1,837 research outputs found

    Crosstalk in stereoscopic displays

    Get PDF
    Crosstalk is an important image quality attribute of stereoscopic 3D displays. The research presented in this thesis examines the presence, mechanisms, simulation, and reduction of crosstalk for a selection of stereoscopic display technologies. High levels of crosstalk degrade the perceived quality of stereoscopic displays hence it is important to minimise crosstalk. This thesis provides new insights which are critical to a detailed understanding of crosstalk and consequently to the development of effective crosstalk reduction techniques

    Air Force Institute of Technology Research Report 2016

    Get PDF
    This Research Report presents the FY16 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs)

    Air Force Institute of Technology Research Report 2009

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2020

    Get PDF
    This Research Report presents the FY20 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Multimodality imaging to quantify the pulmonary vascular tree in COPD

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a progressive and debilitating disease resulting in chronic cough, shortness of breath, activity limitation and decreased pulmonary function. Developments in imaging technology have provided sensitive and reliable modalities for evaluating regional lung function and disease progression, and there is a growing interest in the role of imaging the vasculature in COPD. The ability to predict whether a patient is at risk of accelerated decline is important to disease management strategies. We hypothesize that CT blood vessel volume measurements are significantly different in ex-smokers without COPD than in those with this disease and will be related to disease severity. 90 participants completed both baseline and follow-up visits: 41 ex-smokers without COPD (71±10yrs) and 49 participants with COPD (71±8yrs). From baseline to follow-up, RA950 increased significantly for ex-smokers and GOLD II participants, while PV1 decreased significantly for GOLD I. There were no differences in VDP when grouped according to change in FEV1. Participants whose FEV1 increased by more than 20mL/year experienced a significantly smaller change in RA950 compared to those whose FEV1 decreased by more than 40mL. Independent samples t-tests indicate a significant difference in the rate of PV1 progression between COPD groups with and without emphysema, but not VDP or RA950. Emphysema, or COPD phenotype, is related to vascular structure within the lung and the progression of vascular remodelling. Future work should include investigations of sex-differences in airways disease, and the use of machine learning to predict disease progression with optimized CT imaging parameters

    Air Force Institute of Technology Research Report 2012

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems and Engineering Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2018

    Get PDF
    This Research Report presents the FY18 research statistics and contributions of the Graduate School of Engineering and Management (EN) at AFIT. AFIT research interests and faculty expertise cover a broad spectrum of technical areas related to USAF needs, as reflected by the range of topics addressed in the faculty and student publications listed in this report. In most cases, the research work reported herein is directly sponsored by one or more USAF or DOD agencies. AFIT welcomes the opportunity to conduct research on additional topics of interest to the USAF, DOD, and other federal organizations when adequate manpower and financial resources are available and/or provided by a sponsor. In addition, AFIT provides research collaboration and technology transfer benefits to the public through Cooperative Research and Development Agreements (CRADAs). Interested individuals may discuss ideas for new research collaborations, potential CRADAs, or research proposals with individual faculty using the contact information in this document

    Robust watermarking for magnetic resonance images with automatic region of interest detection

    Get PDF
    Medical image watermarking requires special considerations compared to ordinary watermarking methods. The first issue is the detection of an important area of the image called the Region of Interest (ROI) prior to starting the watermarking process. Most existing ROI detection procedures use manual-based methods, while in automated methods the robustness against intentional or unintentional attacks has not been considered extensively. The second issue is the robustness of the embedded watermark against different attacks. A common drawback of existing watermarking methods is their weakness against salt and pepper noise. The research carried out in this thesis addresses these issues of having automatic ROI detection for magnetic resonance images that are robust against attacks particularly the salt and pepper noise and designing a new watermarking method that can withstand high density salt and pepper noise. In the ROI detection part, combinations of several algorithms such as morphological reconstruction, adaptive thresholding and labelling are utilized. The noise-filtering algorithm and window size correction block are then introduced for further enhancement. The performance of the proposed ROI detection is evaluated by computing the Comparative Accuracy (CA). In the watermarking part, a combination of spatial method, channel coding and noise filtering schemes are used to increase the robustness against salt and pepper noise. The quality of watermarked image is evaluated using Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM), and the accuracy of the extracted watermark is assessed in terms of Bit Error Rate (BER). Based on experiments, the CA under eight different attacks (speckle noise, average filter, median filter, Wiener filter, Gaussian filter, sharpening filter, motion, and salt and pepper noise) is between 97.8% and 100%. The CA under different densities of salt and pepper noise (10%-90%) is in the range of 75.13% to 98.99%. In the watermarking part, the performance of the proposed method under different densities of salt and pepper noise measured by total PSNR, ROI PSNR, total SSIM and ROI SSIM has improved in the ranges of 3.48-23.03 (dB), 3.5-23.05 (dB), 0-0.4620 and 0-0.5335 to 21.75-42.08 (dB), 20.55-40.83 (dB), 0.5775-0.8874 and 0.4104-0.9742 respectively. In addition, the BER is reduced to the range of 0.02% to 41.7%. To conclude, the proposed method has managed to significantly improve the performance of existing medical image watermarking methods

    Evaluation of changes in image appearance with changes in displayed image size

    Get PDF
    This research focused on the quantification of changes in image appearance when images are displayed at different image sizes on LCD devices. The final results provided in calibrated Just Noticeable Differences (JNDs) on relevant perceptual scales, allowing the prediction of sharpness and contrast appearance with changes in the displayed image size. A series of psychophysical experiments were conducted to enable appearance predictions. Firstly, a rank order experiment was carried out to identify the image attributes that were most affected by changes in displayed image size. Two digital cameras, exhibiting very different reproduction qualities, were employed to capture the same scenes, for the investigation of the effect of the original image quality on image appearance changes. A wide range of scenes with different scene properties was used as a test-set for the investigation of image appearance changes with scene type. The outcomes indicated that sharpness and contrast were the most important attributes for the majority of scene types and original image qualities. Appearance matching experiments were further conducted to quantify changes in perceived sharpness and contrast with respect to changes in the displayed image size. For the creation of sharpness matching stimuli, a set of frequency domain filters were designed to provide equal intervals in image quality, by taking into account the system’s Spatial Frequency Response (SFR) and the observation distance. For the creation of contrast matching stimuli, a series of spatial domain S-shaped filters were designed to provide equal intervals in image contrast, by gamma adjustments. Five displayed image sizes were investigated. Observers were always asked to match the appearance of the smaller version of each stimulus to its larger reference. Lastly, rating experiments were conducted to validate the derived JNDs in perceptual quality for both sharpness and contrast stimuli. Data obtained by these experiments finally converted into JND scales for each individual image attribute. Linear functions were fitted to the final data, which allowed the prediction of image appearance of images viewed at larger sizes than these investigated in this research
    • …
    corecore