.67 0.70 0.66

OGB-1

a b

c d

deconvolved activity [a.u.]

pr
ob

ab
ili

ty

0.53

ŝt

Figure 3.3: The ZIG model is robust with respect to data collected with different calcium
indicators. Data collected using four different calcium indicators are tested. The data are
from the SpikeFinder challenge dataset (panel a,c from [25]; panel b,d from [109]). (Specif-
ically, the four datasets used here are SpikeFinder dataset #1 (calcium indicator OGB-1),
dataset #3 and #5 (indicator GCamp6s), dataset #9 (indicator jRCAMP1a), and dataset
#10 (indicator jRGECO1a).) All the neurons examined here fired at least 200 spikes.

50

variable

x(t)

spike train 1

spike train 2

spike train N

...

calcium trace 1

calcium trace 2

calcium trace N

...
deconvolved trace 1

deconvolved trace 2

deconvolved trace N

...

population code

deconvolution

ZIG

Bernoulli

Generative model for calcium traces

time

density
models

fir
in

g
ra

te

 decoding

a

b

Other models

...

0

0 1

normalizationva
ria

bl
e

1− q

q ∗ gamma(k, a)

Figure 3.4: The encoding-decoding modeling framework. (a) The full generative “encoding”
model for calcium fluorescence traces. Given the neural tuning curves and the covariate
sequence θt, spikes are generated probabilistically and transformed (as in Figure 3.1) into
the observed fluorescence traces. (b) After deconvolving to obtain ŝt, we can use the ZIG as
well other models for ŝt, and use the estimated encoding model and ŝt to decode θt.

51

a

0.0 0.2 0.4 0.6 0.8 1.0
Fitted mean firing rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.6 1.2 1.8
0.0

0.6

1.2

1.8

Ob
se

rv
ed

 m
ea

n
fir

in
g

ra
te Poisson

0.0 0.6 1.2 1.8

x=1

Bernoulli

0.0 0.6 1.2 1.8

gamma

0.0 0.6 1.2 1.8

ZIG

b

0.0 0.2 0.4 0.6 0.8 1.0
Fitted variance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0
0.0

1.5

3.0

4.5

Ob
se

rv
ed

 v
ar

ia
nc

e

Poisson

0.0 1.5 3.0 4.5

Bernoulli

0.0 5.0 10.0 15.0

gamma

0.0 2.0 4.0 6.0

ZIG

Figure 3.5: The ZIG model captures the means and variances of deconvolved calcium re-
sponses in the simulated data. (a,b) Summary plots based on all the neurons (N = 215)
showing the observed versus the predicted mean/variance of ŝt. We divide the θ range to
into small equi-spaced bins (number of bins = 18 here), and compute the mean and variance
for the observed and fitted responses corresponding to each bin for each model neuron. Each
dot represents the mean (or variance) associated with one bin from one neuron.

52

a

0 20 40 60 80 100
Time (s)

-90
0

90
180

St
im

ul
us

 (d
eg

re
e

) ZIG

10
8
6
4
2

0

b c d

0.0 0.2 0.4 0.6 0.8 1.0
Minimum spike size smin

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

s e
rro

r (
de

gr
ee

)

12

18

24

30

Training data

Poisson
Bernoulli
gamma
ZIG

0 0.25 0.5 1 2

12

18

24

30

Test data

0.0 0.2 0.4 0.6 0.8 1.0
CI width mean

0.0

0.2

0.4

0.6

0.8

1.0
CI

 c
ov

er
ag

e
ra

te

0.78

0.84

0.90

0.96

50 100 150 200
0.78

0.84

0.90

0.96

0.0 0.2 0.4 0.6 0.8 1.0
CI confidence level (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

CI
 c

ov
er

ag
e

ra
te

 (l
og

 sc
al

e)

0.9

0.99

0.999

0.9 0.99 0.999

0.9

0.99

0.999

Figure 3.6: The ZIG model leads to improved decoding performance on simulated data.
Decoding is performed based on the deconvolved responses in single frame, time window
∼ 33ms, with no smoothing across frames on all neurons (N = 215). (a) True simulated
location (blue) plotted with the decoded normalized log-posterior probability under the
ZIG model (red; posterior at each step is normalized to have a maximum of 1, for easier
visualization). Note that the decoded posterior does a good job of tracking the true location.
(b) Decoding mean absolute error ±1 standard error under different encoding models, with
varying smin, the minimum spike size parameter in [26]; larger values of smin correspond
to sparser output ŝt. (c) Posterior credible interval (CI) width vs CI coverage rate (the
probability that the true location falls within the CI; higher is better here). (d) Confidence
level vs CI coverage rate. Dashed line indicates unity (i.e., the CI is achieving its nominal
coverage rate). In (b,c) we see that the ZIG model leads to the lowest decoding error and
the best coverage rate over a range of parameters, while (d) shows that the CI computed
under the ZIG model achieves a nearly-nominal coverage rate, as desired; in contrast, the
Poisson and gamma encoding models output mis-calibrated credible intervals.

53

a

0.0 0.2 0.4 0.6 0.8 1.0
Fitted mean firing rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.8 1.6 2.4
0.0

0.8

1.6

2.4

Ob
se

rv
ed

 m
ea

n
fir

in
g

ra
te Poisson

0.0 0.8 1.6 2.4

x=1

Bernoulli

0.0 0.8 1.6 2.4

gamma

0.0 0.8 1.6 2.4

ZIG

b

0.0 0.2 0.4 0.6 0.8 1.0
Fitted variance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0
0.0

1.5

3.0

4.5

Ob
se

rv
ed

 v
ar

ia
nc

e

Poisson

0.0 1.5 3.0 4.5

Bernoulli

0.0 5.0 10.0 15.0

gamma

0.0 2.0 4.0 6.0

ZIG

c

0.0 0.2 0.4 0.6 0.8 1.0
Head direction (degree)

0.0

0.2

0.4

0.6

0.8

1.0

-90 0 90 180

0

10

20

30

40

Ne
ur

on
s

Mean

0.6

1.2

1.8

2.4

Scale a

0.5

1.0

1.5

2.0

Non-zero prob q

0.1

0.3

0.5

0.7

Figure 3.7: The ZIG model best captures the means and variances of deconvolved calcium
responses in the ADN dataset. (a,b) Conventions as in Figure 3.5; similar to results based
on the simulated data, the ZIG model again provides the best fits to the observed means
and variances for this experimental dataset. (c) Estimated parameter values for the ZIG
model and Poisson model, for multiple neurons (each row corresponds to one neuron, while
the columns correspond to different θ values). Neurons are sorted according to the preferred
firing direction. For the Poisson model, each row plots the mean firing rate λ as a function
of head direction for each neuron. For the ZIG model, there are three sets of parameters.
The scale parameter a and the probability of non-zero response q are plotted. Notice that
the two parameters are correlated; both parameters tend to scale with the estimated mean
rate λ. We find that we could obtain good fits by fixing the shape parameter k in the ZIG
model for each neuron.

54

a

0.0 0.2 0.4 0.6 0.8 1.0
Fitted mean firing rate

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.6 1.2 1.8
0.0

0.6

1.2

1.8

Ob
se

rv
ed

 m
ea

n
fir

in
g

ra
te Poisson

0.0 0.6 1.2 1.8

x=1

Bernoulli

0.0 0.6 1.2 1.8

gamma

0.0 0.6 1.2 1.8

ZIG

b

0.0 0.2 0.4 0.6 0.8 1.0
Fitted variance

0.0

0.2

0.4

0.6

0.8

1.0

0.0 2.0 4.0 6.0
0.0

2.0

4.0

6.0

Ob
se

rv
ed

 v
ar

ia
nc

e

Poisson

0.0 2.0 4.0 6.0

Bernoulli

0.0 2.5 5.0 7.5

gamma

0.0 2.5 5.0 7.5

ZIG

c

0.0 0.2 0.4 0.6 0.8 1.0
Location along circular track (degree)

0.0

0.2

0.4

0.6

0.8

1.0

-90 0 90 180

0

80

160

240

Ne
ur

on
s

Mean

0.6

1.2

1.8

2.4

Scale a

1

2

3

4

Non-zero prob q

0.1

0.3

0.5

0.7

Figure 3.8: Encoding results for hippocampus data during running. Conventions as in
Figure 3.7. (a,b) The observed versus the predicted mean/variance of ŝt. (c) Estimated
parameter values for the ZIG model and Poisson model, for multiple neurons. Again, among
the four models considered, only the ZIG model can capture both the mean and variance of
the calcium responses conditional on the animal’s location on the track.

55

a

0 20 40 60 80 100
Time (s)

-90
0

90
180

St
im

ul
us

 (d
eg

re
e

) ZIG

10
8
6
4
2

0

b c d

0.0 0.2 0.4 0.6 0.8 1.0
Minimum spike size smin

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

s e
rro

r (
de

gr
ee

)

25

30

35

40
Training data

Poisson
Bernoulli
ZIG

0 0.25 0.5 1 2

25

30

35

40
Test data

0.0 0.2 0.4 0.6 0.8 1.0
CI width mean

0.0

0.2

0.4

0.6

0.8

1.0

CI
 c

ov
er

ag
e

ra
te

0.60

0.70

0.80

0.90

1.00

60 120 180 240
0.60

0.70

0.80

0.90

1.00

0.0 0.2 0.4 0.6 0.8 1.0
CI confidence level (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

CI
 c

ov
er

ag
e

ra
te

 (l
og

 sc
al

e)

0.75

0.87

0.94

0.97

0.98

0.9 0.99 0.999

0.75

0.87

0.94

0.97

0.98

Figure 3.9: Decoding results for head direction (ADN) dataset. Decoding is performed
based on responses from single frame, time window ∼ 33ms, with no smoothing across
frames on N = 45 neurons. Conventions similar to Figure 3.6. (a) True simulated location
(blue) plotted with the decoded normalized log-posterior probability for the ZIG model (red).
(b) Decoding mean absolute error ±1 standard error under different encoding models, with
varying smin. (c) Posterior CI width vs CI coverage rate. (d) Confidence level vs CI coverage
rate. The gamma model performed poorly here and is not shown.

56

a

0 20 40 60 80 100
Time (s)

-90
0

90
180

St
im

ul
us

 (d
eg

re
e

) ZIG

10
8
6
4
2

0

b c d e

0.0 0.2 0.4 0.6 0.8 1.0
Minimum spike size smin

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

s e
rro

r (
de

gr
ee

)

15

18

21

24

27
Training data

Poisson
Bernoulli
ZIG

0 0.25 0.5 1

15

18

21

24

27
Test data

0.0 0.2 0.4 0.6 0.8 1.0
CI width mean

0.0

0.2

0.4

0.6

0.8

1.0

CI
 c

ov
er

ag
e

ra
te

0.72

0.80

0.88

0.96

40 80 120 160

0.72

0.80

0.88

0.96

0.0 0.2 0.4 0.6 0.8 1.0
CI confidence level (log scale)

0.0

0.2

0.4

0.6

0.8

1.0
CI

 c
ov

er
ag

e
ra

te
 (l

og
 sc

al
e)

0.75

0.87

0.94

0.97

0.9 0.99 0.999

0.75

0.87

0.94

0.97

0.0 0.2 0.4 0.6 0.8 1.0
Number of neurons

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ab

s e
rro

r (
de

gr
ee

)

20

30

40

50 Poisson
Bernoulli
gamma
ZIG

50 100 200 311

20

30

40

50

Figure 3.10: Decoding results for hippocampus data. The encoding model is estimated
based on the data during running, as is typical in the hippocampal decoding literature
[114]. Decoding time window is set to be every two frames, ∼ 33ms. (a,b,c,d) similar to
Figure 3.9. (e) Decoding results for subsets of neurons of hippocampus data. We randomly
select neurons (N = 50, 100, 200) out of the 311 total neurons and perform the encoding-
decoding analysis based on these subsets. The advantage of the ZIG model remains robust
with smaller sub-populations of hippocampal neurons.

57

simulated data based
on AR (2) model

smin =0 smin =1

calcium trace
inferred spikes
ground truth

smin =0 smin =1

zero probability
= 0.49

zero probability
= 0.56

zero probability
=0.61

zero probability
=0.33

zero probability
=0.42

zero probability
=0.55

zero probability
= 0.75

zero probability
= 0.85

zero probability
= 0.90

zero probability
= 0.61

zero probability
= 0.76

zero probability
= 0.87

simulated data based
on a biophysical model

0 500
frame

0 500
frame

0 500
frame

0 500
frame

Gamma �t

a
b

c d

[a.u.] [a.u.]0 0

small

noise

large

small

noise

large

Figure 3.11: The ZIG model provides a good fit to the deconvolved calcium responses of
simulated data based on a AR(2) model and a more biophysical realistic model. The spike
train is sampled from a homogeneous Poisson process. (a,b) Results based on an AR(2)
model under three different noise levels and two different smin values in deconvolution [23,
14, 26]. Left: fluorescence trace from simulations (blue), ground truth spikes(black), and the
deconvolved output (red). Right: the histogram of the positive deconvolved output (blue)
and the ZIG fit (green). (c,d) Similar to (a,b), but based on a more biophysical realistic
model as described in [108].

58

000

zero probability
=0.43

zero probability
=0.78

zero probability
=0.69

zero probability
=0.15

zero probability
=0.59

zero probability
=0.57

zero probability
=0.45

zero probability
=0.72

zero probability
=0.55

0

pr
ob

ab
ili

ty
pr

ob
ab

ili
ty

pr
ob

ab
ili

ty

stimulus 1 stimulus 2 stimulus 3

stimulus 4 stimulus 5 stimulus 6

stimulus 7 stimulus 8 stimulus 9

[a.u.]

Figure 3.12: The ZIG model provides a good fit to the conditional probability distribution
of deconvolved calcium responses given stimulus. The spike train is sampled from an in-
homogeneous Poisson process with firing rate modulated by the stimulus, and the calcium
concentration is determined by an AR(1) model. Each panel shows the histogram of the
positive deconvolved output corresponds to each stimulus value. The green line is the ZIG
fit.

59

Chapter 4: Disentangled sticky hierarchical Dirichlet process

hidden Markov model

This chapter was published as “Disentangled sticky hierarchical Dirichlet process hidden

Markov model” [85] in The European Conference on Machine Learning and Principles and

Practice of Knowledge Discovery in Databases (ECML-PKDD) 2020 with Yuanjun Gao and

Liam Paninski. We thank John Paisley, Xue-Xin Wei, Kenneth Kay, Matthew R Whiteway,

Pengcheng Zhou, and Ari Pakman for helpful discussions. We thank the authors of [121] for

generously sharing their data. We acknowledge computing resources from Columbia Uni-

versity’s Shared Research Computing Facility project, which is supported by NIH Research

Facility Improvement Grant 1G20RR030893-01, and associated funds from the New York

State Empire State Development, Division of Science Technology and Innovation (NYSTAR)

Contract C090171, both awarded April 15, 2010.

4.1 Introduction

Hidden Markov models (HMMs) provide a powerful set of tools for modeling time series

data. In the HMM we assume that the time series observations are modulated by underlying

latent time-varying variables which take a discrete set of states. This model class is useful

in its own right and can also be incorporated as a building block for more complicated

models. It has been widely used in speech recognition [122], musical audio analysis [123,

124], acoustic-phonetic modeling [125], behavior segmentation [126, 127, 121], sequential

text modeling [68, 128], financial time series data analysis [126, 129], computational biology

[130], and many other fields.

Selecting the number of HMM states is an important question for practitioners. Clas-

60

sical model selection techniques can be used, but these methods can be computationally

intensive and are sometimes unreliable in practice [131, 132]. Also, for real datasets, it is

often reasonable to assume that the number of latent states may be unbounded, violating

classical assumptions needed to establish consistency results for model selection. Based on

previous work in [133], [68] proposed the Hierarchical Dirichlet process HMM (HDP-HMM),

a Bayesian nonparametric framework. In the HDP-HMM the transition matrix follows a

hierarchical Dirichlet process (HDP) prior. [122] noted that the HDP-HMM tends to rapidly

switch among redundant states, and proposed the sticky HDP-HMM (S-HDP-HMM), which

strengthens the self-persistence probability. This modification often leads to significant im-

provements in modeling real data.

In the HMM, it is important to distinguish three features: 1, the similarity of the rows

of the transition matrix; 2, the average self-persistence probability of the latent states (con-

trolled by the mean of the diagonal of the transition matrix); and 3, the strength of the

self-persistence prior across states (i.e., the inverse prior variance of the diagonal elements of

the transition matrix). In the HDP-HMM, there is only one parameter controlling feature

1. The sticky HDP-HMM adds one more parameter to control feature 2, but still entangles

features 1 and 3 with only one parameter, thus limiting the expressiveness of the prior.

We show that we can add one additional hyperparameter to generalize the sticky HDP-

HMM formulation, obtaining three degrees of freedom to model the three features discussed

above. We call this new model the disentangled sticky HDP-HMM (DS-HDP-HMM).

The rest of the chapter is organized as follows. In section 4.2, we provide a brief intro-

duction to Bayesian HMM, HDP-HMM, and sticky HDP-HMM. In section 4.3, we discuss

the limitations of these models. In section 4.4, we introduce disentangled sticky HDP-HMM,

and in section 4.5 we develop efficient Gibbs sampling inference methods for this new model.

Section 4.6 demonstrates the effectiveness of the disentangled sticky HDP-HMM on both

synthetic and real data, including applications to analyzing neural data and segmenting

behavior video. The notation table can be found in the Appendix 4.8.1.

61

4.2 Background on Bayesian HMM and HDP-HMM

Our goal here is to fit an HMM to time series data. On its face, this would seem to

be a solved problem; after all, we can compute the HMM likelihood easily, and the basic

expectation-maximization algorithm for HMM fitting is textbook material [64]. Nonetheless,

a fully Bayesian solution to this problem has remained elusive. Specifically, we would like

to be able to compute a posterior over all of the unknown HMM parameters (including

the number of latent states). Quantification of posterior uncertainty is critical in many

applications: for example, given short time series data, often we do not have enough data

to sufficiently identify the HMM parameters. Even for longer time series data, we might

want to fit richer models as we collect more data. Here “richer models” correspond to more

latent states, and since the number of parameters in the HMM grows quadratically with the

number of states, we may be left again with some irreducible uncertainty about the model

parameters.

The HDP-HMM [68] provides a useful starting point for fully Bayesian HMM inference.

The basic idea here is to sample a global transition distribution prior from a Dirichlet process

(described below), and then for each latent state we sample a transition distribution from this

shared (random) global prior distribution. To develop the details of this HDP-HMM idea we

first need to define some notation for the Dirichlet process (DP). Given a base distribution

H on a parameter space Θ and a positive concentration parameter γ, a Dirichlet process

G ∼ DP(γ,H) (sometimes also denoted by DP(γH)) can be constructed by the following

stick-breaking procedure [134]: let

β ∼ GEM(γ), θi iid∼ H, i = 1, 2, · · · , (4.1)

where β ∼ GEM(γ) is a random probability mass function (p.m.f.) defined on a countably

62

infinite set as follows:

vi ∼ Beta(1, γ), βi = vi
i−1∏
l=1

(1− vl), i = 1, 2, · · · . (4.2)

Then the discrete random measure G = ∑
i βiδθi is a sample from DP(γH), where δθi denotes

the Dirac measure centered on θi.

The HDP-HMM [68] uses the DP to define a prior on the rows of the HMM transition

matrix in a setting where the number of latent states is unbounded. The HDP-HMM is

defined as
DP shared global prior : β ∼ GEM(γ)

θj
iid∼ H, j = 1, 2, · · ·

Transition matrix prior : πj
iid∼ DP(αβ), j = 1, 2, · · ·

Latent states : zt ∼ πzt−1 , t = 1, · · · , T

Observations : yt ∼ f(y|θzt), t = 1, · · · , T

(4.3)

Here, β and {θj}∞j=1 are defined as in the DP described above, and then each transition

distribution πj for state j is defined as a random sample of a second DP with base measure

β and concentration parameter α. Here α controls how similar πj is to the global transition

distribution β. Finally, as usual, zt denotes the state of a Markov chain at time t, and the

observation yt is independently distributed given the latent state zt and parameters {θj}∞j=1,

with emission distribution f(·).

The sticky HDP-HMM from [122] modifies the transition matrix prior by adding a point

mass distribution with stickiness parameter κ to encourage self-persistence:

Transition matrix prior : πj ∼ DP(αβ + κδj), j = 1, 2, · · · , (4.4)

where δj denotes the Dirac measure centered on j. Figure 4.1(a) provides the graphical

model for the sticky HDP-HMM.

63

a

z1 z2 z3 · · · zT

y1 y2 y3 · · · yT

θj
∞

H

πj

∞
α

βγ

κ

b

z1 z2 z3 · · · zT

w1 w2 w3 · · · wT

y1 y2 y3 · · · yT

θj
∞

H

π̄j

∞
α

κj

∞
ρ1

ρ2

βγ

Figure 4.1: Graphical models for sticky HDP-HMM (a) and disentangled sticky HDP-HMM
(b).

4.3 Limitations of the HDP-HMM and sticky HDP-HMM

The HDP-HMM uses the concentration parameter α to control the following feature of

the HMM:

• feature 1: the strength of the transition matrix prior, or the similarity of the rows of

the transition matrix.

In other words, a large value of α here means that the transition probability for each state

is close to the global transition distribution β.

A flexible model should have additional parameters to control two additional features:

• feature 2: the average self-persistence probability, or the mean of the diagonal of the

64

transition matrix.

• feature 3: the strength of the self-persistence prior, or the similarity of the diagonal

elements of the transition matrix.

The sticky HDP-HMM adds just one parameter κ compared to the HDP-HMM. feature

2 is controlled by κ/(α + κ), while both feature 1 and feature 3 are controlled by α + κ.

Note that a strong prior (large α + κ) means that both the self-persistence probability and

the transition probability are quite similar across states, and it is impossible to separate

the strength of these two elements using this parameterization. These three features should

occupy three degrees of freedom in total, but the formulation of sticky HDP-HMM is only

able to traverse a two-dimensional sub-manifold of this three-dimensional space, limiting the

expressiveness of the sticky HDP-HMM prior.

More concretely, consider the speaker diarization example studied in [122]. The task is

to distinguish the speakers in an audio recording of a conversation; the current speaker is

the hidden state. Suppose that some speakers are likely to speak for a very long time while

others are terse (implying a small feature 3, i.e. small α + κ), but the identity of the next

speaker is independent of the identity of the previous speaker (implying a big feature 1, i.e.

big α+κ). The sticky HDP-HMM would have trouble in this scenario. The opposite case is

plausible as well: as an example, consider a group of people sitting in a circle and expressing

their opinions in a clock-wise fashion (implying a small feature 1 since the distribution of

the next speaker is highly dependent on the previous speaker); if each speaker talks for a

very similar amount of time (implying a big feature 3), then the sticky HDP-HMM would

have difficulty with this scenario as well.

4.4 Disentangled sticky HDP-HMM

Now that we have diagnosed this lack of flexibility in the HDP-HMM and sticky HDP-

HMM, we can construct a new more flexible model that separates the strength of the self-

65

persistence from the similarity of the transition probabilities. Specifically, we modify the

transition matrix prior as

Transition matrix prior : κj
iid∼ beta(ρ1, ρ2)

π̄j
iid∼ DP(αβ)

πj = κjδj + (1− κj)π̄j, j = 1, 2, · · · ,

(4.5)

where the transition distribution πj is a mixture distribution. A sample from πj has the self-

persistence probability of κj to come from a point mass distribution at j, and has probability

1−κj to come from π̄j, a sample from the DP with base measure β. We call this new model

the disentangled sticky HDP-HMM.

Here the beta(ρ1, ρ2) prior has the flexibility to control both the expectation of self-

persistence (feature 2), and the variability of self-persistence (feature 3). Meanwhile α is

free to control the variability of the transition probability around the mean transition β

(feature 1). In short, we use 3 parameters (ρ1, ρ2, α) rather than the 2 parameters (κ, α) to

separate the strength of the self-persistence and the transition priors.

When ρ1 = 0 and ρ2 > 0, all the κj = 0, and the disentangled sticky HDP-HMM reduces

to HDP-HMM. Importantly, the sticky HDP-HMM is also a special case of the disentangled

sticky HDP-HMM, as shown in Theorem 1. See the Appendix 4.8.2 for a proof.

Theorem 1. The sticky HDP-HMM formulation in equation 4.4 is a special case of the

disentangled sticky HDP-HMM by setting (ρ1, ρ2) = (κ, α).

An equivalent formulation of zt ∼ πzt−1 in the disentangled sticky HDP-HMM is as

follows:
Latent states : wt ∼ Ber(κzt−1)

zt ∼ wtδzt−1 + (1− wt)π̄zt−1 , t = 1, · · · , T,
(4.6)

where we add binary auxiliary variables wt, which decide whether the next step is self-

persistent or switching. See Figure 4.1(b) for the corresponding graphical model. We use

66

this formulation to facilitate inference in section 4.5.

4.5 Gibbs sampling inference

In this section, we introduce a new direct assignment Gibbs sampler (Algorithm 4.5.1)

(similar to [68]) and a new weak-limit Gibbs sampler (Algorithm 4.5.2) (similar to [122]) for

inference in the disentangled sticky HDP-HMM. The direct assignment sampler generates

samples from the true posterior of the disentangled sticky HDP-HMM when the Gibbs chains

converge. The weak-limit sampler uses finite approximation of the HDP-HMM to accelerate

the mixing rate of the Gibbs chains and can be easily adapted to parallel computing. [126]

noted that the weak-limit sampler was useful for observation models with dynamics such as

auto-regressive HMM (ARHMM) or switching linear dynamic system (SLDS). For detailed

derivations of these two algorithms, see the Appendix 4.8.3.

4.5.1 Direct assignment sampler

The direct assignment sampler for the HDP-HMM marginalizes transition distributions

πj and parameters θj and sequentially samples zt given all the other states z\t, observations

{yt}Tt=1, and the global transition distribution β. The main difference between our direct

assignment sampler and the corresponding HDP-HMM sampler is that instead of only sam-

pling zt, we sample {zt, wt, wt+1} in blocks. We sample α, β, γ only using zt that switch to

other states by π̄zt−1 (wt = 0), and sample {κj}K+1
j=1 , ρ1, ρ2 only using zt that stick to state

zt−1 (wt = 1).

Algorithm 3 Direct assignment sampler for disentangled sticky HDP-HMM
1: Sequentially sample {zt, wt, wt+1} for t = 1, · · · , T .
2: Sample {κj}K+1

j=1 . K is defined as number of unique states in {zt}Tt=1.
3: Sample β. Same as HDP-HMM.
4: Optionally, sample hyperparameter α, γ, ρ1, ρ2.

For step 1, we sequentially compute the probability for each possible case of the posterior

p(zt, wt, wt+1|z\t, w\{t,t+1}, {yt}Tt=1, α, β, {κj}K+1
j=1), and sample {zt, wt, wt+1} together from the

67

corresponding multinomial distribution. If zt = K + 1, i.e. a new state appears, we will

increment K, sample self-persistence probability κK+1 for a new state from the prior, and

update β using stick-breaking. For step 2, given wt+1 whose corresponding zt is j, we can

sample κj using beta-binomial conjugacy. For step 3, by introducing auxiliary variables

{mjk}Kj,k=1, we sample β using Dirichlet-multinomial conjugacy. For step 4, we compute the

empirical transition matrix {njk}Kj,k=1, where njk is the number of transitions from state j to

k with wt = 0 in {zt}Tt=1, and introduce additional auxiliary variables. Then the posterior of

α and γ are gamma-conjugate, given the auxiliary variables. We approximate the posterior

of ρ1, ρ2 by finite grids. The complexity for each step in Algorithm 4.5.1 is O(TK), O(K),

O(K), and O(K) respectively, so the total complexity per iteration is O(TK).

It is worth noting that instead of modeling {κj}K+1
j=1 as samples from a beta distribution,

it is natural to consider any distribution on the [0, 1] interval. The Gibbs algorithm here

is easily adaptable to cases where we have extra prior information on the self-persistence

probability.

4.5.2 Weak-limit sampler

The weak-limit sampler for the sticky HDP-HMM constructs a finite approximation to

the HDP prior based on the fact that

β|γ ∼ Dir (γ/L, · · · , γ/L)

πj|α, β ∼ Dir (αβ1, · · · , αβL) , j = 1, · · · , L
(4.7)

converges to the HDP prior when L goes to infinity. Using this approximation, one can

jointly sample latent variables {zt}Tt=1 with the HMM forward-backward procedure [64],

which accelerates the mixing rate of the Gibbs sampler.

The main difference between our weak-limit Gibbs sampler and the corresponding sticky

HDP-HMM sampler is that we now have two dimensional latent variables {zt, wt}Tt=1 to

sample.

68

Algorithm 4 Weak-limit sampler for disentangled sticky HDP-HMM
1: Jointly sample {zt, wt}Tt=1.
2: Sample {κj}Lj=1.
3: Sample {βj}Lj=1, {π̄j}Lj=1. Same as HDP-HMM.
4: Sample {θj}Lj=1.
5: Optionally, sample hyperparameter α, γ, ρ1, ρ2.

For step 1, we apply the forward-backward procedure to jointly sample the two dimen-

sional latent variables {zt, wt}Tt=1. Step 2 is the same as in Algorithm 4.5.1. For step 3,

we sample β and π̄ based on Dirichlet-multinomial conjugacy, given auxiliary variables

{mjk}Lj,k=1, the empirical transition matrix {njk}Lj,k=1, and the approximate prior in equa-

tion 4.7. For step 4, we place a conjugate prior on θj and use conjugacy to sample from

the posterior. Step 5 is the same as in Algorithm 4.5.1. The complexity for each step in

Algorithm 4.5.2 is O(TL2), O(L), O(L), O(L), and O(L) respectively, with total complexity

O(TL2).

By jointly sampling the full latent sequence {zt, wt}Tt=1, the weak-limit sampler greatly

improves the mixing rate. The correlated observations in ARHMM and SLDS further slows

the mixing rate of the direct assignment sampler, so jointly sampling is especially important

for those models with dynamics [126].

4.6 Results

In this section, we apply the disentangled sticky HDP-HMM to both simulated and real

data. We compared the performance of our disentangled sticky HDP-HMM with the two

baseline models: sticky HDP-HMM and HDP-HMM. We evaluated the model performance

according to two metrics: normalized Hamming distance (defined as the element-wise differ-

ence between the inferred states and the true underlying states) on training data, and the

predictive negative log-likelihood on held-out test data. To compute the Hamming distance,

we used the Munkres algorithm [135] to map the indices of the estimated state sequence

to the set of indices that maximize the overlap with the true sequence. To compute the

69

predictive negative log-likelihood, we used the set of parameters inferred every 10th Gibbs

iteration after it converges, and ran the forward algorithm of [64].

For all the experiments, we adopted a full Bayesian approach, and used the following

hyperpriors. For all three models, we placed a Gamma(1, 0.01) prior on the concentration

parameters α (and for the sticky HDP-HMM on α + κ) to cover a wide range of α values.

We placed a Gamma(2, 1) prior on γ to avoid extremely small and large γ samples, because

small γ will cause numerical instability when sampling β, while large γ will generate too

many states. For our model and sticky HDP-HMM, we placed non-informative priors on the

self-persistence parameters. We placed a Unif([0, 1]) prior on the self-persistence proportion

parameter φ = ρ1
ρ1+ρ2

. For our model, we placed a Unif([0, 2]) on the self-persistence scale

parameter η = (ρ1 + ρ2)−1/3, and cut [0, 1]× [0, 2] (the support of φ, η) into 100× 100 grids

(for simulated data) or 30× 30 (for real data) to numerically compute the posterior for φ, η.

We used the direct assignment sampler to fit the simulated data, because the simulated

data here has a relatively small sample size, and the direct assignment sampler generates

samples from the true posterior of the model. We used the weak-limit sampler to fit real data

(with a larger sample size) in parallel. We have also applied the direct assignment sampler

to a short version of the hippocampal data; the results obtained are qualitatively similar.

4.6.1 Simulated data

In the simulation studies, we focus on two settings that serve to clearly illustrate the

differences between the sticky versus disentangled sticky models. In both settings, we exper-

imented with both multinomial and Gaussian emissions. See the Gaussian emission results

in the Appendix 4.8.5.

Different self-persistence, same transition

We simulated data using a transition matrix (Figure 4.2(a)) with different κj and the

same π̄j across states, which corresponds to a large transition concentration parameter α

70

(big feature 1), and small self-persistence parameters ρ1, ρ2 (small feature 3). We assigned

the multinomial observation to be equal to the latent state with probability 0.9 and to other

states with equal chance with probability 0.1.

We placed a symmetric Dir(1, · · · , 1) prior on the multinomial parameters. We ran 3

MCMC chains, each with 15000 iterations, with 11000 iterations as burn-in (Figure 4.2(d)).

Results of three models fit on multinomial emission are shown in Figure 4.2. As shown

in Figure 4.2(e), our model learns a big α and small ρ1, ρ2, which is consistent with the

data, while sticky HDP-HMM model entangles these two parameters and learns something

in the middle. Better recovery of the hyperparameters leads to better fits on the data: our

model outperforms the two baseline models in terms of negative log-likelihood and Hamming

distance (Figure 4.2(b)(c)). The advantages of our model are even more clear under the

Gaussian emission (see figure in the Appendix 4.8.5). The three models generally learn

similar γ, which means that they infer similar numbers of states.

For each emission model, we compared these three models on 10 datasets generated from

the same model using different random seeds. The conclusions are consistent across the 10

different datasets.

Same self-persistence, different transition

We simulated data using a transition matrix (Figure 4.3(a)) with the same κj and different

π̄j across states, which corresponds to small α (small feature 1), and large ρ1, ρ2 (large feature

3). We assigned the multinomial observation to be equal to the latent state with probability

0.8 and to other states with equal chance with probability 0.2.

Again, consistently across 10 replications, our model learns hyperparameters consistent

with the data (Figure 4.3(d)) and outperforms the two baseline models (Figure 4.3(b)(c)),

though the advantages are not as big as in the previous scenario. This is likely because in the

previous example, our model can learn the hyperparameters based on the similarity among

rows of the transition matrix, while in this scenario, it can learn hyperparameters mostly

71

a b c

0.0

0.2

0.4

0.6

0.8

1.0

1260 1280 1300 1320 1340 1360
Negative log-likelihood

0
10
20
30
40
50
60
70

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

0.08 0.10 0.12 0.14
Normalized Hamming distance

0

20

40

60

80

100

120

Co
un

ts

d

0 5000 10000 15000
Iterations

1250
1275
1300
1325
1350
1375
1400
1425
1450

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

HDP-HMM S-HDP-HMM DS-HDP-HMM

e

1 8 64 512
alpha (log scale)

0
25
50
75

100
125
150
175

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

0 50 100 150 200 250
rho1

0

50

100

150

200

250

300

Co
un

ts

0 10 20 30 40 50 60
rho2

0

50

100

150

200

250

Co
un

ts

Figure 4.2: The DS-HDP-HMM provides good fits to the simulated data with different self-
persistence (ρ1, ρ2 small), same transition (α large), and multinomial emission. (a) True
transition matrix. (b) Histogram of negative log-likelihood on test data. (c) Histogram of
normalized Hamming distance between the estimated states and true states on training data.
(d) Negative log-likelihood on test data over 15000 direct assignment Gibbs samples from 3
chains for each model. (e) Histogram of hyperparameters α, ρ1, ρ2. Note that we plot κ, α for
sticky HDP-HMM in the histogram of ρ1, ρ2, since κ, α would be equal to ρ1, ρ2 respectively
if we treat sticky HDP-HMM as a special case of our model. Our model learns a big α and
small ρ1, ρ2, which is consistent with the data.

72

from the similarity among diagonal elements of the transition matrix, which contain much

less information.

a b c

0.0

0.2

0.4

0.6

0.8

1.0

1460 1480 1500
Negative log-likelihood

0

20

40

60

80

100

Co
un

ts
0.08 0.10 0.12 0.14 0.16
Normalized Hamming distance

0

50

100

150

200

250

300

350

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

d

0 1 2 3 4
alpha

0

50

100

150

200

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

1 1e2 1e4 1e6
rho1 (log scale)

0

50

100

150

200

250

300

350

Co
un

ts

1 1e2 1e4 1e6
rho2 (log scale)

0

100

200

300

400

500

Co
un

ts

Figure 4.3: Results for the simulated data with same self-persistence (ρ1, ρ2 large), different
transition (α small) and multinomial emission. We ran 3 chains, each with 30000 iterations,
with 20000 iterations as burn-in for this data. Conventions as in Figure 4.2. Our model
learns a small α and big ρ1, ρ2, which is consistent with the data. Note that the “spikiness”
in the histogram of ρ1, ρ2 comes from the approximation of the posterior of ρ1, ρ2 using finite
grids. An alternative way to avoid the discretization would be to use Metropolis-Hasting
sampling [77].

4.6.2 Inferring rat hippocampal population codes

Next we applied our model to a public electrophysiology hippocampus dataset [136, 137]1.

In the experiment, a rat freely explored in an open square environment (∼ 50cm×40cm),

while neural activity in the hippocampal CA1 area was recorded using silicon probes. See
1https://buzsakilab.nyumc.org/datasets/PastalkovaE/i01/i01_maze15_MS.001/

73

https://buzsakilab.nyumc.org/datasets/PastalkovaE/i01/i01_maze15_MS.001/

Figure 4.4(a) for an example trace illustrating the position of the rat over the course of the

experiment.

We selected the 100 most active putative pyramidal neurons and binned the ensemble

spike activities with a frame rate of 10Hz. The dataset consists of ∼ 36k frames. We used

the first 8k frames, cut it into blocks of 500 frames, and randomly took 8 blocks as training

data (4k frames), and the remaining 8 blocks as test data. The spike count at time t for

cell c is modeled as Poisson with rate λzt,c, i.e. yt,c ∼ Poisson(λzt,c). As in [138], we used

a conjugate gamma(ac, bc) prior for the firing rate λj,c, j = 1, 2, · · · , c = 1, · · · , 100. We

fixed the shape parameter ac = 1 across cells, and placed a gamma(1, 1) prior for the scale

parameter bc.

We set L = 200 and ran 7 MCMC chains, each with 15000 iterations, with 11000 itera-

tions as burn-in (Figure 4.4(d)). Our model achieves the smallest negative log-likelihood on

test data (Figure 4.4(c)). A two-sample t-test for the mean difference between negative log-

likelihood of DS-HDP-HMM and S-HDP-HMM for 7 chains is significant (p-value < 0.05).

The inferred states are correlated with the spatial locations of the rat (Figure 4.4(b)). Com-

pared to sticky HDP-HMM, our model infers a bigger α and smaller ρ1, ρ2 (Figure 4.4(e)).

Bigger α implies smaller variability of the switching transition, consistent with the rat quickly

going to other locations since it has fast running speed. Smaller ρ1, ρ2 imply bigger variabil-

ity of the self-persistence probability, consistent with the rat spending different durations

at different locations. Note that the disentangled sticky HDP-HMM and sticky HDP-HMM

perform similarly on the rat hippocampal data; bigger differences are seen in the mouse

behavior video data in the next section.

4.6.3 Segmenting mouse behavior video

We also applied our model to a public mouse behavior dataset [139, 140]. In this ex-

periment, a head-fixed mouse performed a visual decision task while neural activity across

dorsal cortex was optically recorded using widefield calcium imaging. We only used the

74

a b c

0 10 20 30 40 50
x (cm)

0
5

10
15
20
25
30
35
40

y
(c

m
)

0 10 20 30 40 50
x (cm)

0
5

10
15
20
25
30
35
40

y
(c

m
)

4.1%
3.3%

2.4%
2.4%

2.2%
2.0%

149000 149500 150000
Negative log-likelihood

0

20

40

60

80

100

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

d

0 5000 10000 15000
Iterations

149000

149500

150000

150500

151000

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

HDP-HMM S-HDP-HMM DS-HDP-HMM

e

2 4 6
alpha

0
50

100
150
200
250
300
350
400

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

5 10 15
rho1

0
200
400
600
800

1000
1200
1400

Co
un

ts

2 3 4 5
rho2

0

200

400

600

800

1000

1200

1400
Co

un
ts

Figure 4.4: Results for rat hippocampal data. (a) The rat’s moving trajectory in training and
test data. (b) The spatial locations of the rat corresponding to 6 most frequent states inferred
by DS-HDP-HMM. The figure legend shows the percentage of each of the 6 states. (c)(d)(e)
Conventions as Figure 4.2, though with more traces and using the weak-limit sampler in (d).
Our model infers a bigger α than ρ1, ρ2 (big feature 1, small feature 3).

behavior video data (128x128 pixels each grayscale video frame), which was recorded using

two cameras (one side view and one bottom view). The behavior video is high dimensional,

so we directly adopted the dimension reduction result in [121], which output 9-dimensional

75

continuous variables estimated using a convolutional autoencoder.

The dataset consists of 1126 trials across two sessions, with 189 frames each trial (30

Hz frame rate). We randomly chose 100 trials as training data (∼ 20k frames), and 30

trials as test data (∼ 6k frames). We assumed the observation follows an ARHMM, i.e. yt ∼

N (Aztyt−1,Σzt). As in [126], we standardized the observations, and assumed {Aj,Σj} follows

a conjugate matrix-normal inverse-Wishart (MNIW) prior. The details of this prior are in

the Appendix 4.8.4. We initialized the states {zt}Tt=1 of the three Bayesian nonparametric

models using the state assignments result of a 32-states parametric ARHMM in [121].

We set L = 40 and ran 7 MCMC chains, each with 10000 iterations, with 9000 iterations

as burn-in (Figure 4.5(c)). From Figure 4.5(a), we can see that our model has less rapid

switches among states than the parametric ARHMM even if we have more states. The

diagonal elements are strongly variable across states (small feature 3) (Figure 4.5(d)). For

this dataset, α, ρ1, and ρ2 are all small, but they still have different values. Our model

infers a bigger α than ρ1, ρ2 (big feature 1, small feature 3), as shown in Figure 4.5(e).

Again, our model achieves much smaller negative predictive log-likelihood on test data than

the other two Bayesian nonparametric models (Figure 4.5(b)), due to disentanglement of

hyperparameters, improving the expressiveness of the HDP prior.

4.7 Discussion and conclusion

In this chapter, we propose an extension of the sticky HDP-HMM, to decouple the

strength of the self-persistence prior (or the similarity of the diagonal elements of the tran-

sition matrix) and transition prior (or the similarity of the rows of the transition matrix).

We develop two novel Gibbs samplers for performing efficient inference. We also show in

simulated and real data that our extension outperforms existing approaches.

The work [141] proposed a Bayesian nonparametric prior to Hidden Semi-Markov Model

[142] which also extends the sticky HDP-HMM. The idea is to break the Markovian assump-

tion and instead model the distribution of duration of self-persistence for each state explicitly.

76

a

0 1 2 3 4 5 6
Time (sec)

DS-HDP-HMM

ARHMM

b c

58000 57500 57000
Negative log-likelihood

0

20

40

60

80

100

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

0 2500 5000 7500 10000
Iterations

58200
58000
57800
57600
57400
57200
57000
56800
56600

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

HDP-HMM S-HDP-HMM DS-HDP-HMM

d e

0.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0
alpha

0
5

10
15
20
25
30
35
40

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

0 0.5 1 1.5
rho1

0

10

20

30

40

50

60

Co
un

ts

0 0.5 1 1.5
rho2

0

10

20

30

40

50

60

Co
un

ts

Figure 4.5: Results for mouse behavior data. (a) Observations (black) are shown on a sample
trial over time, with background colors indicating the discrete state inferred for that time step
using the ARHMM (number of states = 16) and our model (inferred number of states = 22)
(colors are chosen to maximize the overlap between these two results). (b)(c)(e) Conventions
as in the corresponding plots in Figure 4.4. Note the significant loglikelihood gap between
the DS-HDP-HMM and the baseline models here. Our model infers a bigger α than ρ1, ρ2
(big feature 1, small feature 3). (d) Transition matrix estimated by DS-HDP-HMM. Note
that the diagonal elements are strongly variable across states (small feature 3).

The flexibility of the choice of duration distribution provides a rich set of possible priors,

though the choice of duration distribution can be challenging for practitioners. Our formu-

77

lation can be thought as a special case of their model, but with a few important advantages.

First, we clarify that the limitations of the sticky HDP-HMM might not necessarily come

from the Markovian assumption but could instead be due to the entanglement of the prior.

Second, our extension adds a single hyperparameter, making it easy for practitioners to use.

Third, our formulation still maintains the Markovian structure, which is useful in many

applications. For example, there are applications of HDP-HMM prior to Markov decision

processes [143, 144, 145], in which the Markovian structure is critical. Also, by harnessing

the Markovian structure, our model enjoys scalable O(TK2) message passing algorithms,

while the message passing algorithm of HSMM has complexity of O(T 2K+TK2) in general.

In the future we hope to explore alternative computational approaches (specifically,

stochastic variational [146, 147] and amortized inference [148] methods), which may fur-

ther improve the scalability of the model introduced here. Another important direction is to

adapt the mixture of finite mixtures (MFM) model [149] to the HMM setting, as a replace-

ment for the HDP prior; as in the mixture modeling setting discussed in [149], we expect

that the MFM prior may lead to better estimates of the number of latent states.

Open source code is available at https://github.com/zhd96/ds-hdp-hmm.

4.8 Appendix

4.8.1 Notation

Table 4.1 summarizes the notation used in this chapter.

78

https://github.com/zhd96/ds-hdp-hmm

Table 4.1: Notation
General notation
x1:T the sequence {x1, · · · , xT}
x\t the sequence {x1, · · · , xt−1, xt+1, · · · , xT}
x·j

∑
i xij

xi·
∑
j xij

γ concentration parameter in DP prior
H prior distribution of parameters
DP(γH) Dirichlet process distribution with concentration parameter γ and

base measure H
GEM(γ) stick-breaking distribution with parameter γ
β global transition distribution
α concentration parameter in transition matrix prior
θj parameter of distribution of observations associated with state j
πj transition distribution for state j
zt latent state at time t
yt observation at time t
Sticky HDP-HMM
κ scalar stickiness parameter
Disentangled sticky HDP-HMM
κj self-persistence probability for state j
ρ1, ρ2 parameters in prior distribution of self-persistence probability
π̄j transition distribution if not self-persistent for state j
wt binary variable indicating next step is self-persistent or switching
njk number of transitions from state j to k with wt = 0 in {zt}Tt=1
n−tjk number of transitions from state j to k with wt = 0 in {zt}Tt=1,

not counting zt−1 to zt or zt to zt+1
mjk number of tables in restaurant j serving dish k

4.8.2 Proof of Theorem 1

Proof. The stick breaking formulation of Dirichlet process gives us the following sampling

strategy of DP(β′) with β′ = (κ, αβ1, αβ2, · · ·):

η′0 ∼ beta(κ, α), η′i ∼ beta(αβi, α(1−
∑
l≤i

βl)), i ≥ 1

η0 = η′0, η1 = η′1, ηi = η′i
∏

1≤l≤i−1
(1− η′l)

Now we have (η0, (1− η0)η1, · · · , (1− η0)ηi, · · · ,) ∼ DP(β′).

79

As a result, (η0 + (1− η0)η1, (1− η0)η2, · · ·) ∼ DP(αβ + κδ1). The exchangeability ex-

tends the results to general δj for j ≥ 1. On the other hand, we can interpret this construction

as follows. Let η = (η1, · · · , ηk, · · ·), then η ∼ DP(αβ). Note that η0 is independent of η,

hence this gives us η0δ1 + (1− η0)η ∼ DP(αβ + κδ1).

This exactly corresponds to our formulation with ρ1 = κ and ρ2 = α.

4.8.3 Derivation of Gibbs samplers

Derivation of direct assignment sampler

Step 1: sequentially sample zt, wt, wt+1 The joint posterior of zt, wt, and wt+1 has the

following form

p(zt = k, wt, wt+1|z\t, w\{t,t+1}, y1:T , α, β, {κj}K+1
j=1)

∝ p(zt = k, wt, wt+1|z\t, w\{t,t+1}, α, β, {κj}K+1
j=1) · p(yt|y\t, zt = k, z\t).

where y\t are all the observations except for yt, w\{t,t+1} are all the wt except for wt, wt+1.

The predictive observation likelihood p(yt|y\t, zt = k, z\t) can be easily computed if we

use a conjugate prior on the parameter in observation likelihood. For all the emissions in the

main chapter, we used conjugate priors. See the normal-inverse-Wishart conjugate model

in [150], Dirichlet-multinomial conjugate model in [151], Poisson-gamma conjugate model in

[138], and matrix-normal inverse-Wishart conjugate model in [126].

80

p(zt = k, wt, wt+1|z\t, w\{t,t+1}, α, β, {κj}K+1
j=1)

∝ p(zt = k, wt, wt+1, zt+1|z\{t,t+1}, w\{t,t+1}, α, β, {κj}K+1
j=1)

∝
∫
π
p(wt|κzt−1)p(zt|wt, πzt−1)p(wt+1|κzt)p(zt+1|wt+1, πzt)∏
i

(p(πi|α, β)
∏

τ |zτ−1=i,wτ=0,τ 6=t,t+1
p(zτ |πi))dπ

∝
∫
π
p(wt|κzt−1)p(zt|wt, πzt−1)p(wt+1|κzt)p(zt+1|wt+1, πzt)∏
i

p(πi|{τ |zτ−1 = i, wτ = 0, τ 6= t, t+ 1}, α, β)dπ.

(4.8)

Let zt−1 = j, zt+1 = l, then equation 4.8 has the following cases

κ2
j , if wt = wt+1 = 1, k = j = l

(1− κj)κl
∫
πj
p(zt = l|wt, πj)p(πj |{τ |zτ−1 = j, wτ = 0, τ 6= t}, α, β)dπj , if wt = 0, wt+1 = 1, k = l

(1− κj)κj
∫
πj
p(zt+1 = l|wt+1, πj)p(πj |{τ |zτ−1 = j, wτ = 0, τ 6= t+ 1}, α, β)dπj , if wt = 1, wt+1 = 0, k = j

(1− κj)(1− κk)
∫
πj
p(zt = k|wt, πj)p(πj |{τ |zτ−1 = j, wτ = 0, τ 6= t}, α, β)dπj ·∫

πk
p(zt+1 = l|wt+1, πk)p(πk|{τ |zτ−1 = k,wτ = 0, τ 6= t+ 1}, α, β)dπk, if wt = 0, wt+1 = 0, k 6= j

(1− κj)(1− κk)·∫
πj
p(zt = j|wt, πj)p(zt+1 = l|wt+1, πj)p(πj |{τ |zτ−1 = j, wτ = 0, τ 6= t, t+ 1}, α, β)dπj , if wt = 0, wt+1 = 0, k = j

0, otherwise

81

Similar as [122], we have the following equations with a close-form integration.

∫
πj
p(zt = k|wt, πj)p(πj|{τ |zτ−1 = j, wτ = 0, τ 6= t}, α, β)dπj =

αβk + n−tjk
α + n−tj·

,

∫
πk

p(zt+1 = l|wt+1, πk)p(πk|{τ |zτ−1 = k, wτ = 0, τ 6= t+ 1}, α, β)dπk = αβl + n−tkl
α + n−tk·

,∫
πj
p(zt = j|wt, πj)p(zt+1 = l|wt+1, πj)p(πj|{τ |zτ−1 = j, wτ = 0, τ 6= t, t+ 1}, α, β)dπj

=
(αβj + n−tjj)(αβl + n−tjl + δ(j, l))

(α + n−tj·)(α + n−tj· + 1) ,

∫
πj
p(zt = k|wt, πj)p(πj|{τ |zτ−1 = j, wτ = 0, τ 6= t}, α, β)dπj·∫

πk

p(zt+1 = l|wt+1, πk)p(πk|{τ |zτ−1 = k, wτ = 0, τ 6= t+ 1}, α, β)dπk

=
αβk + n−tjk
α + n−tj·

αβl + n−tkl
α + n−tk·

,

where nzt−1zt is the number of transitions from state zt−1 to state zt with wt = 0 in z1:T .

n−tzt−1zt is the number of transitions from state zt−1 to zt with wt = 0, without counting the

transitions zt−1 to zt or zt to zt+1. nj· is the sum of number of transitions from j to other

states.

If zt = K + 1, i.e. a new state appears, we will increment K, sample self-persistence

probability κK+1 for a new state from prior, and update β in the following stick-breaking way.

Sample b ∼ beta(1, γ), and assign βK = bβknew , βknew = (1−b)βknew , where βknew = ∑∞
i=K+1 βi.

Step 2: sample {κj}K+1
j=1 The posterior of κj is derived as follows using the beta-binomial

conjugate property

κj ∼ beta(ρ1 +
∑

τ,zτ−1=j
wτ , ρ2 +

∑
τ,zτ−1=j

1− wτ), j = 1, · · · , K + 1,

where κK+1 serves for the self-persistence probability of a new state.

82

Step 3: sample β To sample the global transition distribution β, we introduce auxiliary

variables mjk is the auxiliary variable according to the Chinese restaurant franchise (CRF)

formulation of HDP prior [68]. (Note that it can be thought of as the number of tables in

restaurant j which serve dish k.) We first update mjk, then sample β.

For each (j, k) ∈ {1, · · · , K}2, set mjk = 0, s = 0. Then for i = 1, · · · , njk, sample

x ∼ Ber(αβk
n+αβk

). Increment s, and if x = 1 increment mjk. Now we can sample β as

(β1, β2, · · · , βK , βknew) ∼ Dir(m·1, · · · ,m·K , γ),

where βknew = ∑∞
i=K+1 βi is for transiting to a new state, m·k is ∑K

j=1mjk. A more detailed

derivation of the sampling of β can be found in [122].

Step 4: sample hyperparameters α, γ, ρ1, ρ2 Sampling α, γ are the same as in [68, 152].

Basically, if we apply gamma prior on α and γ, then by introducing some auxiliary variables,

we can have the posterior of α and γ to be gamma-conjugate.

For ρ1, ρ2, we follow the reparametrization trick discussed in Chapter 5 [153]. Basically,

we reparametrize φ = ρ1
ρ1+ρ2

, η = (ρ1 + ρ2)−1/3, and apply a Uniform([0, 1] × [0, 2]) prior

on (φ, η). Then we can discretize the support of (φ, η) and numerically compute the pos-

terior. An alternative way to avoid the discretization would be to use Metropolis-Hasting

sampling [77].

Derivation of weak-limit sampler

Step 1: jointly sample {zt, wt}Tt=1 The joint conditional distribution of z1:T , w1:T is

p(z1:T , w1:T |y1:T , π̄, {κj}Lj=1, θ) = p(zT , wT |zT−1, y1:T , π̄, {κj}Lj=1, θ)

p(zT−1, wT−1|zT−2, y1:T , π̄, {κj}Lj=1, θ)

· · · p(z1|y1:T , π̄, {κj}Lj=1, θ).

83

The conditional distribution of z1 is:

p(z1|y1:T , π̄, {κj}Lj=1, θ) ∝ p(z1)p(y1|θz1)p(y2:T |z1, π̄, {κj}Lj=1, θ)

The conditional distribution of zt, t > 1 is:

p(zt, wt|zt−1, y1:T , π̄, {κj}Lj=1, θ)

∝ p(zt, wt, y1:T |zt−1, π̄, {κj}Lj=1, θ)

= p(zt|π̄zt−1 , wt)p(wt|zt−1, {κj}Lj=1)p(yt:T |zt, π̄, {κj}Lj=1, θ)p(y1:t−1|zt−1, π̄, {κj}Lj=1, θ)

∝ p(zt|π̄zt−1 , wt)p(wt|zt−1, {κj}Lj=1)p(yt:T |zt, π̄, {κj}Lj=1, θ)

= p(zt|π̄zt−1 , wt)p(wt|zt−1, {κj}Lj=1)p(yt|θzt)mt+1,t(zt),

where mt+1,t(zt) , p(yt+1:T |zt, π̄, {κj}Lj=1, θ), which is the backward message passed from zt

to zt−1 and for an HMM is recursively defined by:

mt+1,t(zt) =
∑

zt+1,wt+1

p(zt+1|π̄zt , wt+1)p(wt+1|zt, {κj}Lj=1)p(yt+1|θzt+1)mt+2,t+1(zt+1), t ≤ T

mT+1,T (zT) = 1

Step 2: sample {κj}Lj=1 Same as 4.8.3 step 2, but for j = 1, · · · , L.

Step 3: sample {βj}Lj=1, {π̄j}Lj=1

β|m, γ ∼ Dir (γ/L+m·1, · · · , γ/L+m·L) ,

π̄j|z1:T , w1:T , α, β ∼ Dir(αβ1 + nj1, · · · , αβL + njL), j = 1, · · · , L.

Step 4: sample {θj}Lj=1 We sample θ from the posterior distribution depending on the

emission function and the base measure H of the parameter space Θ, i.e. θj|z1:T , y1:T ∼

p(θj|{yt|zt = j}). For all the emissions in the main chapter, we can easily sample θj from its

84

posterior using the conjugacy properties.

Step 5: sample hyperparameters α, γ, ρ1, ρ2 Same as 4.8.3 step 4.

4.8.4 Details of prior in ARHMM

We used the MNIW prior in ARHMM, which is given by placing the matrix-normal prior:

MN (M,Σj, V) on Aj given Σj:

p (Aj|Σj) = 1
(2π)d2/2|V |d/2|Σj|d/2

exp
(
−1

2tr
[
(Aj −M)>Σ−1

j (Aj −M)V −1
])
,

where M is d × d matrix, Σj, V are d × d positive-definite matrix, d is the dimension of

observation yt; and an inverse-Wishart prior IW (S0, n0) on Σj:

p (Σj) = |S0|n0/2

2n0d/2Γd(n0/2) |Σj|−(n0+d+1)/2 exp
(
−1

2tr
(
Σ−1
j S0

))
,

where Γd(·) is the multivariate gamma function.

We set M = 0, V = Id×d, n0 = d + 2, S0 = 0.75Σ̄, where Σ̄ = 1
T

∑T
t=1(yt − ȳ)(yt − ȳ)>

when segmenting the mouse behavior video.

4.8.5 Simulation results for Gaussian emission

We simulated data using a transition matrix (Figure 4.6(a)) with different κj and the

same π̄j across states, which corresponds to a large transition concentration parameter α

(big feature 1), and small self-persistence parameters ρ1, ρ2 (small feature 3). To generate

Gaussian observations, we assumed that yt ∼ N (θzt , 0.52), θj iid∼ N (3.5, 62), j = 1, · · · , 8. We

placed a Gaussian prior on the Gaussian mean parameters, with mean and variance equal

to the empirical mean and variance, and fixed the observation noise as N (0, 0.52). We ran 3

MCMC chains, each with 30000 iterations, with 26000 iterations as burn-in. See Figure 4.6

for the results.

85

a b c

0.0

0.2

0.4

0.6

0.8

1.0

1700 1750 1800 1850
Negative log-likelihood

0

20

40

60

80

100

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

0.10 0.15 0.20 0.25 0.30
Normalized Hamming distance

0

20

40

60

80

100

Co
un

ts

d

0 10000 20000 30000
Iterations

1680

1700

1720

1740

1760

1780

1800

Ne
ga

tiv
e

lo
g-

lik
el

ih
oo

d

HDP-HMM S-HDP-HMM DS-HDP-HMM

e

1 8 64 512
alpha (log scale)

0

25

50

75

100

125

150

175

Co
un

ts

DS-HDP-HMM
S-HDP-HMM
HDP-HMM

0 5 10 15 20 25
rho1

0
25
50
75

100
125
150
175

Co
un

ts

0 2 4 6 8 10 12
rho2

0
20
40
60
80

100
120
140
160

Co
un

ts

Figure 4.6: Results for simulated data with different self-persistence (ρ1, ρ2 small), same
transition (α large) and Gaussian emission. We ran 3 chains, each with 30000 iterations,
with 26000 iterations as burn-in for this data. Conventions as in Figure 4.2 in the main
chapter. Our model learns a big α and small ρ1, ρ2, which is consistent with the data.

86

Chapter 5: Learning identifiable and interpretable latent models

of high-dimensional neural activity using pi-VAE

This chapter was published as “Learning identifiable and interpretable latent models

of high-dimensional neural activity using pi-VAE” [86] in Advances in Neural Information

Processing Systems 33 (NeurIPS 2020) with Xue-Xin Wei. We thank Matthew G. Perich

and Lee E. Miller for sharing the monkey reaching data, Kenneth Kay, Yuanjun Gao, and

Liam Paninski for helpful comments and discussions, as well as three anonymous reviewers

for their feedback which helped improving the paper.

5.1 Introduction

Popular analysis methods of neural responses in neurophysiology are mainly in two

classes: one based on regression, the other on latent variable modeling. Generalized Linear

Model (GLM, e.g., [154, 155]) and tuning curve analysis [156, 157, 158] are notable exam-

ples of the regression-based approach, and both have been widely used in neuroscience in

the past few decades [159, 160, 157, 161, 162]. These methods express the neural firing rate

as a function of the stimulus variable, thus naturally define encoding models, which can be

inverted to decode the stimulus variables [156, 163, 157, 164, 165]. In contrast, the latent-

based approach aims to account to variability of the neural responses using a relatively small

number of latent variables which are typically not observed. Recently, various latent-based

methods have been developed or applied to analyze neural data and in particular simulta-

neously recorded neural population data, including principal component analysis [166, 167,

168, 169, 170], factor analysis [171, 172, 173], linear/nonlinear dynamical systems [174, 175,

71, 176, 72], among others (e.g., [177, 178, 179, 180]). Each class of models carries certain

87

advantages and disadvantages. Regression-based methods tend to have higher interpretabil-

ity, however, they often suffer the problem of under-fitting. Latent-based models are more

flexible in accounting for the neural variability, however they may be difficult to interpret

and sometimes not identifiable. Notably, some studies had incorporated latent fluctuations

into the encoding models [181, 182, 112, 183, 184, 162] yielding promising results, although

these models often assumed highly specialized latent structure, thus potentially limits the

applicability in practice.

The issues of identifiability and interpretability are becoming increasingly important as

the neuroscience community adapts more sophisticated methods from nonlinear deep gen-

erative models [176, 185]. Deep generative models have the promise of extracting complex

nonlinear structure which may be difficult to achieve by linear methods, as demonstrated

by recent work based on the variational auto-encoder (VAE) (e.g., [46, 186, 71, 72]). How-

ever, over the past few years it has become increasingly clear that the latents extracted

from these models, and VAE in particular, are often highly entangled therefore difficult to

interpret [187, 50, 188, 51, 48, 52, 49]. Given these considerations, an important question

is how to model neural population responses with nonlinear models that are powerful yet

scientifically insightful via identifiability and interpretability.

We propose a model formulation which represents one step toward addressing this ques-

tion. Specifically, we draw on recent progress on identifiable VAE (iVAE) [49, 53], and

generalize and adapt it to make it directly applicable to a broad variety of datasets. Concep-

tually, our method combines the respective strengths of regression-based and latent-based

approaches (Figure 5.1): i) by using the VAE architecture, it is expressive and flexible; ii) by

treating task variables as labels and explicitly modeling them with the latents, our method

is better constrained and under certain conditions identifiable. We apply our method to syn-

thetic data and eletrophysiological datasets from population recording of rat hippocampus in

a navigation task [189, 190] and the motor area of macaque during a reaching task [191]. We

demonstrate that our method can recover interpretable latent structure that is informative

88

about the structure of the neural code and dynamics.

5.2 Model

Notations We denote x ∈ Rn as observations. For our purpose, x specifically represents

the population response or spike counts within a small time window. We use u ∈ Rd to

represent task variables (or labels), that are measured along with the neural activities, e.g.,

the location of the animal when studying navigation tasks. u can be discrete or continuous.

Additionally, we denote z ∈ Rm(m� n) as the unobserved low-dimensional latent variables.

5.2.1 Generative model

u xz
p(x|z)

u x xz
p(x|z) p(z|u)p(x|u)

Hybrid approach
e..g, our model

Latent-based
e.g. vanilla VAE

Regression-based
e.g. tuning curve

label latent observation

a

firing rate
b

N
eu

ro
n

#
injection

[]1
2
3
4
5

latent 1

la
te

nt
 2

label observation latent observation

label

“label prior”

spike train

...

neuron i
neuron j

latent space

Poisson

...

Figure 5.1: The model framework and generative model. (a) Structure of three classes of
statistical models for neural data analysis. Our method is based on the integration of the first
two classes into a hybrid approach. Our approach models the statistical dependence between
label (u) and latent (z) as well as between latent (z) and observation (x) simultaneously.
(b) Schematic illustration of the generative model of pi-VAE. Major components include the
“label prior” between the task variables and the latent, an injective mapping between latent
and firing rate parameterized by normalizing flow, and Poisson observation noise.

Our goal is to develop models that are flexible and expressive in capturing the variability

of the data, while also well-constrained so that the models would enjoy identifiability and

interpretability. Motivated by these considerations, we propose a generative model formu-

lation which integrates key ingredients of the latent-based and regression-based approaches

89

(see Figure 5.1a):

pθ(x, z|u) = pf (x|z)pT,λ(z|u). (5.1)

This is a general formulation, and some previous models may be re-formulated to conform

with it (e.g., [182, 112, 183]). In this chapter, we will focus on a specific implementation

that is directly inspired by the recent work on identifiable VAE [49, 192, 53]. In the interest

of neuroscience applications, we have developed a method that can simultaneously deal with

Poisson noise, both discrete and continuous labels, and larger output dimension than input

dimension (Figure 5.1b). We will show that our model is sufficiently expressive for many

applications, yet still constrained enough to be identifiable.

We start by defining the component that describes the relation between the label and

the latent, i.e., pT,λ(z|u). We will refer to it as the “label prior”. Following [49], we assume

pT,λ(z|u) to be conditionally independent, where each element zi ∈ z has an exponential

family distribution given u,

pT,λ(z|u) =
m∏
i=1

p(zi|u) =
m∏
i=1

Qi(zi)
Zi(u) exp

 k∑
j=1

Ti,j(zi)λi,j (u)
 , (5.2)

where Qi is the base measure, Ti = (Ti,1, · · · , Ti,k) are the sufficient statistics, Zi(u) is the

normalizing factor, λi = (λi,1(u), · · · , λi,k(u)) are the natural parameters, and k is pre-

defined number of sufficient statistics. Practically, a small number of components k is often

sufficient for the problems which we have considered. For discrete u, we simply use a different

λij for different u. To deal with continuous u, we develop a procedure by parameterizing λij

as a function of u using a feed-forward neural network. Details are given in the Appendix.

We next turn to the dependence between the latent and observation, i.e., pf (x|z). In

[49], pf (x|z) is defined using additive noise pf (x|z) = pε (x− f(z)), i.e. x = f(z)+ε, where ε

is an independent noise variable. To model the spike data, we generalize it to Poisson model

pf (x|z) = Poisson (f(z)) with f being the instantaneous firing rate to deal with the count

observations. We implement f using normalizing flow as detailed later. Putting together,

90

we denote θ = (f ,T,λ) as parameters in generative model 5.1. We refer to our model as

Poission identifiable VAE, or pi-VAE for simplicity.

Identifiability [49] has proved that the additive noise model is identifiable with certain

assumptions. Under the same assumptions, we can prove that pi-VAE is also identifiable.

Definition 1. Let ∼ be an equivalence relation defined on the domain of parameters:

Θ = (θ := (f ,T,λ)). Model 5.1 is said to be identifiable up to ∼ if pθ(x|u) = pθ̃(x|u) =⇒

θ ∼ θ̃.

Definition 2. Define ∼ as θ ∼ θ̃ ⇐⇒ ∃A, c,T (f−1(x)) = AT̃
(
f̃−1(x)

)
+c,∀x ∈ Img(f) ⊂

Rn, where θ = (f ,T,λ) , θ̃ = (f̃ , T̃,λ̃), A is a full rank mk×mk matrix, c ∈ Rmk is a vector.

Theorem 2. Assume that we observe data sampled from pi-VAE model defined according

to equation 5.1,5.2 with Poisson noise and parameters θ = (f ,T,λ). Assume the following

holds:

i) The firing rate function f in equation 5.1 is injective,

ii) The sufficient statistics Ti,j in 5.2 are differentiable almost everywhere, and their

derivatives T ′i,j are nonzero almost everywhere for 1 ≤ i ≤ m, 1 ≤ j ≤ k,

iii) There exists mk + 1 distinct points u0, · · · ,umk such that the matrix

L =
(
λ(u1)− λ(u0), · · · ,λ(umk)− λ(u0)

)

of size mk ×mk is invertible, then the pi-VAE model is identifiable up to ∼.

This theorem is a straight-forward generalization of the results in [49]. Proof is given

in the Appendix. This theorem means, if two sets of model parameters lead to the same

marginal distribution of x, then (f ,T,λ) ∼ (f̃ , T̃,λ̃). Thus one can hope to recover posterior

distribution p(z|x) up to a linear transformation A and point-wise non-linearities between

T and T̃, as well as the joint distribution p(x, z). Note that other forms of identifiability

may be derived with modified assumptions [49]. While practically, without knowing the

91

ground truth, the assumptions may be difficult to verify, some encouraging preliminary

evidence suggest that identifiability may have some robustness with mild violations of model

assumptions [53].

We next describe how to parameterize the injection f : Rm → Rn. Here we extend the

General Incompressible-flow Network (GIN) proposed in [53], which shares the flexibility of

RealNVP [193] and the volume-preserving property of NICE [194]. Practically, we found

our implementation to be reasonably efficient computationally. Specifically, GIN defines

a mapping from RD → RD with Jacobian determinant equal to 1 [53]. It splits the D-

dimensional input x into two parts x1:l,xl+1:D, where l < D. The output y is defined as the

concatenation of y1:l and yl+1:D,

y1:l = x1:l (5.3)

yl+1:D = xl+1:D � exp (s (x1:l)) + t (x1:l) , (5.4)

where s(·) and t(·) are both functions defined on Rl → RD−l, and the total sum of s (x1:l)

is constrained to be zero by setting the final component to be the negative sum of previous

components.

The original GIN [53] only deals with the case where the input and output have the

same dimensions. In our case, the output dimension is often much larger than the input

dimension. We thus develop a new scheme to parameterize f : Rm → Rn which retains the

properties of GIN. We first map z1:m to the concatenation of z1:m and t (z1:m). Note that

this is equivalent to GIN model with input as z1:m padding n-m zeros. We then use several

GIN blocks to map from Rn → Rn. Recalling that each GIN block is an injection (since part

of it is an identity map, one can not map two different inputs to the same output), it follows

that the composition of several blocks remains an injection. While we use an extension of

GIN [53] to implement the injection f here, conceivably other implementations should be

possible, e.g., multi-layer perceptron with increasing number of nodes from earlier to later

92

layers. The efficiency of the different implementations will need to be evaluated in future.

5.2.2 Inference algorithm

The inference procedure is a modification of VAE [46]. Our algorithm simultaneously

learns the deep generative model and the approximate posterior q(z|x,u) of true posterior

p(z|x,u) by maximizing L(θ,φ), which is the evidence lower bound (ELBO) of p(x|u),

log p(x|u) ≥ L(θ,φ) = Eq(z|x,u) [log (p(x, z|u))− log (q(z|x,u))] . (5.5)

Similar to [195], we decompose the approximate posterior as

q(z|x,u) ∝ qφ(z|x)pT,λ(z|u), (5.6)

where qφ(z|x) is assumed to be conditionally independent exponential family distribution,

i.e. qφ(z|x) = ∏m
i=1 q(zi|x), and is parameterized by neural network. pT,λ(z|u) is defined in

equation 5.2.

We modeled both qφ(z|x), pT,λ(z|u) as independent Gaussian distribution, used the same

network architecture (see Appendix for details) as well as Adam optimizer [120] with learning

rate equal to 5 × 10−4, and other values were set to the recommendation values for all the

experiments in this chapter.

Inferring the latent After learning q(z|x,u), the latent from pi-VAE model can be in-

ferred by computing the posterior mean. It is also of interest to infer the latent without

using the label prior pT,λ(z|u), which could be done by computing the posterior mean of

qφ(z|x) instead.

Decoding the label Because pi-VAE defines an encoding model on the label, one can

examine how well the label could be decoded from the neural activity, which also provides

93

a way to check the validity of the model. Under our model formulation, decoding could be

done by Bayesian rule and Monte Carlo sampling: p(u|x) ∝
∫
p(x|z,u)p(z|u)p(u)dz, where

the integration on right hand side can be computed through randomly sampling p(z|u). We

assume a uniform prior on u.

5.3 Results

5.3.1 Validation using synthetic data

We validated pi-VAE using synthetic data generated from models with continuous or

discrete labels.

Discrete label We generated 2-dimensional latent samples z from a five clusters Gaussian

mixture model, similar to [49] (see Figure 5.2a). The mean of each cluster was chosen inde-

pendently from a uniform distribution on [−5, 5] and variance from a uniform distribution on

[0.5, 3]. These latent samples were then mapped to the mean firing rate of 100-dimensional

Poisson observations through a RealNVP network (details in Appendix). Example results

are shown in Figure 5.2a-d.

Continuous label We generated u from a uniform distribution on [0, 2π], and latent

samples z as a 2-dimensional independent Gaussian distribution with mean being (u, 2 sin u),

and variance being (0.6−0.3|sin u|, 0.3|sin u|). Observations were generated in the same way

as simulation of discrete label. Example results are shown in Figure 5.2e-h.

Based on these and other numerical experiments, we found that in general pi-VAE could

reliably uncover latent structure similar to ground truth for both discrete and continuous

labels, while VAE often leads to more distorted latent. Note that our VAE implementation

is similar to pi-VAE except that no label prior is used (e.g., Poisson observation noise is

still assumed). We also found pi-VAE without label prior (during the inference) still led to

reasonably good recovery of the latent (Figure 5.2c,g), suggesting that incorporating label

94

prior could help with learning a better model, not just inference.

Figure 5.2: Example numerical experiments, suggesting that pi-VAE, but not VAE, could
identify latent structure. (a) True latent variables, simulated based on discrete label, (b)
mean of the latent posterior q(z|x,u) estimated from pi-VAE, (c) mean of q(z|x) from pi-
VAE, (d) mean of the latent posterior from VAE, that is, the Bayesian estimate inferred
without the label prior. (e-h) similar to (a-d), but for a simulation based on continuous
label.

5.3.2 Applications to neural population data

We have applied pi-VAE to analyze two electrophysiology datasets, each has more than

100 simultaneously recorded neurons when the animals were performing behavioral tasks. In

these real data applications the ground truth is unknown and the assumptions required by

identifiability may be violated [53], making it difficult to assess identifiability directly. Our

rationale is that, assuming the ground truth is structured, models with better identifiability

would still lead to more interpretable latent representation. Encouragingly, examination of

the latent space extracted from these datasets indeed suggest that pi-VAE could extract

interpretable and meaningful latent structure.

95

Monkey reaching data

We first applied our method to a previously published monkey reaching datasets ([191],

kindly shared by the authors). In these experiments, Monkey C was performing a reaching

task with 8 different directions, while neural activities in areas M1 and PMd were simul-

taneously recorded (for details, see [191]). We analyzed two sessions, and obtained similar

results. We will focus on Session 1 here, and detailed results from Session 2 can be found in

Appendix Figure 5.6.

For each direction, there are ∼ 25 trials/repeats (see Figure 5.3a). We analyzed 192

neurons from PMd area, and focused on the reaching period from go cue (defined as t = 0)

to the end, which typically lasts for ∼ 1 second. We binned the ensemble spike activities into

50ms bins. We used the spike activities as observation x, and the reaching direction as the

discrete labels u. We randomly split the dataset into 24 batches, where each batch contains

at least one trial for each direction. We randomly split them into training, validation and

test data (20, 2, 2 batches). We fit 4-dimensional latent models to the data based on pi-VAE

and VAE.

Goodness of fit We first assessed the goodness of fit by examining the root-mean-square

error (RMSE) of the PSTH based on the prediction of each model (see Figure 5.3a for an

example neuron). Figure 5.3b,c show that pi-VAE leads to the smallest RMSE of firing

rate in most neurons, followed by VAE, then tuning curve model. Next, we computed the

log marginal likelihood p(x) on the held-out test data by randomly sampling both p(z|u)

and p(u). We found that pi-VAE leads to larger mean marginal log-likelihood than VAE

and tuning curve model (−123,−123.4,−127.6 respectively, t-test p < 10−6). These results

suggest that pi-VAE provides the best fit to the data among the alternatives.

Decoding reaching direction We wondered whether pi-VAE also provides a better en-

coding model of the reaching direction. We examined how well pi-VAE could decode reaching

96

direction, and compare the performance to a traditional method based on direction tuning

curves. On held-out test data, pi-VAE achieved an average single-frame (50ms) decoding

accuracy of 61%, better than 47% from tuning curve model. Examination of the time course

of the decoding performance (Figure 5.3d) reveals that pi-VAE achieves 60% during the first

few frames before initiation of reaching, while tuning curve model is much worse during

this period. However, when reaching speed reaches its maximum (around 0.5s, Figure 5.3e),

both models achieve almost perfect performance (Figure 5.3d). These observations tenta-

tively suggest that information about the reaching direction may be encoded in different

format during different phases of reaching in this task.

Structure of the latent We found that the latent variables estimated by pi-VAE exhibit

clear structures. To start, the 8 reaching directions are well separated in the subspace defined

by the first two latent dimensions (Figure 5.3f,h). Strikingly, the geometrical structure of

the inferred latent resembles the geometry of the reaching directions. In contrast, the third

and fourth latent dimensions captures the evolution of the trajectories over time, and they

are only weakly informative about reaching directions (Figure 5.3g,i). Thus, the axes of

the extracted latent space are easily interpretable. They provide information about how

reaching direction is represented, and how neural dynamics evolve during reaching behavior.

Notably, these axes were extracted automatically from pi-VAE, and no additional factor

analysis techniques were applied to identify salient latent axes. Strikingly, the latent variables

extracted from Session 2 show very similar structure (see Appendix Figure 5.6).

In comparison, VAE extracts a much more entangled latent representation (Figure 5.3j-

m). It appears that information about reaching direction displays in a twisted fashion, and

mixes with the temporal evolution of the trajectories. Note that these differences between

the latent structure obtained from two methods is not simply due to the label prior. The

inferred latent from pi-VAE without the label prior (i.e., posterior mean of q(z|x)) shows

similar though a bit more diffuse latent structure, which is expected due to the observation

97

time [s]

ac
cu

ra
cy

 [%
]

20

40

60

80

0 0.5 1.0
0 0.5 1.0

time [s]

sp
ee

d
[m

/s
]

0.4

0

pi-VAE
tuning

decoding reaching speed

pi-VAE
empirical

VAE

time [s]
0 1

0

60

example neurona b c

pi-VAE

VAE

averaging
over repeats

averaging
over repeats

latent 1 latent 3

la
te

nt
 2

la
te

nt
 4

latent 1

la
te

nt
 2

latent 3

la
te

nt
 4

latent 1

la
te

nt
 2

latent 3

la
te

nt
 4

fir
in

g
ra

te
[s

pi
ke

/s
]

e

f h i

j k
latent 3latent 1

la
te

nt
 2

la
te

nt
 4

g

pi-VAE

VA
E

d

RMSE

n=192

VAE

tu
ni

ng
 c

ur
ve

RMSE

l
m

n=192

Figure 5.3: Monkey reaching data. (a) Reaching trajectories for 8 directions labeled by
colors. The empirical firing rate (PSTH, black solid line), fitted rate by pi-VAE (gray solid
line) and VAE (gray dashed line) for an example neuron. (b,c) Scatter plots of RMSE of
fitted rate (n = 192 neurons) for comparing pi-VAE and VAE, as well as VAE and tuning
curve. (d) Decoding accuracy as function of time on test data by pi-VAE and tuning curve
model. (e) The reaching speed of the macaque for each trial. (f,g) Inferred latent based
on pi-VAE, i.e.,mean of q(z|x,u). (h,i) Inferred latent from pi-VAE averaged over repeats
from the same reaching direction. (j,k,i,m) Similar to (f,g,h,i) for VAE. Notice the striking
difference between (f) and (j).

noise (see Appendix Figure 5.7).

The nature of the neural code during primate reaching behavior is currently under heavy

debate [156, 196, 160, 197, 169, 198, 199, 191]. While earlier proposals emphasized the en-

coding of task relevant variables [156, 196, 160, 200], some of the more recent studies instead

98

highlighted the importance of neural dynamics [169, 198, 201, 202]. As shown above, pi-VAE

discovers latent space that exhibits striking spatial (i.e., reaching direction) and temporal

(i.e., neural dynamics) structure that are separately encoded in different sub-spaces. These

preliminary results may provide a way to reconcile the two prominent hypotheses [156, 198],

as evidence for both hypotheses are now revealed in the same model based on the same

datasets. It would be important to apply our methods to larger datasets from multiple

monkeys to examine the consistency of these effects in future.

Rat hippocampal CA1 data

We next applied pi-VAE to analyze a public rat’s hippocampus dataset [189, 190]1.

In this experiment, a rat ran on a 1.6m linear track with rewards at both ends (L&R)

(Figure 5.4a), while neural activity in the hippocampal CA1 area was recorded (n = 120,

putative pyramidal neurons). We focused on the data when the rat was running on the

track (Figure 5.4a) and binned the ensemble spike activities into 25ms bins. We defined the

rat running from one end of the track to the other end as one lap, resulting in 84 laps. We

randomly split them into training, validation and test data (68, 8, 8 laps). We defined rat’s

position and running directions as continuous labels u. We fit 2-dimensional latent models

to the data for both pi-VAE and VAE.

Goodness of fit and decoding performance We found that pi-VAE again outperformed

alternatives in having the lowest mean log marginal likelihood −17.7 (VAE,−17.9; tuning

curve,−18.2; paired t-test, p < 10−6). Furthermore, we decoded the animal’s location on the

tracking based on pi-VAE model and tuning curve model. On test data, pi-VAE achieves

median absolute decoding error (MAE) of 12cm (time window = 25ms), while the tuning

curve (traditional “place field” [203]) model achieves a MAE of 15cm. This indicates that

for the simple purpose of constructing an effective encoding model of the animal’s position

on the track, pi-VAE outperforms the traditional place field model [157].
1http://crcns.org/data-sets/hc/hc-11

99

http://crcns.org/data-sets/hc/hc-11

L R

a b c d

ihgf

e

power spectrum
of band-passed LFP

frequency [Hz] frequency [Hz]frequency [Hz]

*

geometry (VAE)geometry (pi-VAE)latent (pi-VAE) latent (VAE)

sample latent
trajectory (pi-VAE) power spectrum

of residuals (latent 1)
power spectrum
of residuals (latent 2)

latent 1

latent 1
la

te
nt

 2
la

te
nt

 2

0 1.6 m

0

100
[s] sample path

(running only)

latent 1

la
te

nt
 2

L

R

L R

latent
distance

latent
distance

~ 10Hz

~ 10Hz

position

po
si

tio
n

L

R

L

R

[a.u.]

L

R

L R
position

po
si

tio
n

√
P
S
D

√
P
S
D

√
P
S
D

Lorem ipsum

distance

Figure 5.4: Results for hippocampus CA1 data. (a) Linear track and sample running path.
The two ends are labeled as L&R. Two directions are color-coded by red and blue, and
positions are coded by color saturation. (b) Inferred latent from pi-VAE. Black lines represent
the mean of the latent states corresponding to position on the track for two directions. The
distance between pairs of points from the two black lines is computed to quantify the latent
geometry. An example pair of points are indicated using grey stars. The normalized distance
for all possible pairs of points is shown in panel (c). (d,e) are defined similar to (b,c) for the
VAE. Notice the striking difference between (b) and (d). (f) Two sample latent trajectories
of the pi-VAE. (g,h) The power spectrum (PSD) of the residuals of the latent, given by the
mean of q(z|x,u) minus the mean of p(z|u). (i) PSD of the band-passed LFP in the range
of 5-11 Hz.

Structure of the latent Figure 5.4b shows the latent space estimated by the pi-VAE,

which exhibits overtly interpretable geometry: the collection of inferred latent states for R-

to-L (blue) or L-to-R (red) running direction each forms band-like sub-manifold, and both are

roughly in parallel with the second latent dimension (Figure 5.4b). The split into two sub-

manifolds is consistent with the observation that place fields of CA1 neurons often have firing

fields that are uncorrelated between the two travel directions (“directional” firing) [204, 114,

205]. To further quantify the geometrical relation between two sub-manifolds, we calculated

the distance for pairs of points from the two branches(Figure 5.4b). This quantification

for every possible pair (after binning the position into 16cm bins) is plotted in Figure 5.4c.

We found that the manifold geometry across the two directions respects the geometry of the

100

track, in the sense that smaller physical distance on the track leads to smaller latent distance.

This is likely due to that a subset of place cells have non-directional (purely spatial) place

fields [204, 114, 205, 206]. Importantly, our method gives a quantitative population level

characterization of the consequence of having both directional and non-directional place cells.

pi-VAE without label prior shows similar but more diffuse latent structure (see Appendix

Figure 5.8). In contrast, VAE results in a tangled latent representation, with the geometry

not reflecting physical distance on the track (Figure 5.4d,e; also notice that striking difference

between Figure 5.4b and Figure 5.4d).

To investigate whether the latent model could yield additional scientific insight, we next

examined the temporal structure of the latent. Figure 5.4f plots sample trajectories, from

which we observed that temporal fluctuation mainly goes along the first latent dimension,

and the suggestion of rhythmic structure. We subtracted the mean of prior p(z|u) from the

mean of posterior q(z|x,u) to obtain the residual fluctuations. Examination of the power

spectrum density (PSD) along each dimension of the residuals led to two observations: i)

the temporal fluctuation is indeed concentrated on the first latent dimension, as indicated

by the magnitude of the PSD; ii) the first, but not the second, dimension exhibits a striking

peak at ∼ 10Hz. We reasoned that the second observation might be related to θ-oscillation

in the local circuit, which is known to modulate the firing of CA1 neurons [207, 208, 209,

206]. We thus examined the simultaneously recorded local field potential (LFP) data during

running. Indeed, we found that the θ peaked at ∼ 10Hz for this rat. Interestingly, the 10Hz

θ-oscillation is faster than the typically reported 8 Hz average frequency [210, 211], yet is

consistent with the latent structure extracted from pi-VAE.

Overall, pi-VAE extracts latent space that is clearly interpretable, with one dimension

encoding position information, and the other dimension capturing temporal organization

which is likely related to θ-rhythm. The observation that the position encoding and the

rhythmic-like fluctuation are roughly orthogonal is particularly interesting, and is consistent

with previous results from the single cell analysis suggesting that theta phase and place fields

101

may encode independent information [212]. Additional investigations will be needed to test

these hypotheses in greater depth.

UMAP LFADS (without external input)

LFADS (with external input)PfLDS

0.5- 0.5

- 0.4

0.4

0.5- 0.5

- 0.4

0.4

0 2 4

0

- 4

- 8

0 5 10

0

- 4

- 8

0.5- 0.50.5- 0.5

0.4

- 0.4

0.4

- 0.4

1st time
component

1st stimulus
component

0

1

-1

1

0

latent 1 latent 3

la
te

nt
 4

la
te

nt
 2

latent 1 latent 3

la
te

nt
 4

la
te

nt
 2

latent 1 latent 3

la
te

nt
 4

la
te

nt
 2

time

time

demixed PCA

0.5 0

0.5 0

b

c

d

e
8

4
8

4
0 10 4 8

a

latent 1

la
te

nt
 2

latent 3

la
te

nt
 4

Figure 5.5: Results from alternative methods based on monkey reaching data. a) UMAP [62].
b) PfLDS [71]. c,d) LFADS [72], without and with reaching direction as an external input.
e) demixed PCA [213] with the first time and stimulus component plotted. Color-coded,
averaged latent trajectories corresponding to each reaching direction was plotted for each
method. The filled dot and cross represent starting and ending of the trial.

5.3.3 Comparison to alternative methods

We further tested several alternative methods on the monkey reaching data, including

both linear methods (demixed PCA [213]) and nonlinear methods (UMAP [62], PfLDS [71],

and LFADS [72]) (see Figure 5.5). Overall we found that, while the extracted latent struc-

tures from these methods exhibited interesting characteristics, none of them resulted in fully

disentangled latents. Furthermore, none of them appeared to recover the geometry of the

physical reaching targets. (More analysis of the hippocampus data can be found in Appendix

5.5.5)

To start, supervised UMAP recovered latents corresponding to different directions as

different clusters, but without clear representations of temporal dynamics(see Figure 5.5a).

Furthermore, LFADS [72] and PfLDS [71] both led to smooth trajectories. Although the

trajectories for different directions were separated in the 4-dimensional space, directions and

102

temporal dynamics were entangled so that it was difficult to interpret each individual latent

dimension (Figure 5.5b,c,d). Demixed PCA [213] with both time and directions as labels

still entangled time and directions (stimulus components change with time) to some extent

(Figure 5.5e). A few methodological considerations are worth mentioning here. First, LFADS

can take task variables as external inputs to the model RNN. We thus tried LFADS with or

without reaching direction as external inputs (Figure 5.5c,d). Second, demixed PCA only

deals with discrete task variables each with the same number of trials and each trial with

the same length, and could not recover additional latent fluctuations as our method. Third,

UMAP can incorporate label information for supervised learning, and we used the reaching

directions as labels (Figure 5.5c,d) to make a more fair comparison. However, we found that

it did not recover temporal dynamics.

5.4 Discussion

We have presented a new model framework for analyzing neural population data by

integrating ingredients from latent-based and regression-based approaches. Our model pi-

VAE, while being expressive and nonlinear, is constrained by additional dependence on task

variables. pi-VAE generalizes recent work on identifiable VAE [49, 192, 53] to deal with

spike train data. Although pi-VAE yields promising preliminary insights into the neural

codes during a rat navigation task and macaque reaching task, we should emphasize that

more systematic investigations based on larger datasets across different subjects will be

needed to further elaborate these results.

Our method is motivated by leveraging the strength of regression-based methods and

latent-based models to increase the identifiability and interpretability, a direction received

little attention previously. To do so, we took advantage of the “label prior” to model the

impact of task variables on neural activities along with the influence of the latent states. One

potential concern is that, when incorporating too many labels, there may not be enough data

to fit the model. Several previous methods exploited temporal smoothness priors to de-noise

103

the data, which were implemented via Gaussian process [171, 178, 179], linear [174, 175,

71] or nonlinear dynamical systems [72, 176]. Although not pursued here, adding temporal

smoothness priors into pi-VAE may increase the data efficiency and further improve the

performance of the model. It is also worth mentioning that although we have focused on

the spike train data, our method may be modified to deal with the calcium imaging data

incorporating noise models that is more appropriate to the deconvolved calcium traces [84].

Last but not least, while the current study mainly concerns the neuroscience applications of

pi-VAE, some of the technical advances made here may be of interest to the machine learning

community as well.

5.5 Appendix

5.5.1 Proof of identifiability for pi-VAE

Theorem 3. Assume that we observe data sampled from pi-VAE model defined according

to equation 5.1,5.2 with Poisson noise and parameters θ = (f ,T,λ). Assume the following

holds:

i) The firing rate function f in equation 5.1 is injective.

ii) The sufficient statistics Ti,j in 5.2 are differentiable almost everywhere, and their

derivatives T ′i,j are nonzero almost everywhere for 1 ≤ i ≤ m, 1 ≤ j ≤ k.

iii) There exists mk + 1 distinct points u0, · · · ,umk such that the matrix

L =
(
λ(u1)− λ(u0), · · · ,λ(umk)− λ(u0)

)

of size mk ×mk is invertible, then the pi-VAE model is identifiable up to ∼.

Proof. [49] has proved that the Bernoulli observation model is identifiable under the same

set of assumptions. For Poisson observations with mean firing rate as λ, we can transform it

to Bernoulli observations with parameter p = 1− exp(−λ) by keeping the zeros and treating

the positive values as ones. Because the Bernoulli model is identifiable, the Poisson model

104

is also identifiable.

5.5.2 Network architecture

For both the generative models in pi-VAE and VAE, we used the following strategy

to parameterize f(·) which maps the m-dimensional latent z to the mean firing rate of n-

dimensional Poisson observations. We first mapped the z1:m to the concatenation of z1:m

and t (z1:m), where t(·) : Rm → Rn−m is parameterized by a feed-forward neural network

with a linear output and 2 hidden layers, each containing bn/4c nodes with ReLU activation

function. Then we applied two GIN blocks. Same as [53], we defined the affine coupling

function as the concatenation of the scale function s and the translation function t, computed

together for efficiency, applied two affine coupling functions per GIN block, and randomly

permuted the input before passing it through each GIN block. We defined both s, t in GIN

block as mapping: Rbn/2c → Rn−bn/2c. The scale function s is passed through a clamping

function 0.1 tanh(s), which limits the output to the range (−0.1, 0.1). For affine coupling

function, we have a linear output layer with and 2 hidden layers, each containing bn/4c

nodes with ReLU activation function.

We modeled the prior pT,λ(z|u) in pi-VAE as independent Gaussian distribution. The

natural parameters λi,j are the Gaussian means and variances. For discrete u, we used differ-

ent values of the mean and variance for different labels. For continuous u, we parameterized

the mean and spectrum decomposition of variance together by a feed-forward neural network

with a linear output layer and 2 hidden layers, each containing 20 nodes with tanh activation

function (the mean and variance share the 2 hidden layers). For the cases of mixed discrete

and continuous labels u, we encoded the discrete labels with a one-hot vector, and mapped

it together with the continuous components to the mean and spectrum decomposition of

variance using feed-forward neural network as described in the continuous case.

For the recognition model in pi-VAE and VAE, we used qφ(z|x) as independent Gaussian

distribution, and parameterized the mean and the spectrum decomposition of the variance

105

separately using feed-forward neural network with a linear output layer and 2 hidden layers,

each containing 60 nodes with tanh activation function.

Code implementing the algorithms is available at https://github.com/zhd96/pi-vae.

5.5.3 Synthetic data simulations

To generate firing rate of the Poisson process from simulated latent z, we first padded z

with n-m zeros, then applied 4 RealNVP blocks, each containing 2 affine coupling functions

with the same structure as defined in section 5.5.2 except that s does not need to have sum

equal to 0 here, and we used bn/2c nodes for each hidden layer.

For discrete label simulation shown in Figure 5.2a-d, we simulated 104 observations, and

split them into training, validation, test data (80%, 10%, 10% respectively). We set the batch

size to be 200 during training, and trained for 600 epochs. For the continuous label simulation

shown in Figure 5.2e-h, we simulated 1.5 × 104 observations. The training-validation-test

split is the same as discrete label simulation. We set batch size as 300, and trained for 1000

epochs.

5.5.4 Monkey reaching data: session 2

For each reaching direction, there are ∼ 35 trials (see Figure 5.6a). We analyzed 211

neurons from PMd area, and focused on the reaching period from go cue (defined as t = 0)

to the end, which typically last for ∼ 1 second. We binned the ensemble spike activities into

50ms bins. We randomly split the dataset into 34 batches, where each batch contains at least

one trial from each direction. We randomly took 28 batches as training data, 3 batches as

validation data and 3 batches as test data. Similar to Session 1, We fit 4-dimensional latent

models to the data based on pi-VAE and VAE respectively. Results are shown in Figure 5.6.

106

https://github.com/zhd96/pi-vae

5.5.5 Alternative methods

Monkey reaching data

For supervised UMAP2, we set the reaching directions as labels, and embedded the high

dimensional spike count data into a 4-dimensional latent space. Other parameters were set

to be the default values. For PfLDS, we implemented the algorithm on our own using the

same neural network architecture as in [71] (the original code provided by the authors of that

chapter depends on Python Theano library, which has not been maintained for a while). We

assumed a 4-dimensional latent space and Poisson observation model. We set the learning

rate as 2.5 × 10−4 and trained for 1500 epochs. Each batch consisted of a single trial.

The training, validation and test sets had 184, 16, 17 trials respectively. For LFADS3, we

assumed a 4-dimensional latent space along with a Poisson observation model. We applied

two versions of the model to the data, with the reaching direction as an additional input and

without this input. Other parameters were set to be the default values. We pre-processed

the data by discarding all the trials less than 1 second and trimming longer trials to make

them 1 second long. Each batch consisted of a single trial. The training, validation and

test sets had 177, 16, 16 trials respectively. For demixed PCA4, we pre-processed the data

to make each reaching direction had the same number of trials and each trial had the same

length (i.e.,1 second). We took time and stimulus as labels. We used 2 sets of components,

each containing time, stimulus, as well as time and stimulus mixing components. Other

parameters (eg. regularizer) were set to be the default values.

Hippocampus data

For supervised UMAP, we used 2-dimensional latent variables model with rat’s locations

as labels. Other parameters were set as default. For PCA, we used two principal components.
2https://umap-learn.readthedocs.io/en/latest/
3https://github.com/lfads/models
4https://github.com/machenslab/dPCA

107

https://umap-learn.readthedocs.io/en/latest/
https://github.com/lfads/models
https://github.com/machenslab/dPCA

For “PCA after LDA”, we first applied LDA with rat’s running directions as response and

neural activities as predictors, and identified the 1-dimensional linear boundary which could

separate the neural activities of two directions most. Then we projected the neural activities

on this boundary using linear regression, then applied PCA with 2 principal components on

the residuals. We found that the resulting latents were all less interpretable than pi-VAE

(Figure 5.9), with no dimension directly representing the rat’s location. Also the rhythmic-

like fluctuations spanned across dimensions, rather than concentrated in one dimension (not

shown).

108

Figure 5.6: Results on monkey reaching data (Session 2). These results are similar to those
obtained from Session 1 as reported in the main text. (a) The macaque’s reaching trajectories
for 8 directions labeled by different colors. (b) The reaching speed of the macaque for each
trial. (c,d) Scatter plots of RMSE of fitted rate (n = 211 neurons) for comparing pi-VAE and
VAE, as well as VAE and tuning curve. (e) Decoding accuracy as function of time on test
data by pi-VAE and tuning curve model. (f,g) Inferred latent based on pi-VAE, i.e.,mean of
q(z|x,u). (h,i) Inferred latent from pi-VAE averaged over repeats from the same reaching
direction. (j,k) Mean of q(z|x) from pi-VAE. (l,m) Mean of q(z|x) by pi-VAE averaging over
repeats from the same reaching direction. (n-q) Similar to (f-i) for VAE.

109

Figure 5.7: Related to Figure 5.3, on reaching data. Inferred latent without label prior
using pi-VAE still are still highly structured and interpretable. The first two dimensions
carry information about the reaching direction, while the third and fourth dimension mainly
captures the dynamics over the time course of a trial. (a,b) Mean of q(z|x) from pi-VAE.
(c,d) Mean of q(z|x) by pi-VAE averaging over repeats from the same reaching direction.

 latent geometrya b

L R

L

R

L R
position & direction

po
si

tio
n

&
 d

ire
ct

io
n

Figure 5.8: Related to Figure 5.4, on Hippocampus CA1 data. Inferred latents without the
label prior using pi-VAE still exhibit clear structure, with the latent geometry respecting the
geometry of the track. (a) Mean of q(z|x) from pi-VAE. Two directions are color-coded by
red and blue, and positions are coded by color saturation. Black lines represent the mean of
the latent states corresponding to position on the track for two directions. (b) The distance
between pairs of points from the two black lines is computed to quantify the latent geometry.

110

0 2- 2

0

3

PC 1

PC
 2 2

0

- 2

0 3
PC 1

PC
 2

PCA PCA after LDAa b

0- 6

0

 6

UMAP

latent 1

la
te

nt
 2

c

Figure 5.9: Results from several alternative methods based on hippocampus data. a) UMAP.
b) PCA. c) PCA after Linear Discriminant analysis (LDA). Notice that these methods re-
covered more entangled representation compared to pi-VAE.

111

References

[1] Rafael Yuste and Winfried Denk. “Dendritic spines as basic functional units of neu-
ronal integration”. In: Nature 375.6533 (1995), pp. 682–684.

[2] Karel Svoboda et al. “In vivo dendritic calcium dynamics in neocortical pyramidal
neurons”. In: Nature 385.6612 (1997), pp. 161–165.

[3] Fritjof Helmchen et al. “In vivo dendritic calcium dynamics in deep-layer cortical
pyramidal neurons”. In: Nature neuroscience 2.11 (1999), pp. 989–996.

[4] Daniel A Dombeck et al. “Functional imaging of hippocampal place cells at cellular
resolution during virtual navigation”. In: Nature neuroscience 13.11 (2010), pp. 1433–
1440.

[5] L. Paninski and J. Cunningham. “Neural data science: accelerating the experiment-
analysis-theory cycle in large-scale neuroscience”. In: Current opinion in neurobiology
50 (2018), pp. 232–241.

[6] JinHyung Lee et al. “YASS: Yet Another Spike Sorter applied to large-scale multi-
electrode array recordings in primate retina”. In: bioRxiv (2020).

[7] Marius Pachitariu et al. “Kilosort: realtime spike-sorting for extracellular electrophys-
iology with hundreds of channels”. In: BioRxiv (2016), p. 061481.

[8] Felix Franke et al. “An online spike detection and spike classification algorithm capa-
ble of instantaneous resolution of overlapping spikes”. In: Journal of computational
neuroscience 29.1-2 (2010), pp. 127–148.

[9] Hernan Gonzalo Rey, Carlos Pedreira, and Rodrigo Quian Quiroga. “Past, present and
future of spike sorting techniques”. In: Brain research bulletin 119 (2015), pp. 106–
117.

[10] Michael S Lewicki. “A review of methods for spike sorting: the detection and classifi-
cation of neural action potentials”. In: Network: Computation in Neural Systems 9.4
(1998), R53–R78.

[11] Eran A Mukamel, Axel Nimmerjahn, and Mark J Schnitzer. “Automated analysis
of cellular signals from large-scale calcium imaging data”. In: Neuron 63.6 (2009),
pp. 747–760.

112

[12] Ferran Diego et al. “Automated identification of neuronal activity from calcium imag-
ing by sparse dictionary learning”. In: 2013 IEEE 10th International Symposium on
Biomedical Imaging. IEEE. 2013, pp. 1058–1061.

[13] Ryuichi Maruyama et al. “Detecting cells using non-negative matrix factorization on
calcium imaging data”. In: Neural Networks 55 (2014), pp. 11–19.

[14] Eftychios A Pnevmatikakis et al. “Simultaneous denoising, deconvolution, and demix-
ing of calcium imaging data”. In: Neuron 89.2 (2016), pp. 285–299.

[15] Marius Pachitariu et al. “Suite2p: beyond 10,000 neurons with standard two-photon
microscopy”. In: Biorxiv (2016), p. 061507.

[16] Hakan Inan, Murat A Erdogdu, and Mark Schnitzer. “Robust Estimation of Neural
Signals in Calcium Imaging”. In: Advances in Neural Information Processing Systems.
2017, pp. 2905–2914.

[17] Stephanie Reynolds et al. “ABLE: An Activity-Based Level Set Segmentation Algo-
rithm for Two-Photon Calcium Imaging Data”. In: eNeuro (2017).

[18] Ashley Petersen, Noah Simon, and Daniela Witten. “SCALPEL: Extracting Neurons
from Calcium Imaging Data”. In: arXiv preprint arXiv:1703.06946 (2017).

[19] Pengcheng Zhou et al. “Efficient and accurate extraction of in vivo calcium signals
from microendoscopic video data”. In: eLife 7 (2018), e28728.

[20] E Kelly Buchanan et al. “Penalized matrix decomposition for denoising, compression,
and improved demixing of functional imaging data”. In: bioRxiv (2018), p. 334706.

[21] Gal Mishne et al. “Automated cellular structure extraction in biological images with
applications to calcium imaging data”. In: bioRxiv (2018).

[22] Joshua T Vogelstein et al. “Spike inference from calcium imaging using sequential
Monte Carlo methods”. In: Biophysical journal 97.2 (2009), pp. 636–655.

[23] Joshua T Vogelstein et al. “Fast nonnegative deconvolution for spike train infer-
ence from population calcium imaging”. In: Journal of neurophysiology 104.6 (2010),
pp. 3691–3704.

[24] Thomas Deneux et al. “Accurate spike estimation from noisy calcium signals for
ultrafast three-dimensional imaging of large neuronal populations in vivo”. In: Nature
communications 7.1 (2016), pp. 1–17.

[25] Lucas Theis et al. “Benchmarking spike rate inference in population calcium imaging”.
In: Neuron 90.3 (2016), pp. 471–482.

113

[26] Johannes Friedrich, Pengcheng Zhou, and Liam Paninski. “Fast online deconvolution
of calcium imaging data”. In: PLoS computational biology 13.3 (2017), e1005423.

[27] Sean Jewell et al. “Fast nonconvex deconvolution of calcium imaging data”. In: arXiv
preprint arXiv:1802.07380 (2018).

[28] Artur Speiser et al. “Fast amortized inference of neural activity from calcium imaging
data with variational autoencoders”. In: Advances in Neural Information Processing
Systems. 2017, pp. 4024–4034.

[29] Laurence Aitchison et al. “Model-based Bayesian inference of neural activity and
connectivity from all-optical interrogation of a neural circuit”. In: Advances in Neural
Information Processing Systems. 2017, pp. 3486–3495.

[30] Philipp Berens et al. “Community-based benchmarking improves spike rate inference
from two-photon calcium imaging data”. In: PLoS computational biology 14.5 (2018),
e1006157.

[31] Marius Pachitariu, Carsen Stringer, and Kenneth D Harris. “Robustness of spike de-
convolution for neuronal calcium imaging”. In: Journal of Neuroscience 38.37 (2018),
pp. 7976–7985.

[32] David S Greenberg et al. “Accurate action potential inference from a calcium sensor
protein through biophysical modeling”. In: bioRxiv (2018), p. 479055.

[33] Eero Simoncelli, Liam Paninski, and Jonathan Pillow. “Responses with stochastic
stimuli”. In: The cognitive neurosciences (2004), p. 327.

[34] Liam Paninski. “Maximum likelihood estimation of cascade point-process neural en-
coding models”. In: Network: Computation in Neural Systems 15.4 (2004), pp. 243–
262.

[35] Nikhil Parthasarathy et al. “Neural networks for efficient bayesian decoding of natural
images from retinal neurons”. In: Advances in Neural Information Processing Systems.
2017, pp. 6434–6445.

[36] Joshua I Glaser et al. “Machine learning for neural decoding”. In: Eneuro 7.4 (2020).

[37] John P Cunningham and M Yu Byron. “Dimensionality reduction for large-scale
neural recordings”. In: Nature neuroscience 17.11 (2014), pp. 1500–1509.

[38] Ofer Mazor and Gilles Laurent. “Transient dynamics versus fixed points in odor rep-
resentations by locust antennal lobe projection neurons”. In: Neuron 48.4 (2005),
pp. 661–673.

114

[39] Mark M Churchland et al. “Stimulus onset quenches neural variability: a widespread
cortical phenomenon”. In: Nature neuroscience 13.3 (2010), pp. 369–378.

[40] Pierre Comon. “Independent component analysis, a new concept?” In: Signal process-
ing 36.3 (1994), pp. 287–314.

[41] Suresh Balakrishnama and Aravind Ganapathiraju. “Linear discriminant analysis-a
brief tutorial”. In: Institute for Signal and information Processing. Vol. 18. 1998. 1998,
pp. 1–8.

[42] Kevin L Briggman, Henry DI Abarbanel, and William B Kristan. “Optical imaging of
neuronal populations during decision-making”. In: Science 307.5711 (2005), pp. 896–
901.

[43] Daniel Durstewitz et al. “Abrupt transitions between prefrontal neural ensemble
states accompany behavioral transitions during rule learning”. In: Neuron 66.3 (2010),
pp. 438–448.

[44] Mark A Kramer. “Nonlinear principal component analysis using autoassociative neu-
ral networks”. In: AIChE journal 37.2 (1991), pp. 233–243.

[45] MatthewWhiteway et al. “Characterizing the nonlinear structure of shared variability
in cortical neuron populations using latent variable models”. In: Neurons, Behavior,
Data analysis, and Theory 2.2 (2019), pp. 1–22.

[46] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes”. In: arXiv
preprint arXiv:1312.6114 (2013).

[47] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. “Stochastic back-
propagation and approximate inference in deep generative models”. In: International
conference on machine learning. PMLR. 2014, pp. 1278–1286.

[48] Francesco Locatello et al. “Challenging common assumptions in the unsupervised
learning of disentangled representations”. In: arXiv preprint arXiv:1811.12359 (2018).

[49] Ilyes Khemakhem et al. “Variational Autoencoders and Nonlinear ICA: A Unifying
Framework”. In: Proceedings of the Twenty Third International Conference on Arti-
ficial Intelligence and Statistics. Vol. 108. PMLR, 2020, pp. 2207–2217.

[50] Irina Higgins et al. “beta-VAE: Learning Basic Visual Concepts with a Constrained
Variational Framework”. In: International Conference on Learning Representations.
2017.

[51] Tian Qi Chen et al. “Isolating sources of disentanglement in variational autoencoders”.
In: Advances in Neural Information Processing Systems. 2018, pp. 2610–2620.

115

[52] Christopher P Burgess et al. “Understanding disentangling in beta-VAE”. In: arXiv
preprint arXiv:1804.03599 (2018).

[53] Peter Sorrenson, Carsten Rother, and Ullrich Köthe. “Disentanglement by Nonlinear
ICA with General Incompressible-flow Networks (GIN)”. In: International Conference
on Learning Representations. 2020.

[54] Ilyes Khemakhem et al. “ICE-BeeM: Identifiable Conditional Energy-Based Deep
Models Based on Nonlinear ICA”. In: Advances in Neural Information Processing
Systems. 2020, pp. 12768–12778.

[55] Geoffrey Roeder, Luke Metz, and Diederik P Kingma. “On linear identifiability of
learned representations”. In: arXiv preprint arXiv:2007.00810 (2020).

[56] Mukund Balasubramanian et al. “The isomap algorithm and topological stability”.
In: Science 295.5552 (2002), pp. 7–7.

[57] Sam T Roweis and Lawrence K Saul. “Nonlinear dimensionality reduction by locally
linear embedding”. In: science 290.5500 (2000), pp. 2323–2326.

[58] Joshua B Tenenbaum, Vin De Silva, and John C Langford. “A global geometric frame-
work for nonlinear dimensionality reduction”. In: science 290.5500 (2000), pp. 2319–
2323.

[59] Debajit Saha et al. “A spatiotemporal coding mechanism for background-invariant
odor recognition”. In: Nature neuroscience 16.12 (2013), pp. 1830–1839.

[60] Luis Carrillo-Reid et al. “Encoding network states by striatal cell assemblies”. In:
Journal of neurophysiology 99.3 (2008), pp. 1435–1450.

[61] Laurens van der Maaten and Geoffrey Hinton. “Visualizing data using t-SNE”. In:
Journal of machine learning research 9.Nov (2008), pp. 2579–2605.

[62] Leland McInnes, John Healy, and James Melville. “Umap: Uniform manifold approxi-
mation and projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426
(2018).

[63] George Dimitriadis, Joana P Neto, and Adam R Kampff. “T-SNE visualization of
large-scale neural recordings”. In: Neural computation 30.7 (2018), pp. 1750–1774.

[64] Lawrence R Rabiner. “A tutorial on hidden Markov models and selected applications
in speech recognition”. In: Proceedings of the IEEE 77.2 (1989), pp. 257–286.

116

[65] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Prediction Prob-
lems”. In: Transactions of the ASME–Journal of Basic Engineering 82.Series D (1960),
pp. 35–45.

[66] Lauren M Jones et al. “Natural stimuli evoke dynamic sequences of states in sen-
sory cortical ensembles”. In: Proceedings of the National Academy of Sciences 104.47
(2007), pp. 18772–18777.

[67] Kourosh Maboudi et al. “Uncovering temporal structure in hippocampal output pat-
terns”. In: Elife 7 (2018), e34467.

[68] Yee Whye Teh et al. “Hierarchical Dirichlet Processes”. In: Journal of the American
Statistical Association 101.476 (2006), pp. 1566–1581.

[69] Byron M Yu et al. “Gaussian-process factor analysis for low-dimensional single-trial
analysis of neural population activity”. In: Journal of neurophysiology 102.1 (2009),
pp. 614–635.

[70] Jakob H Macke et al. “Empirical models of spiking in neural populations”. In: Ad-
vances in neural information processing systems 24 (2011), pp. 1350–1358.

[71] Yuanjun Gao et al. “Linear dynamical neural population models through nonlinear
embeddings”. In: Advances in neural information processing systems. 2016, pp. 163–
171.

[72] Chethan Pandarinath et al. “Inferring single-trial neural population dynamics using
sequential auto-encoders”. In: Nature methods 15.10 (2018), pp. 805–815.

[73] Yuanjun Gao et al. “High-dimensional neural spike train analysis with generalized
count linear dynamical systems”. In: Advances in neural information processing sys-
tems. 2015, pp. 2044–2052.

[74] Daniel Hernandez et al. “Nonlinear Evolution via Spatially-Dependent Linear Dynam-
ics for Electrophysiology and Calcium Data”. In: Neurons, Behavior, Data analysis,
and Theory 3.3 (2020), p. 13476.

[75] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood from
incomplete data via the EM algorithm”. In: Journal of the Royal Statistical Society:
Series B (Methodological) 39.1 (1977), pp. 1–22.

[76] Nicholas Metropolis et al. “Equation of state calculations by fast computing ma-
chines”. In: The journal of chemical physics 21.6 (1953), pp. 1087–1092.

[77] W Keith Hastings. “Monte Carlo sampling methods using Markov chains and their
applications”. In: Biometrika 57.1 (1970), pp. 97–109.

117

[78] Stuart Geman and Donald Geman. “Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images”. In: IEEE Transactions on pattern analysis and
machine intelligence 6 (1984), pp. 721–741.

[79] Christian Robert and George Casella. Monte Carlo statistical methods. Springer Sci-
ence & Business Media, 2013.

[80] Michael I Jordan et al. “An introduction to variational methods for graphical models”.
In: Machine learning 37.2 (1999), pp. 183–233.

[81] Martin J Wainwright and Michael Irwin Jordan. Graphical models, exponential fam-
ilies, and variational inference. Now Publishers Inc, 2008.

[82] Herbert Robbins and Sutton Monro. “A stochastic approximation method”. In: The
annals of mathematical statistics (1951), pp. 400–407.

[83] Yoav Adam et al. “Voltage imaging and optogenetics reveal behaviour-dependent
changes in hippocampal dynamics”. In: Nature 569.7756 (2019), pp. 413–417.

[84] Xue-Xin Wei et al. “A zero-inflated gamma model for post-deconvolved calcium imag-
ing traces”. In: Neurons, Behavior, Data analysis, and Theory 3.2 (2020), pp. 1–21.

[85] Ding Zhou, Yuanjun Gao, and Liam Paninski. “Disentangled Sticky Hierarchical
Dirichlet Process Hidden Markov Model”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2020, pp. 612–627.

[86] Ding Zhou and Xue-Xin Wei. “Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE”. In: Advances in Neural Information
Processing Systems. 2020, pp. 7234–7247.

[87] Julien Mairal et al. “Online dictionary learning for sparse coding”. In: International
conference on machine learning. PMLR. 2009, pp. 689–696.

[88] Johannes Friedrich et al. “Multi-scale approaches for high-speed imaging and analysis
of large neural populations”. In: PLoS Computational Biology 13.8 (2017), e1005685.

[89] Andrea Giovannucci et al. “OnACID: Online Analysis of Calcium Imaging Data in
Real Time”. In: Advances in Neural Information Processing Systems. 2017, pp. 2378–
2388.

[90] David Donoho and Victoria Stodden. “When does non-negative matrix factorization
give a correct decomposition into parts?” In: Advances in neural information process-
ing systems. 2004, pp. 1141–1148.

118

[91] Ben Recht et al. “Factoring nonnegative matrices with linear programs”. In: Advances
in Neural Information Processing Systems. 2012, pp. 1214–1222.

[92] Sanjeev Arora et al. “Computing a nonnegative matrix factorization – provably”.
In: Proceedings of the forty-fourth annual ACM symposium on theory of computing.
ACM. 2012, pp. 145–162.

[93] Yuanzhi Li, Yingyu Liang, and Andrej Risteski. “Recovery guarantee of non-negative
matrix factorization via alternating updates”. In: Advances in neural information
processing systems (2016), pp. 4987–4995.

[94] Nicolas Gillis and Stephen A Vavasis. “Fast and robust recursive algorithms for sepa-
rable nonnegative matrix factorization”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence 36.4 (2014), pp. 698–714.

[95] Nicolas Gillis and Robert Luce. “A fast gradient method for nonnegative sparse regres-
sion with self-dictionary”. In: IEEE Transactions on Image Processing 27.1 (2018),
pp. 24–37.

[96] Michael E Xie et al. “High-fidelity estimates of spikes and subthreshold waveforms
from 1-photon voltage imaging in vivo”. In: Cell Reports 35.1 (2021), p. 108954.

[97] Xiao Fu et al. “Self-dictionary sparse regression for hyperspectral unmixing: Greedy
pursuit and pure pixel search are related”. In: IEEE Journal of Selected Topics in
Signal Processing 9.6 (2015), pp. 1128–1141.

[98] Nicholas James Sofroniew et al. “A large field of view two-photon mesoscope with
subcellular resolution for in vivo imaging”. In: Elife 5 (2016), e14472.

[99] Rongwen Lu et al. “50 Hz volumetric functional imaging with continuously adjustable
depth of focus”. In: Biomedical Optics Express 9.4 (2018), pp. 1964–1976.

[100] Rongwen Lu et al. “Video-rate volumetric functional imaging of the brain at synaptic
resolution”. In: Nature neuroscience 20.4 (2017), pp. 620–628.

[101] Christopher A Werley et al. “All-Optical Electrophysiology for Disease Modeling and
Pharmacological Characterization of Neurons”. In: Current Protocols in Pharmacology
(2017), pp. 11–20.

[102] Tsai-Wen Chen et al. “Ultrasensitive fluorescent proteins for imaging neuronal activ-
ity”. In: Nature 499.7458 (2013), pp. 295–300.

[103] Yaniv Ziv et al. “Long-term dynamics of CA1 hippocampal place codes”. In: Nature
neuroscience 16.3 (2013), p. 264.

119

[104] Alon Rubin et al. “Hippocampal ensemble dynamics timestamp events in long-term
memory”. In: Elife 4 (2015), e12247.

[105] Laura N Driscoll et al. “Dynamic reorganization of neuronal activity patterns in
parietal cortex”. In: Cell 170.5 (2017), pp. 986–999.

[106] Carsen Stringer and Marius Pachitariu. “Computational processing of neural record-
ings from calcium imaging data”. In: Current opinion in neurobiology 55 (2019),
pp. 22–31.

[107] Sean Jewell, Daniela Witten, et al. “Exact spike train inference via `0 optimization”.
In: Annals of Applied Statistics 12.4 (2018), pp. 2457–2482.

[108] Henry Lütcke et al. “Inference of neuronal network spike dynamics and topology from
calcium imaging data”. In: Frontiers in neural circuits 7 (2013), p. 201.

[109] Hod Dana et al. “Sensitive red protein calcium indicators for imaging neural activity”.
In: Elife 5 (2016), e12727.

[110] George J Tomko and Donald R Crapper. “Neuronal variability: non-stationary re-
sponses to identical visual stimuli”. In: Brain research 79.3 (1974), pp. 405–418.

[111] DJ Tolhurst, J Anthony Movshon, and ID Thompson. “The dependence of response
amplitude and variance of cat visual cortical neurones on stimulus contrast”. In:
Experimental brain research 41.3-4 (1981), pp. 414–419.

[112] Robbe LT Goris, J Anthony Movshon, and Eero P Simoncelli. “Partitioning neuronal
variability”. In: Nature neuroscience 17.6 (2014), pp. 858–865.

[113] Pengcheng Zhou et al. “EASE: EM-Assisted Source Extraction from calcium imaging
data”. In: bioRxiv (2020).

[114] Thomas J Davidson, Fabian Kloosterman, and Matthew A Wilson. “Hippocampal
replay of extended experience”. In: Neuron 63.4 (2009), pp. 497–507.

[115] Elad Ganmor et al. “Direct estimation of firing rates from calcium imaging data”. In:
arXiv preprint arXiv:1601.00364 (2016).

[116] Marcus A Triplett et al. “Model-based decoupling of evoked and spontaneous neu-
ral activity in calcium imaging data”. In: PLoS computational biology 16.11 (2020),
e1008330.

[117] Michel A Picardo et al. “Population-level representation of a temporal sequence un-
derlying song production in the zebra finch”. In: Neuron 90.4 (2016), pp. 866–876.

120

[118] Yuriy Mishchenko, Joshua T Vogelstein, Liam Paninski, et al. “A Bayesian approach
for inferring neuronal connectivity from calcium fluorescent imaging data”. In: The
Annals of Applied Statistics 5.2B (2011), pp. 1229–1261.

[119] Jeffrey D Zaremba et al. “Impaired hippocampal place cell dynamics in a mouse model
of the 22q11. 2 deletion”. In: Nature neuroscience 20.11 (2017), p. 1612.

[120] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980 (2014).

[121] Eleanor Batty et al. “BehaveNet: nonlinear embedding and Bayesian neural decoding
of behavioral videos”. In: Advances in Neural Information Processing Systems. 2019,
pp. 15680–15691.

[122] Emily B Fox et al. “A sticky HDP-HMM with application to speaker diarization”. In:
The Annals of Applied Statistics (2011), pp. 1020–1056.

[123] Bryan Pardo and William Birmingham. “Modeling form for on-line following of mu-
sical performances”. In: Proceedings of the National Conference on Artificial Intelli-
gence. Vol. 20. 2. 2005, p. 1018.

[124] Matthew D Hoffman, Perry R Cook, and David M Blei. “Data-Driven Recomposition
using the Hierarchical Dirichlet Process Hidden Markov Model.” In: ICMC. Citeseer.
2008.

[125] Chia-ying Lee and James Glass. “A nonparametric Bayesian approach to acoustic
model discovery”. In: Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics: Long Papers-Volume 1. Association for Computational
Linguistics. 2012, pp. 40–49.

[126] Emily Fox et al. “Nonparametric Bayesian learning of switching linear dynamical
systems”. In: Advances in neural information processing systems. 2009, pp. 457–464.

[127] Ardavan Saeedi et al. “The segmented ihmm: A simple, efficient hierarchical infinite
hmm”. In: International Conference on Machine Learning. PMLR. 2016, pp. 2682–
2691.

[128] Katherine Heller, Yee Whye Teh, and Dilan Gorur. “Infinite Hierarchical Hidden
Markov Models”. In: Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics. Vol. 5. PMLR, 2009, pp. 224–231.

[129] Yong Song. “Modelling regime switching and structural breaks with an infinite hidden
Markov model”. In: Journal of Applied Econometrics 29.5 (2014), pp. 825–842.

121

[130] Anders Krogh et al. “Hidden Markov models in computational biology. Applications
to protein modeling”. In: Journal of molecular biology 235.5 (1994), pp. 1501–1531.

[131] Gilles Celeux and Jean-Baptiste Durand. “Selecting hidden Markov model state num-
ber with cross-validated likelihood”. In: Computational Statistics 23.4 (2008), pp. 541–
564.

[132] Jennifer Pohle et al. “Selecting the number of states in hidden markov models-pitfalls,
practical challenges and pragmatic solutions”. In: arXiv preprint arXiv:1701.08673
(2017).

[133] Matthew J Beal, Zoubin Ghahramani, and Carl E Rasmussen. “The infinite hidden
Markov model”. In: Advances in neural information processing systems. 2002, pp. 577–
584.

[134] Jayaram Sethuraman. “A constructive definition of Dirichlet priors”. In: Statistica
sinica (1994), pp. 639–650.

[135] James Munkres. “Algorithms for the assignment and transportation problems”. In:
Journal of the society for industrial and applied mathematics 5.1 (1957), pp. 32–38.

[136] E Pastalkova et al. “Simultaneous extracellular recordings from left and right hip-
pocampal areas CA1 and right entorhinal cortex from a rat performing a left/right
alternation task and other behaviors”. In: CRCNS.org (2015).

[137] Eva Pastalkova et al. “Internally generated cell assembly sequences in the rat hip-
pocampus”. In: Science 321.5894 (2008), pp. 1322–1327.

[138] Scott W Linderman et al. “A Bayesian nonparametric approach for uncovering rat
hippocampal population codes during spatial navigation”. In: Journal of neuroscience
methods 263 (2016), pp. 36–47.

[139] AK Churchland et al. “Single-trial neural dynamics are dominated by richly varied
movements: dataset”. In: (2019).

[140] Simon Musall et al. “Single-trial neural dynamics are dominated by richly varied
movements”. In: Nature neuroscience 22.10 (2019), pp. 1677–1686.

[141] Matthew J. Johnson and Alan S. Willsky. “Bayesian Nonparametric Hidden Semi-
Markov Models”. In: Journal of Machine Learning Research 14 (2013), pp. 673–701.

[142] Kevin P Murphy. “Hidden semi-markov models (hsmms)”. In: unpublished notes 2
(2002).

122

[143] Finale Doshi-Velez. “The infinite partially observable Markov decision process”. In:
Advances in neural information processing systems. 2009, pp. 477–485.

[144] Finale Doshi-Velez et al. “Nonparametric Bayesian policy priors for reinforcement
learning”. In: Advances in Neural Information Processing Systems. 2010, pp. 532–
540.

[145] Finale Doshi-Velez et al. “Bayesian nonparametric methods for partially-observable
reinforcement learning”. In: IEEE transactions on pattern analysis and machine in-
telligence 37.2 (2013), pp. 394–407.

[146] Michael Hughes, Dae Il Kim, and Erik Sudderth. “Reliable and Scalable Variational
Inference for the Hierarchical Dirichlet Process”. In: Proceedings of the Eighteenth
International Conference on Artificial Intelligence and Statistics. Vol. 38. PMLR,
2015, pp. 370–378.

[147] Aonan Zhang, San Gultekin, and John Paisley. “Stochastic Variational Inference for
the HDP-HMM”. In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics. Vol. 51. PMLR, 2016, pp. 800–808.

[148] Ari Pakman et al. “Neural Clustering Processes”. In: International Conference on
Machine Learning. PMLR. 2020, pp. 7455–7465.

[149] Jeffrey W Miller and Matthew T Harrison. “Mixture models with a prior on the
number of components”. In: Journal of the American Statistical Association 113.521
(2018), pp. 340–356.

[150] Kevin P Murphy. “Conjugate Bayesian analysis of the Gaussian distribution”. In: def
1.2σ2 (2007), p. 16.

[151] Stephen Tu. “The dirichlet-multinomial and dirichlet-categorical models for bayesian
inference”. In: Computer Science Division, UC Berkeley (2014).

[152] Michael D Escobar and Mike West. “Bayesian density estimation and inference using
mixtures”. In: Journal of the american statistical association 90.430 (1995), pp. 577–
588.

[153] Andrew Gelman et al. Bayesian data analysis. Chapman and Hall/CRC, 2013.

[154] Wilson Truccolo et al. “A point process framework for relating neural spiking activity
to spiking history, neural ensemble, and extrinsic covariate effects”. In: Journal of
neurophysiology 93.2 (2005), pp. 1074–1089.

[155] Jonathan W Pillow et al. “Spatio-temporal correlations and visual signalling in a
complete neuronal population”. In: Nature 454.7207 (2008), pp. 995–999.

123

[156] Apostolos P Georgopoulos, Andrew B Schwartz, and Ronald E Kettner. “Neuronal
population coding of movement direction”. In: Science 233.4771 (1986), pp. 1416–
1419.

[157] Kechen Zhang et al. “Interpreting neuronal population activity by reconstruction:
unified framework with application to hippocampal place cells”. In: Journal of neu-
rophysiology 79.2 (1998), pp. 1017–1044.

[158] John O’Keefe and Jonathan Dostrovsky. “The hippocampus as a spatial map: pre-
liminary evidence from unit activity in the freely-moving rat.” In: Brain research
(1971).

[159] Herman P Snippe. “Parameter extraction from population codes: A critical assess-
ment”. In: Neural Computation 8.3 (1996), pp. 511–529.

[160] Andrew B Schwartz, Ronald E Kettner, and Apostolos P Georgopoulos. “Primate
motor cortex and free arm movements to visual targets in three-dimensional space.
I. Relations between single cell discharge and direction of movement”. In: Journal of
Neuroscience 8.8 (1988), pp. 2913–2927.

[161] Il Memming Park et al. “Encoding and decoding in parietal cortex during sensorimo-
tor decision-making”. In: Nature neuroscience 17.10 (2014), pp. 1395–1403.

[162] Adam J Calhoun, Jonathan W Pillow, and Mala Murthy. “Unsupervised identification
of the internal states that shape natural behavior”. In: Nature neuroscience 22.12
(2019), pp. 2040–2049.

[163] Terence David Sanger. “Probability density estimation for the interpretation of neural
population codes”. In: Journal of Neurophysiology 76.4 (1996), pp. 2790–2793.

[164] Emery N Brown et al. “A statistical paradigm for neural spike train decoding applied
to position prediction from ensemble firing patterns of rat hippocampal place cells”.
In: Journal of Neuroscience 18.18 (1998), pp. 7411–7425.

[165] Mike W Oram et al. “TheIdeal Homunculus’: decoding neural population signals”.
In: Trends in neurosciences 21.6 (1998), pp. 259–265.

[166] Mark Stopfer, Vivek Jayaraman, and Gilles Laurent. “Intensity versus identity coding
in an olfactory system”. In: Neuron 39.6 (2003), pp. 991–1004.

[167] Ofer Mazor and Gilles Laurent. “Transient dynamics versus fixed points in odor rep-
resentations by locust antennal lobe projection neurons”. In: Neuron 48.4 (2005),
pp. 661–673.

124

[168] Kevin L Briggman, Henry DI Abarbanel, and William B Kristan. “Optical imaging of
neuronal populations during decision-making”. In: Science 307.5711 (2005), pp. 896–
901.

[169] Mark M Churchland et al. “Neural population dynamics during reaching”. In: Nature
487.7405 (2012), pp. 51–56.

[170] Valerio Mante et al. “Context-dependent computation by recurrent dynamics in pre-
frontal cortex”. In: Nature 503.7474 (2013), pp. 78–84.

[171] M Yu Byron et al. “Gaussian-process factor analysis for low-dimensional single-trial
analysis of neural population activity”. In: Advances in neural information processing
systems. 2009, pp. 1881–1888.

[172] Patrick T Sadtler et al. “Neural constraints on learning”. In: Nature 512.7515 (2014),
pp. 423–426.

[173] Lea Duncker and Maneesh Sahani. “Temporal alignment and latent Gaussian pro-
cess factor inference in population spike trains”. In: Advances in Neural Information
Processing Systems. 2018, pp. 10445–10455.

[174] Jakob H Macke et al. “Empirical models of spiking in neural populations”. In: Ad-
vances in neural information processing systems. 2011, pp. 1350–1358.

[175] Lars Buesing, Jakob H Macke, and Maneesh Sahani. “Spectral learning of linear
dynamics from generalised-linear observations with application to neural population
data”. In: Advances in neural information processing systems. 2012, pp. 1682–1690.

[176] Lea Duncker et al. “Learning interpretable continuous-time models of latent stochastic
dynamical systems”. In: arXiv preprint arXiv:1902.04420 (2019).

[177] Bede M Broome, Vivek Jayaraman, and Gilles Laurent. “Encoding and decoding of
overlapping odor sequences”. In: Neuron 51.4 (2006), pp. 467–482.

[178] Yuan Zhao and Il Memming Park. “Variational latent Gaussian process for recover-
ing single-trial dynamics from population spike trains”. In: Neural computation 29.5
(2017), pp. 1293–1316.

[179] Anqi Wu et al. “Gaussian process based nonlinear latent structure discovery in mul-
tivariate spike train data”. In: Advances in neural information processing systems.
2017, pp. 3496–3505.

[180] Mohammad Reza Keshtkaran and Chethan Pandarinath. “Enabling hyperparameter
optimization in sequential autoencoders for spiking neural data”. In: Advances in
Neural Information Processing Systems. 2019, pp. 15911–15921.

125

[181] Wei Wu et al. “Neural decoding of hand motion using a linear state-space model with
hidden states”. In: IEEE Transactions on neural systems and rehabilitation engineer-
ing 17.4 (2009), pp. 370–378.

[182] Vernon Lawhern et al. “Population decoding of motor cortical activity using a gen-
eralized linear model with hidden states”. In: Journal of neuroscience methods 189.2
(2010), pp. 267–280.

[183] Alexander S Ecker et al. “State dependence of noise correlations in macaque primary
visual cortex”. In: Neuron 82.1 (2014), pp. 235–248.

[184] I-Chun Lin et al. “The nature of shared cortical variability”. In: Neuron 87.3 (2015),
pp. 644–656.

[185] Matthew R Whiteway and Daniel A Butts. “The quest for interpretable models of
neural population activity”. In: Current opinion in neurobiology 58 (2019), pp. 86–93.

[186] Danilo Jimenez Rezende and Shakir Mohamed. “Variational inference with normal-
izing flows”. In: arXiv preprint arXiv:1505.05770 (2015).

[187] Matthew D Hoffman and Matthew J Johnson. “Elbo surgery: yet another way to carve
up the variational evidence lower bound”. In: Workshop in Advances in Approximate
Bayesian Inference, NIPS. Vol. 1. 2016, p. 2.

[188] Alexander Alemi et al. “Fixing a broken ELBO”. In: International Conference on
Machine Learning. PMLR. 2018, pp. 159–168.

[189] Andres D Grosmark and György Buzsáki. “Diversity in neural firing dynamics sup-
ports both rigid and learned hippocampal sequences”. In: Science 351.6280 (2016),
pp. 1440–1443.

[190] AD Grosmark, JD Long, and G Buzsáki. Recordings from hippocampal area CA1,
PRE, during and POST novel spatial learning. CRCNS. org. 2016.

[191] Juan A Gallego et al. “Long-term stability of cortical population dynamics underlying
consistent behavior”. In: Nature Neuroscience (2020), pp. 1–11.

[192] Shen Li, Bryan Hooi, and Gim Hee Lee. “Identifying through Flows for Recovering
Latent Representations”. In: arXiv preprint arXiv:1909.12555 (2019).

[193] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density estimation using
real nvp”. In: arXiv preprint arXiv:1605.08803 (2016).

[194] Laurent Dinh, David Krueger, and Yoshua Bengio. “Nice: Non-linear independent
components estimation”. In: arXiv preprint arXiv:1410.8516 (2014).

126

[195] Evan Archer et al. “Black box variational inference for state space models”. In: arXiv
preprint arXiv:1511.07367 (2015).

[196] Apostolos P Georgopoulos et al. “On the relations between the direction of two-
dimensional arm movements and cell discharge in primate motor cortex”. In: Journal
of Neuroscience 2.11 (1982), pp. 1527–1537.

[197] L. Srinivasan et al. “A state-space analysis for reconstruction of goal-directed move-
ments using neural signals”. In: Neural computation 18.10 (2006), pp. 2465–2494.

[198] Krishna V Shenoy, Maneesh Sahani, and Mark M Churchland. “Cortical control of
arm movements: a dynamical systems perspective”. In: Annual review of neuroscience
36 (2013), pp. 337–359.

[199] Mikhail A Lebedev et al. “Analysis of neuronal ensemble activity reveals the pitfalls
and shortcomings of rotation dynamics”. In: Scientific Reports 9.1 (2019), pp. 1–14.

[200] Liam Paninski et al. “Superlinear population encoding of dynamic hand trajectory in
primary motor cortex”. In: Journal of Neuroscience 24.39 (2004), pp. 8551–8561.

[201] K Cora Ames, Stephen I Ryu, and Krishna V Shenoy. “Neural dynamics of reaching
following incorrect or absent motor preparation”. In: Neuron 81.2 (2014), pp. 438–
451.

[202] Jonathan C Kao et al. “Single-trial dynamics of motor cortex and their applications
to brain-machine interfaces”. In: Nature communications 6.1 (2015), pp. 1–12.

[203] John O’Keefe. “Place units in the hippocampus of the freely moving rat”. In: Exper-
imental neurology 51.1 (1976), pp. 78–109.

[204] Francesco P Battaglia, Gary R Sutherland, and Bruce L McNaughton. “Local sensory
cues and place cell directionality: additional evidence of prospective coding in the
hippocampus”. In: Journal of Neuroscience 24.19 (2004), pp. 4541–4550.

[205] Zaneta Navratilova et al. “Experience-dependent firing rate remapping generates di-
rectional selectivity in hippocampal place cells”. In: Frontiers in neural circuits 6
(2012), p. 6.

[206] Kenneth Kay et al. “Constant sub-second cycling between representations of possible
futures in the hippocampus”. In: Cell 180.3 (2020), pp. 552–567.

[207] William E Skaggs et al. “Theta phase precession in hippocampal neuronal populations
and the compression of temporal sequences”. In: Hippocampus 6.2 (1996), pp. 149–
172.

127

[208] David J Foster and Matthew A Wilson. “Hippocampal theta sequences”. In: Hip-
pocampus 17.11 (2007), pp. 1093–1099.

[209] Eva Pastalkova et al. “Internally generated cell assembly sequences in the rat hip-
pocampus”. In: Science 321.5894 (2008), pp. 1322–1327.

[210] IQ Whishaw and C Hippocampal Vanderwolf. “Hippocampal EEG and behavior:
change in amplitude and frequency of RSA (theta rhythm) associated with sponta-
neous and learned movement patterns in rats and cats”. In: Behavioral biology 8.4
(1973), pp. 461–484.

[211] György Buzsáki. “Theta oscillations in the hippocampus”. In: Neuron 33.3 (2002),
pp. 325–340.

[212] John Huxter, Neil Burgess, and John O’Keefe. “Independent rate and temporal coding
in hippocampal pyramidal cells”. In: Nature 425.6960 (2003), pp. 828–832.

[213] Dmitry Kobak et al. “Demixed principal component analysis of neural population
data”. In: Elife 5 (2016), e10989.

128

	List of Figures
	List of Tables
	Acknowledgments
	Dedication
	Introduction and background
	Neural data science
	Recordings
	Signal pre-processing
	Neural encoding and decoding

	Dimension reduction methods for neural data
	Linear dimension reduction
	Nonlinear dimension reduction

	Latent variable models for time-series data dimension reduction
	Models
	Inference

	Dissertation outline

	Demixing for calcium imaging data
	Introduction
	Methods
	Initialization via pure superpixels
	Local NMF
	Further implementation details

	Results
	Voltage imaging data
	Bessel dendritic imaging data

	Discussion
	Related work
	Future work

	Appendix
	Video captions
	Datasets details

	A zero-inflated gamma model for deconvolved calcium imaging traces
	Introduction
	Results
	Nonnegative deconvolution methods applied to calcium fluorescence traces produce a mixture of zeros and positive real-valued output, well-captured by the zero-inflated gamma model
	The ZIG model is applicable to the outputs of multiple deconvolution methods, applied to data from multiple calcium indicators
	Constructing encoding models for simulated calcium responses
	The ZIG encoding model leads to improved Bayesian decoding in simulated data
	Application to real imaging data

	Discussion
	Materials and Methods
	Density models of the deconvolved calcium trace
	In vivo datasets
	Fitting encoding models to the data
	Shuffling analysis

	Appendix

	Disentangled sticky hierarchical Dirichlet process hidden Markov model
	Introduction
	Background on Bayesian HMM and HDP-HMM
	Limitations of the HDP-HMM and sticky HDP-HMM
	Disentangled sticky HDP-HMM
	Gibbs sampling inference
	Direct assignment sampler
	Weak-limit sampler

	Results
	Simulated data
	Inferring rat hippocampal population codes
	Segmenting mouse behavior video

	Discussion and conclusion
	Appendix
	Notation
	Proof of Theorem 1
	Derivation of Gibbs samplers
	Details of prior in ARHMM
	Simulation results for Gaussian emission

	Learning identifiable and interpretable latent models of high-dimensional neural activity using pi-VAE
	Introduction
	Model
	Generative model
	Inference algorithm

	Results
	Validation using synthetic data
	Applications to neural population data
	Comparison to alternative methods

	Discussion
	Appendix
	Proof of identifiability for pi-VAE
	Network architecture
	Synthetic data simulations
	Monkey reaching data: session 2
	Alternative methods

	References

