
 

 
 
 

WestminsterResearch 
http://www.westminster.ac.uk/research/westminsterresearch 
 
 
Evaluation of changes in image appearance with changes in 
displayed image size 
 
Jae Young Park 
 
Faculty of Media, Arts and Design 
 
 
 
This is an electronic version of a PhD thesis awarded by the University of 
Westminster.  © The Author, 2014. 
 
This is an exact reproduction of the paper copy held by the University of 
Westminster library. 
 
 
 
The WestminsterResearch online digital archive at the University of 
Westminster aims to make the research output of the University available to a 
wider audience.  Copyright and Moral Rights remain with the authors and/or 
copyright owners. 
Users are permitted to download and/or print one copy for non-commercial 
private study or research.  Further distribution and any use of material from 
within this archive for profit-making enterprises or for commercial gain is 
strictly forbidden.    
 
 
Whilst further distribution of specific materials from within this archive is forbidden, 
you may freely distribute the URL of WestminsterResearch: 
(http://westminsterresearch.wmin.ac.uk/). 
 
In case of abuse or copyright appearing without permission e-mail 
repository@westminster.ac.uk 



  

  

 

Evaluation of changes in  
image appearance with changes 

in displayed image size 
 

 

JAE YOUNG PARK BSc(Hons), MSc 

 

 

A thesis submitted in partial fulfilment of the 

requirements of the University of Westminster 

for the degree of Doctor of Philosophy 

 

 

May 2014 

 

This research programme was carried out within the Imaging Technology 
Research Group at the University of Westminster 



J.Y.Park, 2014, Abstract 

i  

  

Abstract 

 

This research focused on the quantification of changes in image appearance when 

images are displayed at different image sizes on LCD devices. The final results 

provided in calibrated Just Noticeable Differences (JNDs) on relevant perceptual scales, 

allowing the prediction of sharpness and contrast appearance with changes in the 

displayed image size. 

A series of psychophysical experiments were conducted to enable appearance 

predictions. Firstly, a rank order experiment was carried out to identify the image 

attributes that were most affected by changes in displayed image size. Two digital 

cameras, exhibiting very different reproduction qualities, were employed to capture the 

same scenes, for the investigation of the effect of the original image quality on image 

appearance changes. A wide range of scenes with different scene properties was used as 

a test-set for the investigation of image appearance changes with scene type. The 

outcomes indicated that sharpness and contrast were the most important attributes for 

the majority of scene types and original image qualities. 

Appearance matching experiments were further conducted to quantify changes 

in perceived sharpness and contrast with respect to changes in the displayed image size. 

For the creation of sharpness matching stimuli, a set of frequency domain filters were 

designed to provide equal intervals in image quality, by taking into account the system’s 

Spatial Frequency Response (SFR) and the observation distance. For the creation of 

contrast matching stimuli, a series of spatial domain S-shaped filters were designed to 

provide equal intervals in image contrast, by gamma adjustments. Five displayed image 



J.Y.Park, 2014, Abstract 

ii  

  

sizes were investigated. Observers were always asked to match the appearance of the 

smaller version of each stimulus to its larger reference. 

Lastly, rating experiments were conducted to validate the derived JNDs in 

perceptual quality for both sharpness and contrast stimuli. Data obtained by these 

experiments finally converted into JND scales for each individual image attribute. 

Linear functions were fitted to the final data, which allowed the prediction of image 

appearance of images viewed at larger sizes than these investigated in this research. 

 



J.Y.Park, 2014, List of Contents 

iii  

  

List of Contents 

 
Abstract …………………………...………….…………………………………..……i 

List of Contents ………………..………………………………………………..…...iii 

List of Figures …………………………………..……………………………………xi 

List of Tables ……………………………….……………………………….……xviii 

Acknowledgements ……………………………………………………………........xx 

Author’s declaration ……………………………………………………………...xxi 

 

1. Introduction ……………………………………………………………………1 

1.1  Aim and objectives ………………………………………………………….3 

1.2  Structure of thesis …………………………………………………………...4 

1.3  Related publications …………………………………………………………..5 

2. Image quality and appearance ……………………………………………..6 

2.1  Overview of image quality ………………………………………………….8 

2.2  Objective evaluation ………………………………………………………...10 

2.2.1 Perceptual image quality attributes ………………………………...11 

2.2.2 Objective measures related to perceptual image quality 

attributes ……………………………………………………………14 

2.2.2.1  Tone reproduction and contrast …………………………..14 

2.2.2.2  Colour reproduction ………………………………………...16 



J.Y.Park, 2014, List of Contents 

iv  

  

2.2.2.3  Resolution …………………………………………………..21 

2.2.2.4  Sharpness …………………………………………………...22 

2.2.2.5  Noise and digital artefacts …………………………………23 

2.2.3 Image quality metrics (IQMs) ……………………………………..26 

2.3  Subjective evaluation …………………………………………………………28 

2.3.1 Overview of psychophysics and psychometric scaling ………………28 

2.3.2 Scale types ……………………………………………………………29 

2.3.3 Scaling methods ………………………………………………………31 

2.3.3.1  Threshold evaluation …………………………………………32 

2.3.3.2  Supra-threshold evaluation …………………………………34 

2.3.4 Visual matching technique ……………………………………………36 

2.4  Measuring and modifying sharpness …………………………………………36 

2.4.1 SFR evaluation ………………………………………………………38 

2.4.2 Image sharpness manipulation ………………………………………..40 

2.4.2.1  Filtering in spatial domain …………………………………40 

2.4.2.2  Filtering in frequency domain ………………………………41 

2.4.2.3  Softcopy ruler method for generating sharpened and 

 blurred images with known MTF ……………………………43 



J.Y.Park, 2014, List of Contents 

v  

  

2.5  Measuring and modifying tone reproduction and contrast …………………...47 

2.5.1 Opto-Electronic Conversion Function (OECF) ……………………47 

2.5.2 Electro-Optical Transfer function (EOTF) ………………………49 

2.5.3 Formulae for contrast evaluation …………………………………..50 

2.5.3.1  Michelson contrast ………………………………………….50 

2.5.3.2  Weber fraction definition of contrast …………………….50 

2.5.3.3  Root mean square (RMS) contrast ……………………….51 

2.5.4 Image contrast enhancement ………………………………………52 

2.5.4.1  Histogram equalisation ……………………………………..52 

2.5.4.2  Contrast stretching by piecewise linear transformation 

 function ………………………………………………….…..52 

2.5.4.3  Contrast enhancement using an ‘S-shape’ function ……...53 

2.6  Scene dependency and classification …………………………………………53 

2.6.1 Scene dependency …………………………………………………….53 

2.6.2 Classification of scenes ……………………………………………....54 

2.7  Appearance versus image size ………………………………………………..55 

3. Device characterisation …………………………………………………….57 

3.1  Digital cameras …………………………………………………………….59 



J.Y.Park, 2014, List of Contents 

vi  

  

3.1.1 Tone characteristics (Opto-Electronic Conversion Function)……60 

3.1.2 Colorimetric characteristics of sRGB output………………………63 

3.1.3 SFR measurements using the slanted edge method ……………67 

3.1.4 Summary ……………………………………………………………..70 

3.2  Liquid crystal displays (LCDs) …………………………………………….72 

3.2.1 Conditions of measurement, calibration and settings ……………72 

3.2.2 Tone characteristics (Electro-Optical Transfer Function)…………74 

3.2.3 Basic colorimetric characteristics ………………………………….76 

3.2.4 Colour tracking characteristics …………………………………….78 

3.2.5 Positional non-uniformity ………………………………………….82 

3.2.6 Dependency on background ……………………………………….87 

3.2.7 Temporal stability ………………………………………………….87 

3.2.8 Viewing angle dependency ………………………………………...90 

3.2.9 Positional non-uniformity at the observation plane …………94 

3.2.10 Summary ………………………………………………………....95 

4. Psychophysical investigation 1: Identification of image attributes 

that are most affected with changes in displayed image size …….98 

4.1  Preparation of test stimuli ………………………………………………….99 



J.Y.Park, 2014, List of Contents 

vii  

  

4.1.1 Image capture ……………………………………………………...99 

4.1.2 Image selection …………………………………………………….100 

4.1.3 Image processing …………………………………………………..100 

4.2  Psychophysical investigation ………………………………………………101 

4.2.1 System calibration and settings …………………………………102 

4.2.2 Software preparation and interface design ……………………...102 

4.2.3 Rank order method ………………………………………………..103 

4.3  Classification of test images ……………………………………………104 

4.4  Results and discussion ……………………………………………………106 

4.5  Summary ………………………………………………………………….114 

5. Psychophysical investigation 2: Evaluation of changes in perceived 

sharpness with changes in displayed image size …………………….117 

5.1  Preparation of test stimuli ………………………………………………...118 

5.1.1 System tone reproduction ………………………………………...118 

5.1.2 System SFR ……………………………………………………….119 

5.1.3 Determination of the reciprocal measure of the system 

bandwidth, k…………………………………………………………121 

5.1.4 Sharpness filters …………………………………………………..123 



J.Y.Park, 2014, List of Contents 

viii  

  

5.1.5 Frequency domain filtering and bi-cubic interpolation …………125 

5.1.6 Effect of bi-cubic interpolation on image quality ……….…...125 

5.2  Psychophysical investigation …………………………………………….127 

5.2.1 Display settings and calibration …………………………………..127 

5.2.2 Software preparation and interface design …………………….128 

5.2.3 Sharpness matching experiment ………………………………….128 

5.3  Results and discussion ……………………………………………………130 

5.3.1 Results from the psychophysical tests …………………………130 

5.3.2 Validation of the results …………………………………………..134 

5.3.3 Evaluation of step interval and calibration of changes in sharpness 

JND scales ..........................................................................................135 

5.4  Summary ……………………………………………………………………137 

6. Psychophysical investigation 3: Evaluation of changes in perceived 

contrast with changes in the displayed image size …………………139 

6.1  Introduction ……………………………………………………………….141 

6.2  Preparation of test stimuli ………………………………………………...142 

6.2.1 Creation of a series of contrast filters with n-JND interval …..142 

6.2.2 Spatial domain filtering …………………………………………..145 



J.Y.Park, 2014, List of Contents 

ix  

  

6.2.3 Contrast measurement of the ruler images …………………….146 

6.3  Psychophysical investigation ……………………………………………..148 

6.4  Results and discussion ……………………………………………………149 

6.4.1 Results from the psychophysical tests …………………………149 

6.4.2 Validation of the results ………………………………………..153 

6.4.3 Evaluation of step interval and calibration of changes in contrast 

JND scales ........................................................................................153 

6.5  Summary ………………………………………………………………….155 

7. Discussion ……………………………………………………………………157 

7.1  Capturing devices ………………………………………………………...157 

7.2  Display devices …………………………………………………………...159 

7.3  Identification of image attributes …………………………………………160 

7.4  Sharpness matching …………………………………………………….161 

7.5  Contrast matching ………………………………………………................163 

8. Conclusions and recommendations for further work ……………...165 

8.1  Conclusions ……………………………………………………………….165 

8.2  Recommendations for further work ………………………………………167 

Appendices ……………………………………………………………………….168 



J.Y.Park, 2014, List of Contents 

x  

  

A. Thumbnails of test images …………………………………………………168 

A.1  16 average scenes …………………………………………………...168 

A.2 Test images (in alphabetical order) …………………………………169 

B. Instructions for observers ...............................................................................172 

B.1 Observer instructions for rank order experiments ……………....173 

B.2 Observer instructions for sharpness matching experiments …….174 

B.3 Observer instructions for contrast matching experiments ………175 

B.2 Observer instructions for result validation experiments ………176 

B.2 Observer instructions for step validation experiments ………….177 

C. Publications ………………………………………………………………...178 

D. List of abbreviations ……………………………………………………….210 

References …………………………………………………………………………..213 

 



J.Y.Park, 2014, List of Figures 

xi  

  

List of Figures 

 

2-1.  The relative importance of the FUN dimensions on the quality of different 

image types ……………………………………………………………………13 

2-2.  The triangle of colour …………………………………………………………17 

2-3.  Visually equal chromaticity steps at constant luminance on CIE 1931 x, y 

diagram (left) and some of the steps re-plotted in CIE 1976 ´, ´diagram ...18 

2-4.  Three-dimensional representation of the CIELAB , , and  

 coordinates ……………………………………………………………………20 

2-5.  Measures or models describing the images’ or the imaging systems’ attributes 

and models of the HVS are used in IQMs …………………………………….26 

2-6.  Illustration of psychometric scales ……………………………………………31 

2-7.  A typical psychometric curve …………………………………………………33 

2-8.  Flowchart of the deviation of digital SFRs from captured slanted edges …….39 

2-9. Examples of commonly used spatial domain linear filters. Blur filters (left top, 

left bottom) and Laplacian sharpening filters (right top, right bottom) …...….41 

2-10.  The imaging equation (convolution) and the spatial frequency equivalent ......41 

2-11.  Number of operations required to perform convolution in spatial and frequency 

domains on a 1024×1024 pixel image versus kernel size …….......................42 



J.Y.Park, 2014, List of Figures 

xii  

  

2-12.  Perspective plots of a Butterworth lowpass filter (left), and a Gaussian highpass 

filter (right) transfer functions with their images ……………………………..43 

2-13.  Plot of Equation 2.16, spaced by 3 JNDs (left) and Equation 2.17 (right) …...44 

2-14.  Implementation of steps involved in the creation of frequency domain Gaussian 

filters, with a constant interval based on ISO 20462-3 ……………………….46 

2-15.  Two different test charts for measuring transfer functions of acquisition 

devices ………………………………………………………………………48 

2-16.  Typical electro-optical transfer functions for CRT and LCD devices ………..49 

3-1. Tone reproduction characteristics of the Apple iPhone camera (top) and the 

Canon 30D camera (bottom) …………………………………………………62 

3-2.  Original and the captured red, green, blue, and white patches of the 

GretagMacbeth™ ColorChecker by both cameras …………………………...64 

3-3.  Colour reproduction errors between the original and captured patches for both 

camera systems using two commonly used colour difference formulae ……...66 

3-4.  Horizontal (top) and vertical (bottom) SFR of the Apple iPhone camera …….68 

3-5.  Horizontal (top) and vertical (bottom) SFR of the Canon 30D camera ………69 

3-6.  Tone characteristics of the EIZO CG210 display……………………………..75 

3-7.  Tone characteristics of the EIZO CG245W display…………………………75 

3-8.  Reproduction of the full on primaries and the white on display devices and 

their corresponding values in sRGB colour space …………………………….77 



J.Y.Park, 2014, List of Figures 

xiii  

  

3-9.  Colour tracking characteristics of the EIZO CG210 before (top) and after the 

black level compensation (bottom) …………………………………………80 

3-10.  Colour tracking characteristics of the EIZO CG245W before (top) and after the 

 black level compensation (bottom) …………………………………………81 

3-11.  Positions of 25 selected points for positional non-uniformity characteristic of a 

display device ….……………………………………………………………...82 

3-12.  Lightness differences, , from the reference point to the measured points 

across the screen ………………………………………………………………84 

3-13.  Chromatic differences,	   , from the reference point to the measured points 

across the screen ……..………………………………………………..............85 

3-14.  Colour differences,	   , from the reference point to the measured points 

across the screen ………………….…………………………………………86 

3-15.  Short-term stability in luminance (top) and in chromaticities (bottom), on the 

CG210 (left) and on the CG245W (right) …………………………………….89 

3-16.  Mid-term stability in luminance (top) and in chromaticities (bottom), on the 

CG210 (left) and on the CG245W (right) …………………………………….89 

3-17.  Luminance output of the pure primaries and the white at various 

horizontal and vertical viewing angles ………………………………………..91 

3-18.  Changes in chromaticities at various viewing angles …………………………92 

 



J.Y.Park, 2014, List of Figures 

xiv  

  

3-19.  Changes in luminance output of neutral patches at various horizontal and 

vertical viewing angles ………………………………………………………..93 

3-20. Colour differences,	   , from the reference point to the measured positions 

across the screen ………………………………………………………………95 

4-1.  Display interface for the psychophysical test page in achromatic mode ……103 

4-2.  Average ranks from all test stimuli ………………………………………….108 

4-3.  Average ranks of the image attributes of test stimuli categorised by their 

average lightness …………………………………………………………….109 

4-4.  Average ranks of the image attributes of test stimuli categorised by their 

colourfulness ………………………………………………………………...110 

4-5.  Average ranks of the image attributes of test stimuli categorised by their 

 busyness ……………………………………………………………………...111 

4-6.  Average ranks of the image attributes of test stimuli categorised by their 

 sharpness …………………………………………………………………….112 

4-7.  Average ranks of the image attributes of test stimuli categorised by their noise 

 level …….……………………………………………………………............113 

5-1. Transfer function of the Camera-Display combined system ………………...119 

5-2.  Spatial frequency responses (SFRs) of the combined system at major aperture 

stops ………………………………………………………………………….120 

5-3.  Modelled MTF curves with the various k values ……………………………122 



J.Y.Park, 2014, List of Figures 

xv  

  

5-4.  Secondary standard quality value at k=0.030 and k=0.047 ………………….122 

5-5.  Cross section of blurring filters for the images taken at f11 and below ……..124 

5-6.  Cross section of sharpening filters for the images taken at f11 and below ….124 

5-7.  Effect of the bi-cubic interpolation on SFR, Tate Modern scene ……………126 

5-8.  Effect of the bi-cubic interpolation on SFR, Pembroke lodge sign scene …...126 

5-9.  Display interface of sharpness matching test with a slider ………………….128 

5-10.  Average perceived loss in image quality from the small vs. large experiment for 

each scene with SEM .....…………………………………………………….131 

5-11.  Average perceived loss in image quality from the medium-small vs. large 

  experiment for each scene with SEM ….....…………………………………131 

5-12.  Average perceived loss in image quality from the medium vs. large experiment 

for each scene with SEM …..………………………………………………...132 

5-13.  Average perceived loss in image quality from the large-medium vs. large 

 experiment for each scene with SEM ………………………………………132 

5-14.  Perceived changes in image quality with respect to the changes in displayed 

image size (blue) and predicted changes (red) in non-calibrated relative image 

quality JND scale (SQS ) ……………………………………………………134 

5-15.  Average ratings of the original pairs and the sharpness matched pairs ……...135 

 



J.Y.Park, 2014, List of Figures 

xvi  

  

5-16 Changes in perceived sharpness with respect to the changes in displayed image 

size (blue) and predicted changes (red) in sharpness JND scale …..………...136 

5-17.  Average ratings for the sharpness modified and unmodified image pairs …..151 

6-1.  Sample S-shaped filter functions, calculated by gamma adjustment by power 

transformation ………………………………………………...……………..143 

6-2.  A series of gamma increasing filter functions ……………………………….144 

6-3.  A series of gamma decreasing filter functions ………………………………144 

6-4.  Sample S-shaped filters and the contrast manipulated images ………………145 

6-5.   of four selected scenes at a different ruler scale ……………...………147 

6-6.   of ‘Regent’s Park 2’ at a different ruler scale in 3 different image 

sizes ………………………………………………………………………….147 

6-7.  Average perceived change in tone reproduction from the small vs. large 

 experiment for each scene with SEM ...……………………………………...150 

6-8.  Average perceived change in tone reproduction from the medium-small vs. 

 large experiment for each scene with SEM ………………………………….150 

6-9.  Average perceived change tone reproduction from the medium vs. large 

 experiment for each scene with SEM …..……………………………………151 

6-10.  Average perceived change in tone reproduction from the large-medium vs. 

 large experiment for each scene with SEM ………………………………….151 



J.Y.Park, 2014, List of Figures 

xvii  

  

6-11.  Perceived changes in tone reproduction with respect to the changes in displayed 

 image size (blue) and predicted changes (red) in non-calibrated relative image 

quality gamma scale …………………………………………………………152 

6-12.  Average rating of the unmodified pairs and the contrast modified pairs ……153 

6-13. Changes in perceived contrast with respect to the changes in displayed image 

size (blue) and predicted changes (red) in contrast JND scale ………………154 

 

 

 



J.Y.Park, 2014, List of Tables 

xviii  

  

List of Tables 

 

2-1.  Image attributes examined in image quality assessment and associated 

perceptual attributes ………………….……………………………………….11 

2-2.  Categorisation of selected image quality attributes …………………………..12 

2-3.  Imaging performance measures relating to the objective evaluation of imaging 

systems ………………………………………………………………………..14 

2-4.  Colour attributes and definitions ……………………………………………...21 

2-5.  Noise in image sensors ………………………………………………………..24 

2-6  Common digital image artefacts, their sources, and areas within images which 

are more susceptible to those artefacts ...……………………………………25 

2-7.  Stevens’ classification of scale types ………..………………………………30 

3-1. Camera settings for the image capture ………………………………………..59 

3-2.  Colour differences between the original and captured patches for both 

camera systems ………………………………………………………………65 

3-3. Technical specifications of display devices and the settings used during 

calibration and experiments …………………………………………………73 

 



J.Y.Park, 2014, List of Tables 

xix  

  

3-4.  CIE 1931 tristimulus values and CIE 1976 chromaticity coordinates for the 

pull on primaries and the white from both display devices ...………………..76 

3-5.  Measured CIELAB values and evaluated colour differences ………………...87 

4-1.  Images classified according to their lightness, colourfulness, busyness, 

sharpness and noisiness ……………………………………………………...106 

 

  



J.Y.Park, 2014, Acknowledgements 

xx  

  

Acknowledgements 

 

I would like to express my sincere thanks to my supervisor Dr. Sophie Triantaphillidou, 

director of my studies, and my second supervisor Professor Ralph Jacobson of 

University of Westminster, for the original idea for the project, their constant guidance 

and encouragement throughout the duration of this research. 

 

I received much help and inspiration from colleagues in the group. In particular, thanks 

are due to Dr. Gaurav Gupta, Anastasia Tsifouti, Moacir Lopes, Edward Fry, and 

Kyung Hoon Oh for many useful discussions, encouragement and friendship. I also 

thank Dr. John Jarvis, Dr. Efthimia Bilissi, Dr. Olivier Moulard and Elizabeth Allen for 

useful discussions and advice. 

 

Special thanks go to all those who participated as observers in my experiments. 

 

Finally and most importantly, this thesis is dedicated to my wife and my family for their 

unflagging support. 



J.Y.Park, 2014, Author’s declaration 

xxi  

  

Author’s declaration 

 

I declare that all the material contained in this thesis is my own work. 

 

  



J.Y.Park, 2014, Chapter 1: Introduction  

1  

  

Chapter 1 

 

 

Introduction 

 

 

 

 

 

 

 

 

 

 

Developments in the last few decades in display technology have replaced CRTs with 

new displays, such as liquid crystal displays (LCDs), plasma display panels (PDPs) and 

organic light-emitting diodes (OLEDs), with the LCDs still being the most popular 

technologies for viewing computer images. LCD devices are not restricted to computer 

monitors and domestic televisions, but also to many modern and mobile devices (i.e. 

digital cameras, mobile phones, and etc.). Nowadays, digital images are increasingly 

viewed in various sizes using different display devices. The advancement in display 

technology has resulted in satisfactory image reproduction on built-in LCDs in 
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capturing devices under various viewing conditions. Since the quality of image 

reproduction on such LCDs is often satisfactory, camera users can assess thumbnails of 

captured images displayed on the built-in LCDs immediately after capture to judge 

overall image quality. 

However, such judgements made about captured images on LCDs are often 

incorrect. For example, images viewed on small displays are likely to appear much 

sharper in most cases than when they are viewed at a larger magnification on a 

computer display. The properties, physical and pixel sizes of small camera displays 

affect the way the images are displayed, which in turn produced distorted visual 

information about the captured images. Image appearance is a phenomenon of visual 

perception. Subjective impressions of image quality are naturally affected by various 

factors including the surrounding viewing conditions for images, the physical changes 

in image size, and the changes in the angle subtending the observer’s eye (Choi et al., 

2007b, Nezamabadi and Berns, 2006, Nezamabadi et al., 2007, Xiao et al., 2010, Wang 

and Hardeberg, 2012, Xiao et al., 2011). 

Research has been carried out to identify and quantify changes in image 

appearance with respect to image size and viewing angle. However, most of relevant 

studies were conducted using uniform colour patches, or artificially generated test 

patterns. In colour appearance investigations by Choi et al. (Choi et al., 2007b), the 

studies mainly focused on changes of the size of uniform patches, illumination levels, 

and surround and relative display luminance. Measurements in these studies were 

restricted to a certain area of the display with a small coverage under certain viewing 

conditions. In another study, Nezamabadi et al. (Nezamabadi and Berns, 2006) 

investigated changes in perceived lightness and chroma with changes in visual angle 
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and thus perceived image size. Also, Xiao et al. (Xiao et al., 2010, Xiao et al., 2011) 

investigated the effect of image size on colour appearance. Further, Nezamabadi et al. 

(Nezamabadi et al., 2007) investigated the relationship between changes in image size 

and perceived contrast, using contrast matching techniques and artificially generated 

noise patterns of different spatial frequency content. Although significant spatial effects 

such as sharpness, noisiness, and most importantly, the appearance of digital image 

artefacts caused by varying image size, image content, and illumination conditions have 

not been considered in depth. More recently Wang et al. (Wang and Hardeberg, 2012) 

conducted an investigation of changes in appearance of all image attributes as well as 

compression with changes in visual angles. They found that although hue appearance 

was not affected with changes in visual angle, sharpness, noisiness, and compression 

artefacts were affected significantly. 

 

1.1  Aim and objectives 

The aim of this research is to predict the changes in image appearance when images are 

viewed at different sizes on LCD devices. A study concerning the quantification of 

perceived changes in the two most affected image attributes with changes in displayed 

image size was carried out using matching techniques, a large number of scenes and 

selected observers. 

The objectives of the research are: 

 to identify the two most important image attributes, the appearance of which is 

most affected by changes in displayed image size; 
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 to quantify the changes in image appearance with changes in displayed image 

size in Just Noticeable Differences (JNDs) in secondary standard quality scales 

(SQS ); 

 to express these JNDs in quality scale to calibrated JNDs in relevant individual 

attribute scales. 

 

These objectives were achieved by a series of psychophysical investigations. 

Initially, an investigation identified which image quality attributes were most affected 

by changes in displayed image size. The identified image attributes were then 

investigated further to quantify the degree of change in perceptual sharpness and 

contrast, with respect to changes in displayed image size, by matching experiments. The 

last step was converting the data obtained by these experiments into JND scales for each 

individual image attribute. 

 

1.2  Structure of thesis 

An overview of image quality is included in Chapter 2. In addition, this chapter presents 

common methods used in psychophysical evaluations and detailed descriptions of 

methods employed for the subjective evaluation of image appearance changes. Further, 

digital image manipulation techniques related to aspects of this research project are 

described. This chapter concludes with a brief introduction of objective image quality 

measure with respect to scene content and characteristics. 

 Characterisation of devices used for image capture and image display were 

carried out to understand the effect and limitation of the device characteristics employed 

in this project. Details on tone reproduction and colorimetric characterisation of the 
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capturing and display devices are provided in Chapter 3. In addition, Spatial Frequency 

Response (SFR) measurements of the capturing devices are also provided.  

Chapter 4 presents a detailed description of experimental methods for 

investigating which image quality attributes are most affected by changes in displayed 

image size and presents relevant results and conclusions. Chapter 5 is concerned with 

the quantification of changes in perceived sharpness with respect to changes in 

displayed image size, which was achieved by a sharpness matching experiment. This 

chapter also provides a detailed description of the novel method for creating a range of 

test stimuli with varying sharpness levels, by taking into account the SFR of the 

imaging system. In Chapter 6, the experimental methods for quantifying changes in 

perceived contrast with respect to changes in displayed image sizes by contrast 

matching is given. A detailed description of the method for contrast manipulation is also 

provided in this chapter. In addition, the evaluation of step intervals and conversion of 

the results from the derived relative quality scales to univariate JND scales for 

sharpness and contrast are presented in Chapters 5 and 6. 

 Chapter 7 discusses the effects and limitations of device characteristics with 

respect to the psychophysical experiments carried out in this research project. In depth 

discussion on the results from the psychophysical investigations described in Chapters 4, 

5, and 6 are also included. In Chapter 8, conclusions are drawn and recommendations 

for further work are proposed. 

 

1.3  Related publications 

The following related papers were produced by the author during the production of this 

work. Copies of them are attached in Appendix C. 
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Chapter 2 

 

 

Image quality and appearance 

 

 

 

 

 

 

 

 

 

This chapter is concerned with definitions and theories related to the study and 

evaluation of image quality and its attributes. Factors affecting image quality and image 

appearance are discussed. Common methods used in psychophysical evaluations of 

image stimuli are provided and detailed descriptions of methods employed for the 

subjective evaluation of image appearance changes are presented. These methods have 

been applied in experimental work described in Chapters 4, 5 and 6. Objective methods 

used in the evaluation of imaging system performance are also presented, along with 

digital image manipulation techniques related to aspects of this project. 
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2.1   Overview of image quality 

Image quality, image distortion, and image fidelity are three different aspects of the 

general expression ‘image quality’ and are all concerned with the assessment of images, 

or imaging systems (Ford, 1997, Triantaphillidou, 2001). 

Image distortion is concerned with physical differences between a rendered 

image and an original scene or image. Distortion may occur in every step within the 

imaging chain or the image processing. It is evaluated numerically (objectively), using 

distortion measures and metrics. However, the related measures do not always have 

perceptual meaning or significance when the degree of distortion is imperceptible or 

acceptable. Therefore, results obtained from objective distortion assessments do not 

often correlate with perceived image quality. There are various distortion metrics 

commonly used such as mean squared error (MSE), root mean square error (RMSE), 

and signal-to-noise-ratio (SNR) (Wang and Bovik, 2002, Chapter 2 of Jain, 1989). Also, 

colour differences, such as CIELAB	    and CIEDE2000	   00 , can be used for 

measuring colorimetric distortions in CIELAB colour space. Although such colour 

difference are calibrated to produce results that are visually meaningful for uniform 

colour patches, CIELAB image differences do not always correlate with the colour 

appearance of images. More sophisticated appearance measures, such as image 

appearance models are developed for the evaluation of image appearance (Fairchild and 

Johnson, 2004, Kuang et al., 2007). 

Image fidelity is concerned with the perceptually accurate rendition 

(reproduction) of the original image (or original scene) (Farrell, 1999). Unlike image 

distortion, image fidelity assessment involves the HVS since is concerned with relative 

thresholds (i.e. the minimum change or difference in the images that can be visually 
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detected). Relative thresholds can be determined by psychophysical experiments and the 

results from such experiments can be used to define the just noticeable difference (JND) 

and the JND increment (Keelan, 2002, p.36). Details on psychophysical experiments are 

described in Section 2.3. 

Image fidelity should be distinguished from image quality, since high image 

fidelity does not always imply high image quality. For example, a sharpened 

reproduction of a photograph that includes a lot of fine detail is often assessed to be of a 

higher quality than a high quality original, but quantitatively it is considered a ‘distorted, 

low fidelity’ version. Another example discussed widely in the literature is the portrait. 

A slightly blurred reproduction of a portrait is often assessed to be of a higher quality 

than the sharper original, since blurring provides a softer skin (Granger and Cupery, 

1972). The other example is a slightly noisy reproduction of a blur original. A slightly 

noisy reproduction is often perceived to be of higher quality than the blur original 

(Cambridge in colour, 2013b). 

Image quality, in strict definition, is concerned with the subjective impression 

of goodness the image conveys (Triantaphillidou, 2001). It describes the perceptual 

response of an observer to an image (or a single attribute) by taking into account the 

purpose of the image and psychological effect (Yoshida, 2006, p.278). When an image 

is viewed, observers are able to judge image quality almost instantly whether the 

particular image is good or poor quality. However, to quantify how good an image is, 

and scale its quality is a difficult operation, as Jacobson has pointed out (Jacobson, 

1993). 

Unlike image fidelity, image quality judgement involves the observers’ own 

criteria according to their personal preferences. Although image fidelity is an important 
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factor influencing the image quality judgement, observers take into account the purpose, 

or context for which the image is being used and therefore the same image may be 

judged differently by different observers, or under different context and conditions 

(Yendrikhovskij, 2002, Bilissi, 2004). Also, image quality is judged based on the 

observer’s experience of viewing images and various other cognitive factors such as 

memory, emotions, influence, expectations and many more. These factors result in a 

variation of the assessments between individuals and temporally for the same individual 

(Triantaphillidou, 2001, p.32, Keelan, 2002, p.5). 

Image quality is inherently a subjective attribute. However, it is measured using 

both objective and subjective methods. Objective methods involve measures that ideally 

correlate with the subjective impression of images. Subjective methods involve 

psychophysical experiments that employ human observations and statistical analysis of 

the results to quantify quality from qualitative assessments. 

 

2.2   Objective evaluation 

Objective evaluation of image quality involves the assessment of a number of different 

image quality attributes associated, in some ways, with the visual perception of images. 

Associated measurements are based on the assumption that there is a functional 

relationship between the subjective impression of image quality and selected image 

quality attributes of the observed image (Lockhead, 1992). It is important to identify the 

factors affecting the judgement of image quality and the related objective measures. In 

this section, image quality attributes and a short overview of objective measures used 

for their evaluation are presented. 
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2.2.1 Perceptual image quality attributes 

There are various perceptual attributes (also referred to as image quality dimensions), 

which are related to image quality, or imaging system evaluation. Based on Miyake’s 

work (Miyake et al., 1984), Ford (Ford, 1997) listed five basic attributes along with 

their visual descriptions. These were originally considered for conventional analogue 

imaging systems but they are also valid for digital imaging systems as well. These 

attributes are tone reproduction (and contrast), colour, resolution, sharpness, and noise. 

They are presented in Table 2-1. 

 

Image attribute Visual description 

Tone/Contrast Macroscopic contrast, or reproduction of intensity 

Colour Differences in lightness, chroma and hue 

Resolution Discrimination of fine detail 

Sharpness Microscopic contrast, or reproduction of edges 

Noise Random and non-random spurious information 
Table 2-1. Image attributes examined in image quality assessment and associated 
perceptual attributes, adapted from Ford (Ford, 1997, p.32). 
 

Although these attributes are traditionally associated with the perception and 

evaluation of images and apply to all imaging systems, they are not independent from 

each other. This makes the subjective assessment of an individual attribute more 

difficult than the assessment of the overall image quality (Bartleson, 1982, Higgins and 

Wolfe, 1955). 

More recently, there have been a number of classification approaches to image 

quality attributes. Keelan (Keelan, 2002, p.8) separated image attributes, of which their 

presence always degrade quality (artefactual), to preferential attributes that may 
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influence image quality, but the relationship between them and quality is not monotonic. 

Both artefactual and preferential attributes are related to the five basic attributes in 

Table 2-1. He further listed a number of attributes relating to image aesthetic and to 

observer preference. Keelan’s approach is particularly useful for designing imaging 

system. For example, by assigning higher weightings to attributes in artefactual and 

preferential categories and lower weightings to those in aesthetic and personal 

categories, the fidelity of the imaging system would influence the image quality rating 

significantly, but it would not be the only factor. His classified attributes are presented 

in Table 2-2. 

 

Category Attribute 

Artefactual 

Unsharpness 

Graininess 

Redeye 

Digital artefacts 

Preferential 

Colour balance 

Contrast 

Colourfulness (saturation) 

Memory colour reproduction 

Aesthetic 
Lighting quality 

Composition 

Personal 
Preserving a cherished memory 

Conveying subject's essence 
Table 2-2. Categorisation of selected image quality attributes, adapted from Keelan 
(Keelan, 2002, p.8). 
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Another approach is made by Yendrikhovskij (Yendrikhovskij, 2002). Author 

presented the FUN model (Fidelity, Usefulness, and Naturalness) of image quality, 

which uses three cognitive dimensions for the determination of quality. FUN is a 

modified version of his previous model, the GUN model (Genuineness, Usefulness, and 

Naturalness) (Yendrikhovskij, 1999). In the newer version, the author has introduced 

the ‘Fidelity’ as a replacement of ‘Genuineness’. As discussed in the previous section, 

and supported by Yendrikhovski, fidelity is concerned with the accurate rendering of 

image/scene and it is highly related to the attributes listed in Table 2-1. Yendrikhovski 

defined usefulness and naturalness attributes as below; 

 

 Usefulness: the degree of apparent suitability of the reproduced image to satisfy 

the corresponding task 

 Naturalness: the degree of apparent match between the reproduced image and 

internal reference 

 

     
Figure 2-1. The relative importance of the FUN dimensions on the quality of different 
image types, adapted from Yendrikhovskij (Yendrikhovskij, 2002). 

NATURALNESS 

USEFULNESS 

FIDELITY 

Holiday pictures 

Fine art 

Virtual reality 

Advertisement 

Medical images 
Mars images 
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Similar to Keelan’s approach, each of FUN attributes would have different 

weightings in different applications. Overall image quality can be modelled as a 

weighted sum of the three FUN attributes. Figure 2-1 illustrates the relative importance 

of these dimensions.  

 

2.2.2 Objective measures related to perceptual image quality attributes 

In this section, commonly employed objective image quality measures, (also referred to 

as imaging performance measures) which are used for the quantification of the 

perceptual image quality attributes, are discussed. Triantaphillidou (Triantaphillidou, 

2011a) has summarised the image quality attributes and the related imaging 

performance measures. A summary is presented in Table 2-3. 

 

Image attribute Measures 

Tone 
Characteristic curve, density differences, OECF 
and EOTF, contrast, gamma, histogram, dynamic 
range 

Colour 
Spectral power distribution, CIE tristimulus 
values, colour appearance values, CIE colour 
differences 

Resolution Resolving power, imaging cell, limiting resolution 

Sharpness Acutance, ESF, PSF, LSF, MTF, SFR 

Noise Granularity, noise power spectrum, autocorrelation 
function, total variance ( ) 

Table 2-3. Imaging performance measures relating to the objective evaluation of 
imaging systems, adapted from Triantaphillidou (Triantaphillidou, 2011a, p.349). 
 

2.2.2.1 Tone reproduction and contrast 

Tone and contrast are critical aspects of the quality of images and are related to each 

other. Tone reproduction describes the relationship between input and output intensities 
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in imaging systems; the relationship is often plotted as a transfer function. Contrast 

describes the difference in macroscopic intensities of two different areas of an image 

and is often expressed with a metric (value). Contrast is discussed more in depth in 

Section 2.5. 

In conventional chemical imaging, the transfer function relates the output 

density to the logarithm of the relative input exposure and it is known as the 

characteristic curve. The slope (or gradient) of the linear portion of the characteristic 

curve is expressed as gamma, , and it a metric relating the mid-tone contrast 

reproduced by the system (Hurter and Driffield, 1890). 

In digital imaging, the transfer relationship is often plotted in linear units and it 

is described by power function, where the exponent represents gamma having the same 

meaning as above. For example, the transfer function of a CRT display device can be 

described using the gain-offset-gamma model (also known as GOG) as Equation 2.1, 

adapted from Giorgianni and Madden (Giorgianni and Madden, 2008, p.33); 

 

    = +      (2.1) 

 

where L represents the normalised output luminance on a computer controlled display, 

PV is normalised input pixel value, g is the system gain, and o is system offset. 

 The transfer function of the overall imaging chain, describing the tone 

reproduction of all imaging components combined together, is the product of the 

individual component transfer functions (Jones, 1921). A gamma correction is often 

applied to obtain a desirable overall system transfer function and a desired gamma. A 

real imaging system, including image capture and display is presented in Equation 2.2 
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for calculating the required gamma correction (processing gamma). The subscripts o, c, 

p and d represent overall, image capture, processing, and display, respectively. 

 

   = ×	   ×	       (2.2) 

 

 Tone reproduction was first classified into objective and subjective tone 

reproduction by Jones (Jones, 1931). These terms were then formalised by Nelson in the 

1960’s (Nelson, 1966). Higgins later described two types of optimum tone reproduction 

(Higgins, 1977). One is objective tone reproduction, where optimum reproduction is 

achieved when gamma is equal to one, indicating that reproduced contrast is equal to 

scene contrast. The other is subjective tone reproduction, which takes into account the 

viewing conditions (Bartleson and Breneman, 1967a, Bartleson, 1975). The aim of tone 

reproduction is to achieve a linear reproduction of lightness (or relative brightness) and 

thus takes viewing conditions into account. This suggests that the optimum gamma is 

scene dependent (Roufs, 1989) and also influenced by the viewing conditions. Optimum 

gamma has been found in most imaging applications to be greater than one (c.f. Section 

2.5) (Roufs, 1989, Bartleson and Breneman, 1967b, Hunt, 2004, p.92). 

 

2.2.2.2 Colour reproduction 

The perception of the colour of objects is a function of the physical properties of the 

objects, the light course that illuminates and the human visual system. Fairchild 

(Fairchild, 1998) has described three components in a form of triangle which is 

presented in Figure 2-2. 
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Figure 2-2. The triangle of colour, adapted from Fairchild (Fairchild, 1998, p.65). 

 

The objective measurement and evaluation of colour reproduction is 

traditionally achieved by colorimetry. It is based on the theory of trichromatic vision 

developed by Maxwell, Young, and Helmholtz in the 19th century (Maxwell, 1871, 

Young, 1802). It involves the trichromatic analytical process of the spectral sensitivities 

of the cones in the HVS. 

In colorimetry, these sensitivities were represented by the colour matching 

functions of the standard colorimetric observer 	   , 	  y , 	    and established by the 

International Commission on Illumination (CIE) in 1931 (CIE Standard colorimetric 

observers. 1991). 

CIE has also established the non-physical tristimulus values, which are 

calculated using the , ,  colour matching functions, presented in Equations 2.3 to 

2.5. 

 

   =	   ( ) ( ) ( ) ( )    (2.3) 

   =	   ( ) ( ) ( ) ( )    (2.4) 

   =	   ( ) ( ) ( ) ( )    (2.5) 

Light 
 

Object Human 
visual 
system 
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where 380 to 780 nm is the range of wavelengths, , of the visible spectrum, R( ) is the 

spectral illuminance, reflectance (or transmittance) of the object, or substance, and I( ) 

is the absolute or relative spectral power distribution of the selected illuminant. 

 

 
Figure 2-3. Visually equal chromaticity steps at constant luminance on CIE 1931 x, y 
diagram (left) and some of the steps re-plotted in CIE 1976 ,	    diagram, adapted 
from Hunt (Hunt, 2004, p.105-106). 
 

The tristimulus values can be used to calculate various chromaticity coordinates, 

such as the x, y, z for the CIEXYZ 1931 system and the	   ,	   ,	    for the more 

perceptually uniform the CIELUV 1976 system. Chromaticity coordinates are plotted in 

2D chromaticity diagrams as shown in Figure 2-3. 

However, these chromaticity diagrams do not provide any luminance 

information and thus provide incomplete information on colours. For a complete colour 

specification, CIE has defined and recommended two uniform colour spaces, the 

CIELAB and the CIELUV, which employ common lightness,	   . In this research, the 

CIELAB colour space was used for various image processing steps. The full coordinates 
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for the CIELAB colour space can be calculated by a non-linear transformation of the 

CIE 1931 XYZ tristimulus values, using Equations 2.6 to 2.9 

 

   = 	  116 16 for > 0.008856  (2.6) 

   = 	  903.3( )  for 0.008856 

   = 	  500[ ]    (2.7) 

   = 	  200[ ]    (2.7) 

   =	   ( + )       (2.8) 

   =	   tan ( )     (2.9) 

 

where	   ,  and  are the tristimulus values for the reference white. The colours 

are defined by	   (lightness),	   (red-green component),	   (yellow-blue component),	    

(chroma), and	    (hue angle). 

A three-dimensional representation of the CIELAB , , and 	  coordinates 

is shown in Figure 2-4 (Fairchild, 2005). 
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Figure 2-4. Three-dimensional representation of the CIELAB	   ,	   , and	    coordinates, 
adapted from Fairchild (Fairchild, 2005, p.80). 
 

Colour reproduction of the imaging system is usually evaluated by some well-

known colour difference models, such as CIELAB	   , and CIELUV	   , using the 

coordinates described above. The CIELAB	   , equation is presented in Equation 2.10. 

 

  = ( ) + ( ) + ( )     (2.10) 

 

However, such colour difference models are not concerned with various issues 

related to the appearance of colour stimuli. Various factors affect the visual appearance 

of colours, including visual adaptation (light, dark, chromatic), the background and 

surrounding colours, and the luminance level. A number of new colour difference and 

appearance models, such as the CIEDE2000 (designed for uniformed stimuli), iCAM, 

and iCAM06 (designed for image stimuli) have been developed to represent the 

appearance of colour numerically. They are currently being used for the evaluation of 

perceptually meaningful colour differences (Fairchild and Johnson, 2004, Kuang et al., 

2007, Luo et al., 2001). 
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This research is based on the visual assessment. Colour attributes, which are 

used in colour evaluation in latter chapters, are presented in Table 2-4. These were well 

defined by the CIE (ILV: International Lighting Vocabulary. 1987). 

 

Attribute Definition 

Hue 
Attribute of a visual sensation according to which an area 
appears to be similar to one of the perceived colours: red, 
yellow, green, and blue, or to a combination of two of them. 

Colourfulness Attribute of a visual sensation according to which the perceived 
colour of an area appears to be more or less chromatic. 

Chroma 
Colourfulness of an area judged as a proportion of the brightness 
of a similarly illuminated area that appears white or highly 
transmitting. 

Saturation Colourfulness of an area judged in proportion to its brightness. 

Brightness Attribute of a visual sensation according to which an area 
appears to emit more or less light. 

Lightness The brightness of an area that appears to be white or highly 
transmitting. 

Table 2-4. Colour attributes and definitions, adapted from CIE No.17.4 (ILV: 
International Lighting Vocabulary. 1987). 
 

2.2.2.3 Resolution 

Resolution is a spatial image attribute that is concerned with the fine detail reproduction 

ability of an imaging system. In analogue imaging, the most common measure of 

resolution is resolving power. It is measured using various test charts containing line (or 

bar) pairs with different line widths and is expressed in line pairs per mm (lp/mm).  

In digital imaging, the term ‘resolution’ is also used as a descriptor of system 

performance, but in a slightly different way. For example, in a digital image, resolution 

describes the number of picture elements (or pixels) the image possesses. It is often 

expressed as the dimension of image horizontally and vertically, e.g. 200 pixels × 300 

pixels. For digital capturing and display devices, it is also expressed by the number of 
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pixels per picture (or per unit distance), e.g. 5 megapixels, 100 dpi (or ppi), along with 

the physical dimension of sensor or displayable area. When physical dimension is 

provided, the resolution does not only provide information on available picture elements, 

but also information on the ‘fineness’ of the image, i.e. how small these pixels are. 

Caution has to be taken when the term ‘resolution’ is used in digital imaging. 

Strictly speaking, the system performance depends not only on the ‘digital’ resolution, 

but also on the resolving power of the optical systems. The combined true resolution is 

often referred to as the effective system resolution (Wang and Hardeberg, 2012, Pierson 

et al., 1996). 

Resolution correlates with sharpness in general; however it is not the only 

image attribute which affects the definition of detail. Resolution is strongly dependent 

upon contrast, noise, as well as aspect ratio of the test target, along with exposure, 

processing, and observation condition (Ford, 1997, p.19, Heynacher and Kober, 1976, 

Jenkin, 2011c, p.434). 

 

2.2.2.4 Sharpness 

Sharpness is a spatial image attribute that is concerned with the edge reproduction 

ability of an imaging system. Various objective measures are used for the evaluation of 

sharpness, as shown in Table 2-3 (in Section 2.2.2) (Chapter 7 of Dainty, 1974). 

However, the Modulation Transfer Function (MTF) is the most sophisticated measure, 

which describes the relative contrast reproduction with respect to spatial frequency 

(Ford, 1997). There are widely used measuring methods for MTF determination in 

imaging. The wave recording method, which uses charts containing a series of sine-

waves or a series of square-waves at various frequencies with known input modulation, 
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is one of them. Another is the edge method, which employs a captured (slanted) edge. 

The edge method is based on the Fourier theory of image formation (Burns, 2000) and 

the fact that a ‘perfect edge’ contains an infinite number of frequencies and therefore it 

is a perfect input signal for testing the spatial frequency response of a system (Jenkin, 

2011c, p.447). 

In addition to above methods, a new method is currently being developed using 

a target called “dead leaves” (Burns, 2011, Cao et al., 2009). This new method is based 

on the theory that the MTF of the system can be derived from the system’s measured 

noise power spectrum (Dainty, 1974, p.255-258); it is designed to measures the Spatial 

Frequency Response (SFR) of digital cameras and mobile phone cameras based on the 

measured image texture (McElvain et al., 2010). 

Sharpness is discussed more in depth in Section 2.4, and is researched 

extensively in Chapter 5 with respect to displayed image size. 

 

2.2.2.5 Noise and digital artefacts 

Image noise is unwanted (random) fluctuation of light intensity. In chemical 

photography, these are due to the random structures, or clusters of silver grains in 

photographic materials (Jenkin, 2011c, p.435). In digital imaging, there are various 

sources of noise. Noise in digital images may be introduced in imaging hardware, by 

image processing, or can be part of the signal itself. Nakamura (Nakamura, 2006) 

summarised the causes of various noises in sensor stage, as presented in Table 2-5. 

Temporal and fixed pattern noise are two common digital noise caused by the 

imaging sensors. Temporal noise is a random variation of reproduced signals that 
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fluctuate over time. It is often seen on images captured especially with higher ISO 

settings, regardless of the shutter speed (Cambridge in colour, 2013a). 

On the other hand, fixed pattern noise (FPN) appears at certain pixel positions. 

In addition to the FPN caused by defective pixels in sensors, it is caused by non-

uniformity of dark current over the whole pixel arrays, and/or by variations of 

performance of active transistors in imaging sensors (Nakamura, 2006, p.68). It is often 

seen on images captured at long exposures or high temperature (Nakamura, 2006).  
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Dark current shot noise Photon shot noise  
Read noise (Noise floor)  
Amplifier noise, etc.  
(Reset noise)  

   Smear, Blooming 

 Image lag 
Table 2-5. Noise in image sensors, adapted from Nakamura (Nakamura, 2006, p.67). 

 

In addition to image noise, digital artefacts are also considered as digital image 

noise. Triantaphillidou et al. (Triantaphillidou et al., 2007) have identified a list of 

artefacts, their causes, and susceptible image areas. These are presented in Table 2-6. 
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Image 
Artefact Cause of artefact Susceptible image areas 

Contouring Poor quantisation Uniform areas, slow varying areas 
(flat areas) 

Jaggedness / 
Pixelisation Insufficient spatial resolution Slanted edges, slanted lines, high 

frequency information 

Aliasing Sampling 
Areas with periodic high 
frequency information (high 
frequency lines) 

Blocking Discrete cosine transform 
(DCT) compression 

Areas with high frequency 
information (busy areas) 

Smudging / 
Colour 
bleeding 

Discrete wavelet transform 
(DWT) compression 

Areas with high frequency 
information (busy areas) 

Ringing or 
edge echoes 

Digital sharpening or DCT 
compression Edges, lines 

Patterning Dithering All areas expecting pure black and 
pure white 

Streaking 
Pixel to pixel non-uniformity 
in linear arrays (mostly of 
digital writing devices) 

Uniform areas, slow varying areas 
(flat areas) 

Banding 
Cyclical variations in a 
property of digital writing 
devices 

Uniform areas, slow varying areas 
(flat areas) 

Colour 
misregistration 

Optical images for different 
colour channels not 
geometrically identical 

Small amounts: edges, lines, areas 
with high frequency information 

Large amount: all areas 

Flare Stay light in dark areas Dark areas surrounded by high 
intensity areas 

Table 2-6 Common digital image artefacts, their sources, and areas within images which 
are more susceptible to those artefacts. Note: Susceptible areas are defined here as either 
those affected mostly by the artifact or areas in which the artifact is more evident, 
adapted from Triantaphillidou et al. (Triantaphillidou et al., 2007). 
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2.2.3  Image quality metrics (IQMs) 

The objective image quality measures mentioned in the previous sections are based on 

the evaluation of individual perceptual image attributes. Even though these measures 

may correlate with the overall perception of image quality in general, they do not fully 

quantify, or predict it. 

Image quality metrics (IQMs), on the other hand, are objective measures 

designed to produce a single value (or a set of values) aiming to describe or predict the 

overall image quality of images and systems (Triantaphillidou, 2011a, p.361-363). They 

may combine several physical measures derived from images or/and imaging systems 

(as, in Table 2-3), with attributes of the HVS (Granger and Cupery, 1972). The idea has 

been illustrated by Jacobson and Triantaphillidou (Triantaphillidou, 2011a) and shown 

in Figure 2-5. 

 

 

 

 

 

 

 
Figure 2-5. Measures or models describing the images’ or the imaging systems’ 
attributes and models of the HVS are used in IQMs, adapted from Triantaphillidou 
(Triantaphillidou, 2011a, p.361). 

 

Hundreds of IQMs, metrics, and models have been proposed over the last 50 

years. They differ in the numbers and types of physical measures that they use and the 

way in which they are combined with parameters of the human eye (Jacobson and 
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Triantaphillidou, 2002). Classical metrics, first designed and implemented successfully 

in analogue imaging, include the Subjective Quality Factor (SQF) by Granger and 

Cupery (Granger and Cupery, 1972), and the Square-Root Integral (SQRI) by Barten 

(Barten, 1990). They were based on the MTF of the imaging system and the spatial 

properties of the HVS. The SQRIn by Barten (Barten, 1991), a modified model of the 

author’s older version SQRI, and the Perceived Information Capacity (PIC) by Töpfer 

and Jacobson (Töpfer and Jacobson, 1993) take into account the combined system 

signal-to-image noise ratio. Both PIC and SQRIn have been implemented with some 

success in the prediction of digital image quality (Ford, 1997, p.131-139). More 

recently, Jenkin at al. (Jenkin et al., 2007) published the Effective Pictorial Information 

Capacity (EPIC). This metric is based on the spatial frequency responses of the chain 

that also include the HVS and noise. 

There are also various metrics for colour image quality evaluations. The Colour 

Reproduction Index (CRI), proposed by Pointer and Hunt (Pointer and Hunt, 1994), is 

H L C), by taking the 

viewing conditions into account. In the late 1990’s, the S-CIELAB, a spatial extension 

of the CIELAB, was proposed by Zhang and Wandell (Zhang and Wandell, 1996). 

Since it includes a spatial blurring stage using a pattern-colour separable method (and 

using the contrast sensitivity function of the HVS) prior to the evaluation of 

reproduction error, the measure corresponds better to the perception by the human eye 

(Zhang et al., 1997). 

A completely different approach to design metrics has been proposed by Bovik 

and his team at the University of Texas (Wang et al., 2003, Li and Bovik, 2009, Sheikh 

and Bovik, 2006). It is based on the processing of image information rather than the 
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quantification of the imaging system properties. These types of metrics are based on 

assumptions made about the statistics and structural content of natural scenes, as well as 

the ability of the HVS to extract and interpret such structural information. These metrics 

quantify visual distortion between an original scene (or image) and a reproduction, and 

when there is a lack of original they used a statistical representation of the scene. 

Strictly speaking, they are fidelity measures, but are often referred to as quality metrics 

in the literature. Examples include the Structural Similarity Index (SSIM) (Wang et al., 

2003, Wang et al., 2004) and the Visual Information Fidelity (VIF) (Sheikh and Bovik, 

2006, Sheikh et al., 2005, Sheikh and Bovik, 2005). 

 

2.3  Subjective evaluation 

In this section, an overview of psychophysics is given, along with scaling techniques 

and related experimental methods. Factors affecting image appearance are also 

identified and described. 

 

2.3.1 Overview of psychophysics and psychometric scaling 

Quantification of image quality in the past was focused more on objective image 

evaluation that was based on physical measurements (Engeldrum, 2000, p.5). It was 

based on the hypothesis that the results obtained by these evaluations well correlated 

with perceived image quality. Subjective image quality measures are based on the visual 

impression of image quality. They are a function of the HVS and the quality criteria of 

the observer (Triantaphillidou, 2001, p.32). Visual psychophysics is used to evaluate 

objective image quality. 
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Psychophysics deals with the measurement of the human response to physical 

stimuli (JohnsonandFairchild, 2002, p.124). Lockhead (Lockhead, 1992) defines 

psychophysical scaling models as having the form R=f(I), with R the response and I the 

intensity of a (physical) attribute. The field of psychophysics has a long history. 

However, it caused considerable controversy from physical scientists in the nineteenth 

century (Boring, 1942). A century later, Fechner provided his ideas concerning the 

subjective measurement and the methodology (Fechner, 1966). 

Since, it has been proven that valuable and accurate results can be obtained by 

implementing appropriate psychophysical methods; psychophysical investigations are 

commonly employed using various psychometric scaling techniques. 

 

2.3.2 Scale types 

Several types of measurement scales can be obtained from various scaling techniques. 

Four common types of subjective scales, with operational, structural, and statistical 

ascriptions were developed by Stevens (Stevens, 1946). In a classical textbook on image 

psychophysics by Engeldrum (Engeldrum, 2000), the author provided a summary of the 

types of scale, the operations and transformations related to these scales. They are 

presented in Table 2-7. 

The nominal scale is obtained solely by categorisation with numbers, names, or 

labels, even though it is not much use for the purpose of subjective quality 

quantification. Care has to be taken, especially when numbers are used for such scales, 

i.e. phone number, sport players’ number, etc., as they are quantitatively meaningless. 

Images identified by subject, such as portraits, landscapes, cityscapes, etc. can be 
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considered as ‘nominally scaled’. The nominal scale is highly useful for labelling 

purposes, although the scale does not possess any mathematical or arithmetic properties.  

 

Scale type Operations Permissible Transformations 

Nominal Determination of equality y=f(x), any one-to-one 
transformation 

Ordinal Determination of greater or less 
than 

y=g(x), any monotonic 
transformation 

Interval 
Determination of equality of 
intervals or differences 
(distance) 

y=ax+b, any linear transformation 

Ratio Determination of the equality of 
ratio y=ax, any constant scale factor 

Table 2-7. Stevens’ classification of scale types, adapted from Engeldrum (Engeldrum, 
2000, p.45). 
 

The ordinal scale is used to place items in an ascending, or descending order. It 

is a useful scale, but with limitations, in that the order omits any meaningful distances 

along the scale. It is obtained by rank order along some variable and thus has a ‘greater 

than’, or ‘less than’ property (Engeldrum, 2000, p.46). Unlike interval or ratio scales, 

ordinal data derived from images can tell us that a version of an image is considered of 

a better or worse quality than another version, but not ‘how much’ better or worse it is. 

The interval scale is an ordinal scale possessing the property of distance (i.e. it 

possesses equally spaced intervals). The differences in sample scale values represent 

perceptual differences between two sample images, with respect to one perceptual 

attribute, or the overall image quality. Therefore, it is capable of specifying the equality 

of differences having the same visual significance (Triantaphillidou et al., 2007, p.38). 

However, interval scales are floating scales that provide relative scale values 

(Triantaphillidou, 2011a, p.355), thus they must be distinguished from the ratio scales, 

which have a fixed point. 
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Finally, the ratio scale is an interval scale with the additive constant, or origin, 

often equal to zero (Triantaphillidou, 2011a). Unlike interval scales, these scales do not 

float with respect to the scale’s origin. Engeldrum (Engeldrum, 2000, p.47) indicated 

that a zero point may not be experimentally measurable at all times (e.g. hue or image 

quality). Stevens (Stevens, 1946) has illustrated the psychometric scales as shown in 

Figure 2-6. 

 

  
Figure 2-6. Illustration of psychometric scales, adapted from Stevens (Stevens, 1946). 

 

2.3.3 Scaling methods 

There are various known methods to obtain psychometric scales by subjective 

evaluations. The choice of methods depends on the purposes and time spent for the 

evaluation, since the implementation of different methods may have some 

disadvantages over others. Different scaling methods may even produce different results, 

although theoretically this should not be the case when experiments are well designed 
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and analysis is meticulously conducted (Boynton, 1961). Methods are described for two 

different purposes: 1) threshold and the JND evaluation (i.e. evaluation of fidelity) and 

2) supra-threshold evaluation (evaluation of quality). Brief descriptions of common 

methods are presented in this section. 

 

2.3.3.1 Threshold evaluation 

There are two types of threshold evaluations: those concerned with absolute threshold 

and those concerned with just noticeable differences (JNDs). The absolute threshold 

evaluation is used to evaluate the detectability in ‘ness’ (i.e. how much of the stimuli is 

needed to just produce the ‘ness’ sensation). The JND evaluation is employed to 

measure the actual ‘ness’ differences that are observed. 

Various scaling methods can be used to determine thresholds and JNDs. 

Classical methods are the method of limits and the method of adjustments. These were 

originally defined by Fechner (Fechner, 1966). The method of limits can be employed 

for image stimuli that are spaced closely with increased or decreased ‘ness.’ Observers 

are asked to answer whether they can detect the differences between stimuli possessing 

such an attribute. The main merit of this method is its efficiency, because the result can 

be obtained by just a few observations. Similar to the method described above, the 

method of adjustments can be used, where observers are asked to report on the visual 

differences by adjustment of the ‘ness.’ Observers may be asked to match the ‘ness’, or 

modify it until they can detect the differences, by using adjustment tools, such as a 

slider. 

Another popular scaling method is the paired-comparison method, in which a 

pair of test stimuli are displayed one at a time and the observers need to reply with a 
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‘yes’, or a ‘no’ depending on their detection of differences. Although it produces very 

reliable results, it is rather impractical for a large number of stimuli. 

Engeldrum (Engeldrum, 2000) has illustrated a typical psychometric curve with 

some critical points and regions, shown in Figure 2-7, as a function obtained from 

threshold experiments that describes the visual response to increasing ‘ness’ (c.f. 

Section 2.2.1). The absolute threshold and the point of subjective equality is taken 

where the proportion of the ‘yes’ responses of the observers are 50%. The range of 

proportion between 25% and 75% are described as the interval of uncertainty. The range 

of proportion between 50% and 75% are described as the just noticeable difference 

(JND). In this research, the JND was taken where the proportion of the ‘yes’ response 

was 75%, which is common in image quality related implementations (Keelan, 2002, 

p.50, Engeldrum, 2000, p.60). 

 

 
Figure 2-7. A typical psychometric curve. The axis is the value of a ‘ness’ and the 
ordinate is the proportion or probability of observers responding “yes”, adapted from 
Engeldrum (Engeldrum, 2000, p.56). 
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2.3.3.2 Supra-threshold evaluation 

Supra-threshold evaluation methods are concerned with the development of subjective 

(or psychometric) scales. Different types of scales are obtained by different scaling 

methods. 

The rank-order method is one of the simplest methods for obtaining an ordinal 

scale. The observers are asked to simply rank the image samples according to the 

degrees of one perceptual attribute (or ‘ness’) the image samples possess, or the overall 

image quality of the samples. Although the results obtained directly using this method 

will only contain the sequence of the image samples regardless of the significance of 

differences, there are various methods to transform the ranking data to interval scales by 

statistical analysis (Engeldrum, 2000, p.109). Caution need to be taken when choosing 

this method, as it is rather impractical for a large number of image stimuli or attributes. 

Also, due to the physical dimension of display devices, the use of such method was 

limited to hard copy images in the past. This method is simple to implement and 

practical for a relatively small number of image stimuli, or attributes. It was used in this 

project to rank the impact that changes in display image size had on six image attributes. 

What were essentially ranked were the attributes, not the images, whilst one image was 

displayed at a time. 

The paired-comparison method is another method of obtaining an ordinal scale. 

It is based on the law of comparative judgements (Triantaphillidou, 2011a), which 

relates the outcome of paired-comparison experiment to the perceptual differences 

between the stimuli and the uncertainty of perception, without reference to the physical 

origin of the differences (Engeldrum, 2000, p.5). The observers are asked to simply 
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select one of two samples presented to them according to the degree of one perceptual 

image quality attribute the image samples possess, or the overall quality of the stimuli. 

This method is time-consuming when the number of test images is large. The number of 

the observations is rapidly increasing with the number of samples (i.e. n(n-1)/2 pairs for 

n number of samples (Boynton, 1984, p.359)). Therefore, this method is rather 

impractical for hardcopy samples and is mainly used for softcopy images. Ordinal 

scales, obtained from rank order experiments, can be turned into interval or ratio scales 

by using further statistical analysis. 

The category scaling method is one of the simplest, easiest, and quickest 

methods to obtain scales. It is based on the law of categorical judgement (Thurstone, 

1927), which relates the relative position of test stimuli to a number of categories. 

Image stimuli are viewed one at a time and observers are asked to place them in one of 

several categories (e.g. ‘high’, ‘good’, and ‘bad’ quality) or in categories denoted by 

numbers (e.g. quality 1 to 5, 5 being the highest). An ordinal scale and an interval scale 

can be obtained by category scaling. Interval scales obtained using such scaling is based 

on various assumptions, such as that category distances are perceptually equal. However, 

this is rarely the case in reality (Triantaphillidou, 2011a). In order to turn categorical 

scaling data to true interval scale, further statistical analysis may be needed for defining 

category boundaries between categories. 

Lastly, the magnitude estimation method is a method of obtaining a scale by the 

estimation of quantities the test images possess (Stevens, 1946, Stevens, 1951). A 

reference image may be displayed at the beginning of the assessment. Then, observers 

are asked to assess the test samples, one at a time with respect to the reference image by 

using numbers. An interval scale or a ratio scale can be created using this method. 
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However, observer calibration by normalisation of the resulting data may be required, 

prior to the comparison of data. This is due to the variation in response by the individual 

observers (Engeldrum, 2000, p.139). 

 

2.3.4 Visual matching technique 

Visual matching is another common technique based on psychophysics. It is a simple, 

yet a powerful method for visual evaluation. It is used for the evaluation of changes in 

image quality or image appearance. It is strictly designed for image fidelity 

measurements. However, the method has been adapted and employed in image quality 

evaluation as well. The method of adjustment and the paired-comparison method, 

described in Section 2.3.3.1, can be employed for visual matching. A reference image 

and one or more test images are viewed at a time. The observers are asked to match the 

appearance or quality of the test images to that of the reference image. The International 

Organization for Standardization Technical Committee 42 (ISO-TC42) has approved 

and published recommended viewing conditions (Photography--Psychophysical 

experimental methods for estimating image quality--Part 1: Overview of psychophysical 

elements. 2005) and a number of visual matching techniques to evaluate the image 

quality (Photography--Psychophysical experimental methods for estimating image 

quality--Part 2: Triplet comparison method. 2005, Photography--Psychophysical 

experimental methods for estimating image quality--Part 3: Quality ruler method. 2005). 

 

2.4  Measuring and modifying sharpness 

As discussed earlier, sharpness is concerned with the edge reproduction ability of an 

imaging system. 



J.Y.Park, 2014, Chapter 2: Image quality and appearance  

37  

  

In conventional photography, Modulation Transfer Function (MTF) and 

Acutance are two common measures in sharpness evaluation. Acutance is used to 

evaluate sharpness of the light sensitive materials (Stroebel and Zakia, 1993, p.5). It is 

measured by evaluation of the mean square density gradient, divided by the density 

across an edge which is obtained from a microdensitometer trace. The degree of image 

sharpness depends on the shape and extent of the edge profile (Axford, 1988, p.345). 

MTF is a function taking into account the reduction in modulation (or image contrast) 

with respect to spatial frequency. There are several methods available for MTF 

measurement based on sinewave and edge targets as well as image noise test target (c.f. 

Section 2.2.2.4). The determination of MTF, however, is dependent upon the selected 

method (Triantaphillidou et al., 1999). 

In digital imaging, the Spatial Frequency Response (SFR) measure is widely 

used despite the fact that it is a measure strictly valid for linear systems (Burns, 2000, 

Burns and Williams, 2002). Traditionally, the MTF is obtained by imaging a ‘perfect’ 

edge and when this is not done, the MTF is ‘corrected’ for the original edge target 

frequency (Dainty, 1974, p.241). In the measurement of the SFR using slanted edge, 

modulus values are obtained by discrete Fourier transform of line spread function which 

is derived from edge profiled from the image data. Normalised modulus from the above 

step is the measured MTF (Williams and Burns, 2014). 

Optical imaging systems are linear and isotropic. However, digital sensors and 

image signal processing (ISP) are often non-linear, non-stationary, and anisotropic 

(Yoshida, 2006, Triantaphillidou et al., 1999). Corrections for various system non-

linearities are implemented, when possible, for more accurate SFR determination. To 

compensate for system non-linearities of the capturing device, linearisation of the digital 
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image data using the Opto-Electronic Conversion Function (OECF) (Photography--

Electronic still picture cameras-Methods for measuring opto-electronic conversion 

functions (OECFs). 1999) is necessary. OECF is discussed in Section 2.5.1. The SFR 

evaluation method used in this work, along with the image sharpness adjustment 

methods are described in the following section. 

 

2.4.1 SFR evaluation 

Due to the physical nature of digital sensors, as discussed earlier, the techniques 

commonly used in conventional imaging are difficult to implement in digital imaging. 

For example, the edge of the test target has to be perfectly aligned with the pixel array 

which is a very difficult task. Due to the difficulties of implementing the traditional 

techniques, the slanted edge technique was developed for sampled systems. 

In this research, the slanted edge method is used for the evaluation of system 

SFR. The technique is based on the traditional edge technique designed by Reichenbach 

et al. in 1991(Reichenbach et al., 1991) for the determination of the Spatial Frequency 

Response (SFR) of digital capturing systems. The ISO first adapted this technique in 

1999 and it was revised in 2000 (Photography--Electronic still picture cameras--

Resolution measurements. 1999, Photography--Electronic still picture cameras--

Resolution measurements. 2000).  

Nowadays, SFR is used widely, since it provides various useful measures for 

system design and analysis (Jenkin, 2011c, Estribeau and Magnan, 2004, Koren, 2006, 

Bang et al., 2008). Also, the slanted edge based SFR measurement is adapted in various 

standards for the measurement of digital scanners and printers (Photography--

Electronic scanners for photographic images--Part 2: Film scanners. 2004, Information 
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technology--Office equipment--Measurement of image quality attributes for hardcopy 

output--Binary monochrome text and graphic images. 2001, Information technology--

Office equipment--Test charts and methods for measuring monochrome printer 

resolution. 2001). 

A flowchart of the ISO standard implementation, which allows the automatic deviation 

of the SFR using a software application and a captured low contrast slanted edge, is 

illustrated in Figure 2-8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8. Flowchart of the deviation of digital SFRs from captured slanted edges, 
adapted from ISO 12233:2000 (Photography--Electronic still picture cameras--
Resolution measurements. 2000). 
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2.4.2 Image sharpness manipulation 

Image sharpness manipulation refers to the processing of increasing or decreasing 

image sharpness. In digital imaging, sharpness manipulation can be done in both spatial 

and frequency domains. In this section, commonly used filtering techniques for both 

sharpening and blurring are discussed. Also, a method that was employed in this project 

to produce sets of images with desired JNDs in perceived sharpness and blurriness, 

referred to here as softcopy ruler images, is described. 

 

2.4.2.1 Filtering in spatial domain 

Filtering in the spatial domain refers to the processing of images on the image plain (i.e. 

spatially). Filtering techniques in the spatial domain are categorised into linear and non-

linear. 

Linear filtering is based on the discrete convolution of a sub-image with the 

image. The sub-image is in the form of square matrix, consisting of digital values, as 

presented in Figure 2-9. It is referred to as ‘filter’, ‘mark’, or ‘kernel’, and its digital 

values are referred to as ‘coefficients’. The effect and the magnitude of the filtering 

depend on the filter coefficients. Pixel values on the original image are replaced by new 

pixel values, using reversible neighbourhood processing (Allen, 2011). More 

sophisticated filtering can be achieved by combining different techniques. However, 

these processes may not be reversible. 

Unlike linear filtering techniques, non-linear filtering techniques are often non-

reversible. One of the most commonly used non-linear filters is the median filter. It is 

mainly used for noise reduction by replacing the original pixel values by the median 

value of the neighbourhood pixels with a small cost of the loss of edge details. 
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  1 1 1    0 1 0    

1/9 × 1 1/2 1    1 4 1    

  1 1 1    0 1 0    
              
    1 2 1    1 1 1  

  1/16 × 2 4 2    1 8 1  

    1 2 1    1 1 1  

Figure 2-9. Examples of commonly used spatial domain linear filters. Blur filters (left 
top, left bottom) and Laplacian sharpening filters (right top, right bottom), adapted from 
Gonzalez and Woods (Gonzalez and Woods, 2002, p.120-129). 
 

2.4.2.2 Filtering in frequency domain 

Filtering in frequency domain requires the Fourier transformation of image. It is based 

on the convolution theorem, which states that “the Fourier transforms of a convolution 

of two functions is the product of the Fourier transforms of these two functions” (Jenkin, 

2011a). Jenkin has illustrated the convolution and the spatial frequency equivalent, 

shown in Figure 2-10. 

 

 

 

 

 

 

 
Figure 2-10. The imaging equation (convolution) and the spatial frequency equivalent, 
adapted from Jenkin (Jenkin, 2011b, p.133). 
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 Q(x, y) represents an image, P(x, y) a spatial domain filter, and Q’(x, y) 

represents a filtered image. Processing in spatial domain involves time consuming 

operations, whilst filtering in the frequency domain requires a single multiplication of 

the image spectrum with the filter spectrum, in addition to the forward and inverse 

Fourier transformations. The number of operations required to perform convolution in 

spatial and in frequency domains have been presented in Figure 2-11. 

 

 
Figure 2-11. Number of operations required to perform convolution in spatial and 
frequency domains on a 1024×1024 pixel image versus kernel size, adapted from Jenkin 
(Jenkin, 2011a, p.524). 
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Figure 2-12. Perspective plots of a Butterworth lowpass filter (left), and a Gaussian 
highpass filter (right) transfer functions with their images, adapted from Gonzalez and 
Woods (Gonzalez and Woods, 2002, p.176-181). 
 

2.4.2.3 Softcopy ruler method for generating sharpened and blurred 

images with known MTF 

The theory of softcopy ruler method has its origin on work by Keelan (Keelan, 2000). 

The method was approved by the ISO, which produced three standards for the 

quantification of image quality (Photography--Psychophysical experimental methods 

for estimating image quality--Part 3: Quality ruler method. 2005). ISO 20462-3 

describes a methodology to create an image quality ruler, based on the performance of 

the imaging systems involved. The quality ruler comprises of a series of images with 

quantitatively known quality, in a single perceptual attribute. The quality ruler images 

are spaced by a constant JND interval in controlled viewing conditions. That means that, 

when the ruler varies in sharpness, or noisiness, the viewing distance must be fixed. 

If the selected image attribute is sharpness, the quality of the ruler images is 

quantified by both the horizontal and vertical MTFs of the complete imaging system. 

Detailed procedures to generate ruler images are described below. 
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The system MTF conforms closely to the monochromatic MTF of an on-axis 

diffraction-limited lens, m(v), which is given by Equation 2.16, 

 

 ( ) = 	   ( ) 1 ( ) 	  	  	  	  	   h 	   1  (2.16) 

 ( ) = 	  0	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   h 	   > 1 

 

where v is spatial frequency in cycles per visual degree (CPD) and k is a constant. 

The constant, k, has a range between 0.01 and 0.26. A series of model curves 

can be plotted by varying k. Then the combined imaging system MTF is compared with 

the modelled curves to find a closest shape curve. Once k is determined, a relative 

quality JND value associated with the k constant can be obtained using Equation 2.17. 

Plots of curves generated by Equations 2.16 and 2.17 are illustrated in Figure 2-13. 

 

  =	   	  	     (2.17) 

 

 

Figure 2-13. Plot of Equation 2.16, spaced by 3 JNDs (left) and Equation 2.17 (right), 
adapted from ISO 20462:3 (Photography--Psychophysical experimental methods for 
estimating image quality--Part 3: Quality ruler method. 2005, p.10-11). 
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 Once the constant, k, is determined, the quality of an imaging system can be 

quantified. Based on the relative quality JND found, a series of constants, k, with an 

interval of constant relative quality JNDs can be determined. The above steps are 

illustrated in Figure 2-14. In Figure 2-14, (a) represents the horizontal and vertical 

MTFs of the complete imaging system (in cycles/pixel), (b) represents the average MTF 

of the combined imaging system (in cycles/degree), (c) is a series of MTFs with varying 

k values for a diffraction-limited lens system based on Equation 2.11, and (d) is a plot of 

the relative quality JNDs versus the constant k, (e) represents a series of blurring filter 

functions, spaced at a constant interval, as described in ISO 20462-3. Vertically flipped 

versions of these filters are used to generate sharpened images. Graphical illustrations of 

the filter functions are presented in Figure 2-12. 

The filter functions are in the form of an exponential function. The filter 

operation in a frequency domain is described in Equation 2.18, 

 

   = 1 	   ×   for blurring   (2.18) 

  = 1 +	   ×   for sharpening 

 

where D is the digital image size of the image’s spectrum, and a, and b are the variables 

representing the sizes of the filter apertures. 
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Figure 2-14. Implementation of steps involved in the creation of frequency domain 
Gaussian filters, with a constant interval based on ISO 20462-3 (Photography--
Psychophysical experimental methods for estimating image quality--Part 3: Quality 
ruler method. 2012). 
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2.5  Measuring and modifying tone reproduction and contrast 

In digital imaging, various definitions and evaluation metrics for contrast are available. 

However, most of the definitions assign a single value to describe the contrast of the 

whole image, regardless of the fact that the contrast may vary across the image (i.e. 

local contrast versus global contrast) (Peli, 1990). In addition, metrics and formulae for 

the evaluation of image contrast should take into account visual contrast perception. The 

study of various approaches to link physical contrast with visual contrast perception is 

ongoing (Peli, 1990, Triantaphillidou et al., 2013). 

In this section, the methods used for the evaluation of the tone reproduction of 

imaging systems (c.f. Chapter 3) and the concept of gamma (the descriptor of system 

contrast, c.f. Section 2.2.2.1) in tone reproduction is briefly explained. Common 

formulae used in contrast evaluation; along with contrast enhancement techniques are 

also described. 

 

2.5.1 Opto-Electronic Conversion Function (OECF) 

The opto-electronic conversion function is used to describe the relationship between the 

input luminance and the output pixel value in capturing devices (Photography--

Electronic still picture cameras-Methods for measuring opto-electronic conversion 

functions (OECFs). 1999). Although the native photo-electronic conversion 

characteristics of digital sensor materials exhibit approximately linear response to the 

light intensity, most digital cameras have non-linear characteristics (Yamada, 2006, 

p.118, Cheung et al., 2004). This is often imposed by manufacturers in form of near 

inverse relationship to the non-linearity of CRT display devices (Westland et al., 2012, 

p.144), which is commonly adopted by LCD devices. Also to use the available bit-depth 
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more efficiently, that is in accordance with the HVS response to luminance (Poynton, 

1996, p.113). 

 

 
Figure 2-15. Two different test charts for measuring transfer functions of acquisition 
devices. Top: ISO camera OECF test chart. Bottom: Kodak Q-13 greyscale, adapted 
from Triantaphillidou (Triantaphillidou, 2011b, p.385). 
 

ISO first published a standard method for measuring the OECFs in 1999 

(Photography--Electronic still picture cameras--Resolution measurements. 2000). The 

OECF of digital camera systems can be measured by capturing an ISO OECF test chart, 

or a Kodak Q-13 chart, both presented in Figure 2-15. These charts consist of a number 

of uniform grey patches of various density levels. The relationship is often plotted in 

log-log units, i.e. log pixel values vs. log luminance, or in linear units, i.e. pixel values 

vs. target reflectance. 
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Since the measurement of Spatial Frequency Response (SFR) is strictly 

applicable to linear systems, as described earlier (c.f. Section 2.4), the gamma value 

derived from the OECF is used in the SFR implementation to compensate for the non-

linearity of the camera system. 

 

2.5.2 Electro-Optical Transfer Function (EOTF) 

The electro-optical transfer function is used to describe the relationship between the 

input voltage and the output luminance in displays. Although the native electro-optical 

transfer characteristics of LCDs exhibit an S-shape form, similar to the photographic 

characteristic curve, as shown in Figure 2-16, most of LCD devices produce a response, 

which is imposed by manufacturers in hardware, or software to mimic the 

characteristics of CRT displays (Fairchild and Wyble, 1998, Chapter 2 of Bala, 2002, 

Day et al., 2004). 

 

 
Figure 2-16. Typical electro-optical transfer functions for CRT and LCD devices, 
adapted from Glasser (Glasser, 1997). 
 

0

20

40

60

80

100

0 20 40 60 80 100

D
isp

la
y 

lu
m

in
an

ce
 (%

) 

Input voltage (%) 

LCD

CRT



J.Y.Park, 2014, Chapter 2: Image quality and appearance  

50  

  

As described in earlier section for CRTs (c.f. Section 2.2.2.1), the EOTF is also 

plotted in linear units and described by a power function, in which the exponent 

represents gamma, . 

 

2.5.3 Formulae for contrast evaluation 

In this section, three commonly used formulae to evaluate contrast are explained. 

 

2.5.3.1 Michelson contrast 

Michelson contrast (	  C ) (Michelson, 1962), is used for measuring the physical contrast 

of a simple pattern with bright and dark features such as single frequency sinusoidal 

gratings (Peli, 1990, Triantaphillidou, 2011b).	  C 	  is measured using Equation 2.19, 

 

    =	        (2.19) 

 

where  and  are the highest and lowest luminance in grating, respectively. 

 

2.5.3.2 Weber fraction definition of contrast 

Weber fraction (definition of contrast) is used for measuring local contrast of an area 

with uniform luminance on a uniform background.  is measured using Equation 

2.20, 

 

    =	   	        (2.20) 
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where  is the increment (or decrement) in the target luminance from luminance of 

uniform background, L. 

 

2.5.3.3 Root mean square (RMS) contrast 

Root mean square (RMS) contrast is a calculation of standard deviation of luminance 

values. It is often normalised by the mean image luminance to return values between 

zero and one. Unlike the Michelson formula and the Weber fraction of contrast, RMS 

contrast can be used to define the contrast of compound grating images and of complex 

digital images (Tiippana et al., 1994, Moulden et al., 1990). The RMS contrast is 

known to be a good predictor of the relative apparent contrast (Triantaphillidou et al., 

2013, Bex and Makous, 2002). 

 

	  = 	   ×    (2.21) 

 

where R and C are the number of rows and columns in the image,	    is the normalised 

luminance of	   	    pixel,	   	  is the mean normalised luminance of the image. 

RMS contrast ( ) of a two dimensional image can be defined by the root 

mean square deviation of the pixel luminance from the mean pixel luminance of the 

image, divided by the image dimension (Pavel et al., 1987).  of a two dimensional 

image can be calculated using Equation 2.21, adapted from Peli (Peli, 1990). 
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2.5.4 Image contrast enhancement 

Image contrast enhancement refers to the process of increasing or decreasing image 

contrast. Similar to sharpness enhancement, this can be done in both spatial and 

frequency domains. Various enhancement techniques are available to enhance image 

contrast on a global and local scale. In this section, spatial domain contrast enhancement 

techniques are discussed. 

 

2.5.4.1 Histogram equalisation 

Histogram equalisation is a “technique that generates a grey map which changes the 

histogram of an image and redistributing entire pixel values to a user specified 

histogram” (Hassan and Akamatsu, 2004). It is based on the assumption that important 

information in the image is contained within areas of high probability of distribution (i.e. 

the Probability Density Function, PDF). Although, this is one of the most widely used 

techniques for contrast enhancement, the brightness of an image can be also changed 

when using it (Kim, 1997). 

 

2.5.4.2 Contrast stretching by piecewise linear transformation function 

Contrast stretching by piecewise linear transformation function is one of the simplest 

techniques to enhance image contrast. The technique is carried out with a set of linear 

functions which are characterised by the fact that the input-output function’s slope is 

altered linearly between defined control points. This technique is also used to enhance 

the contrast of one, or more subjects, which comprise grey levels in a certain range 

(Allen, 2011, p.504). The idea behind this technique is to increase the dynamic range of 

the grey levels in the image (Gonzalez and Woods, 2002, p.85). This is achieved by 
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applying functions with a gradient of lower than 1.0 to above and below the control 

points, and higher than 1.0 between the control points. The reverse effect can be 

obtained by using an inverse function to decrease contrast. 

 

2.5.4.3 Contrast enhancement using an ‘S-shape’ function 

Contrast enhancement using an S-shaped function is a similar process to contrast 

stretching by piecewise linear transformation functions. However, unlike piecewise 

linear transformation functions, an S-shaped function alters pixel values smoothly 

(Braun and Fairchild, 1999). Therefore, the processed images possess more natural 

tonal ranges across the entire tonal range. 

 

2.6  Scene dependency and classification 

Objective image measurements associated with image quality are based on the 

assumption that there is a fundamental relationship between these measurements and the 

subjective impression of one of the image attributes, or the overall image quality 

(Triantaphillidou et al., 2007). 

Objective quality measures however, do not always correlate to the subjective 

quality. In this section, scene dependency in subjective image quality is described, along 

with objective methods for scene analysis and classification, which can be used to 

compensate for scene dependency in objective quality models and metrics. 

 

2.6.1 Scene dependency 

As briefly discussed in Section 2.1, scene content is an important factor for evaluation 

of image quality. Triantaphillidou et al. (Triantaphillidou et al., 2007) described three 
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types of scene dependency. The first type of scene dependency is due to the observer’s 

preference (or quality criteria). Freiser et al. (Freiser and Biedermann, 1992) found that 

the sharpness is judged differently for portrait image and architecture scene. The second 

type of scene dependency is due to the visibility of noise, or other artefacts (c.f. Table 2-

6) in some types of images (or image areas) compared with other images. Artefacts are 

more prominent on some images than on others. Therefore, in addition to the objective 

quantification of digital image noises or artefacts, their visibility of such artefacts 

should also be considered as additional image attribute (Keelan, 2002, p.131). The third 

type of scene dependency is due to variation in the output of digital process such as 

sharpening/blurring and image compression, which depends on the image content and 

scene features (Triantaphillidou, 2011a). 

Scene dependency issues make it difficult to design psychophysical evaluations 

and analyse results for a variety of scenes. For this reason, many studies are conducted 

using the ISO set of test scenes (Graphic Technology: Prepress digital data exchange--

CMYK standard color image data (CMYK/SCID). 1997). However, this standard image 

set does not represent a wide range of images and a variety of scene content. A 

proposed method for overcoming scene dependency is scene classification with respect 

to image quality measurements. It has been widely researched in our laboratories with 

considerable success (Triantaphillidou et al., 2007, Orfanidou et al., 2008, Oh et al., 

2010). 

 

2.6.2 Classification of scenes 

Images and scenes can be classified into relatively small groups with respect to various 

scene characteristics that play a significant role in image quality measurements, e.g. 
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illumination characteristics, directional viewing aspect, spatial distribution of scene 

elements, and local illumination conditions, spatial frequency content, and colour 

content, etc. (Jones and Condit, 1941). One way to achieve this is by simply inspecting 

images and grouping them with respect to selected image attributes (Keelan, 2002). The 

other way is through objective image analysis. Triantaphillidou et al. (Triantaphillidou 

et al., 2007) have conducted scenes analysis techniques that are directly relevant to 

image quality experiments, using various statistical measures and segmentation to 

classify scenes with respect to both spatial and colour attributes. Global and average 

intensities, global contrast, and ‘busyness’ of the scene were measured with respect to 

spatial attributes. In addition, the variance in chroma,	   , was measured in CIELAB 

colour space and was proposed as measure of global image colourfulness, or global 

colour contrast. Several of the proposed measures have been found to correlate with the 

perception of image content (Triantaphillidou et al., 2007, Orfanidou et al., 2008, 

Mancusi et al., 2010, Falkenstern et al., 2011). Recently, Oh (Oh et al., 2010) used 

second order statistics and edge analysis to classify scenes according to their 

susceptibility in noisiness and sharpness. He further used his objective classification to 

calibrate successfully a number of device-dependent image quality metrics to take into 

account scene dependency. 

 

2.7  Appearance versus image size 

Image appearance is a phenomenon of visual perception. Therefore, it is naturally 

affected by various factors including the surround viewing conditions for images as well 

as the physical changes of image size, or the changes in the angle subtending the 

observer’s eye. Many studies have been conducted to identify and quantify the changes 
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in image appearance with respect to the image size or viewing angle. As early as in the 

1960’s, Bartleson and Breneman (Bartleson and Breneman, 1967a) pointed out that 

change in image size affect the perceived contrast. Choi et al. (Choi et al., 2007b, Choi 

et al., 2007a) conducted psychophysical experiments using colour patches of various 

sizes under various illumination conditions, including dark, indoor, and also outdoor 

conditions. They confirmed that the colour appearance was affected by changing the 

patch size and the viewing conditions. Nezamabadi and Berns (Nezamabadi and Berns, 

2006, Nezamabadi et al., 2007) have investigated the effect of image size on the colour 

appearance of softcopy reproduction, using a contrast matching technique. They 

identified that lightness is mostly affected by the changes in image size and then in 

chroma. Xiao et al. (Xiao et al., 2011) also confirmed that lightness and chroma are 

affected by changes in size. However, they found that size has no effect on hue 

appearance. 

 Similar results have been found in a recent study by Wang and Herdeberg 

(Wang and Hardeberg, 2012), who investigated the changes in appearance of all colour 

attributes as well as sharpness, noise and compression with changes in the visual angle. 

 The studies related to changes in appearance of pictorial images with changes in 

image size are nevertheless limited. The work presented in this thesis is dedicated to this 

subject and aims to provide answers to the following: questions of which image 

attributes are most affected when changing displayed image size; how perceived 

sharpness changes with altering displayed image; how perceived contrast changes with 

changing image size. 
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Chapter 3 
 

 

Device characterisation 

 

 

 

 

 

This chapter describes the characterisation and settings of devices used for image 

capture and image display. Device calibration is referred to the settings of an imaging 

device to a known state (Fairchild, 2005, p.316), for example to a chosen maximum 

luminance, white point, gamma setting, etc. Characterisation of an imaging device 

defines the relationship between input signals and the response of the device. 

Colorimetric characterisation of a device refers to the creation of a relationship between 

the device coordinates and a device independent colour space (Fairchild, 2005, p.316). 

For example, colorimetric camera characterisation defines the relationship between the 

camera response (in RGB) and the input tristimulus values. Similarly, colorimetric 

display characterisation defines the relationship between the resultant CIE measurement 

of display response and the input data (Johnson, 1996).  
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In this study, colour characterisation of both camera and display devices were 

carried out for the sRGB setting. sRGB is one of the most commonly available colour 

settings (default on most compact cameras, such as the Apple iPhone used in this work, 

and available in most DSLRs). The aim in this project was to produce and examine test-

images for a colour setting employed by most consumer users. Secondly, for the camera, 

accurate colorimetric reproduction is not so important to this project, because the aim 

was not to produce colorimetric digital images but pleasant images, the appearance of 

which can be subsequently examined on display with respect to image size. 

Tone reproduction and colorimetric characteristics were measured for the 

capturing devices. These measurements were based on ISO 14524 (Photography--

Electronic still picture cameras-Methods for measuring opto-electronic conversion 

functions (OECFs). 1999) and ISO 17321-1 (Graphic technology and photography--

Colour characterisation of digital still cameras (DSCs)--Part 1: Stimuli, metrology and 

test procedures. 2006). In addition, the spatial frequency response (SFR) of the 

capturing devices was measured using the slanted edge technique described in ISO 

12233 (Photography--Electronic still picture cameras--Resolution measurements. 2000). 

For the characterisation of display devices, display characteristics suggested in 

BS EN 61966-4 (Multimedia Systems and Equipment--Colour measurement and 

management--Part 4: Equipment using liquid crystal display panels. 2000) were 

evaluated to determine the experimental methods and interface design. In addition, the 

positional non-uniformity at the observation plane was investigated in accordance with 

the psychophysical investigation set up. SFR measurements of the display devices are 

described in Chapter 5, along with their application in the development of the frequency 

domain filters for image sharpness enhancement.  
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3.1  Digital cameras 

Two digital image capturing devices, one with an 8 megapixel sensor and another with a 

2 megapixel sensor, exhibiting different overall image qualities, were used for recording 

a number of natural scenes. The purpose was to produce ‘identical’ image content for 

each scene with both cameras. The Canon EOS 30D digital SLR, equipped with an EF-

S 10-22mm (35mm equivalent focal length of 16-35mm) lens allowed full access to 

camera function, such as aperture, shutter speed, ISO and custom white balance settings. 

It also allowed for saving the captured images in various file formats with, or without 

image compression. The Apple iPhone (1st generation) mobile phone camera was 

equipped with a fixed lens (35mm equivalent focal length of 35mm) with a fixed 

aperture f2.8. It had a default automatic white balance and did not allow access to the 

ISO, or shutter speed settings. It saved 24-bit sRGB images in JPEG format. Due to the 

limited access to the settings on the Apple iPhone camera, the characterisation of the 

Apple iPhone camera was carried out prior to that of the Canon camera; whilst the 

characterisation of the Canon camera was carried out for similar setup and settings to 

those of the Apple camera for consistency. The camera settings used for image capture 

are shown in Table 3-1. 

 
  Canon EOS 30D Apple iPhone 

Pixel resolution 3504×2336 (8.2 MP) 1600×1200 (1.9MP) 

Colour representation sRGB, 24bits sRGB, 24bits 

ISO 100-1600 Information not available 

Image format JPEG JPEG 

Lens EF-S 10-22mm at 22mm 
(FOV 63°) 

Built-in lens 
(FOV 63°) 

Aperture f4.5-f11 f2.8 
Table 3-1.Camera settings for the image capture. 
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3.1.1 Tone characteristics (Opto-Electronic Conversion Function) 

Tone reproduction characteristics were evaluated by measuring the opto-electronic 

conversion functions (OECF), using the methods described in ISO 14524. The standard 

describes two methods. One is the focal plane OECF method, which is used for camera 

with removable lenses. The main advantage of this method is that it provides an 

accurate measure of the OECF of imaging sensors and camera electronics under 

selected illumination conditions. An alternative OECF method is suggested for the 

cameras with non-removable lenses, for which exposures can be made using reflective 

test targets. Although the former method is recommended for accurate measurement, it 

was not suitable for characterising the camera with a fixed lens (Apple iPhone). 

Therefore, the alternative method was implemented for consistency. 

A Kodak Q-13 greyscale test target, which contains 20 reflective neutral 

patches with approximately 0.1 density increments, was used for the purpose. The 

density of each of the patches was read using a calibrated Macbeth TR924 reflection 

densitometer; an average of 3 measurements from the central area of each patches were 

recorded. After the measurements, the test target was placed at approximately 150cm 

away from the sensor plane and occupied the central 4% of the frame. The immediate 

surroundings of the target were covered with neutral mid-tone background to minimise 

any unwanted colour effects caused by the background colour or flare. A pair of 

tungsten lamps was used for the standard copy lighting to illuminate the target evenly. 

The mean luminance of the target area was measured using a Minolta CL-200 chroma 

meter. The mean luminance of the target area was 2,485lux for both cameras. 

As a preliminary step, a series of exposures was made to investigate the effects 

of ISO and aperture settings on tone reproduction by the Canon 30D camera. Colour 
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space was set to sRGB and colour temperature was set to automatic mode. The results 

showed that the effects of ISO and aperture settings were negligible, 0.0022% by the 

ISO and 0.0028% by the aperture settings. Therefore, the test target was captured using 

the same settings by both cameras under the studio set up described above. 

Pixel values of the captured greyscale patches were measured and the log  

mean PVs were calculated. Density values were converted to luminance ( ),	  cd/m , 

using Equation 3.1 (Photography--Electronic still picture cameras-Methods for 

measuring opto-electronic conversion functions (OECFs). 1999). 

 

=	        (3.1) 

where  is the grey scale patch visual density 

 E is the illuminance, in lux, incident on the chart 

  is the luminance, in candelas per square metre, of the patch with 

 density	    

 

The equation is based on the assumption that the test target is a perfect reflector 

thus there is no loss in luminance. Log PV	  was plotted against log  in Figure 3-1. 

The measured OECF showed slight variations for each of the channels, with larger 

standard errors in darker patches for both cameras. The linear portion (spanning the 

mid-tones, where original SFR target luminance values are falling) of the measured 

OECF had a gamma of =0.592 for the Canon 30D and a gamma of =0.496 for the 

Apple iPhone.  
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Figure 3-1.Tone reproduction characteristics of the Apple iPhone camera (top) and the 
Canon 30D camera (bottom). Log PV was plotted against	  log . 
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3.1.2 Colorimetric characteristics of sRGB output 

The colorimetric characterisation of the capturing devices was carried out by adapting 

the conditions suggested in ISO 17321-1. The standard introduced two methods for the 

evaluation of colorimetric characteristics of digital still cameras. One is the spectral 

sensitivity-based method. This method requires quantified uniform illumination. The 

spectral (multi spectral) sensitivity-based method is suitable for accurate measurement 

of the response of imaging sensors when raw image data can be obtained (Cheung et al., 

2004, Berns and Shyu, 1995, Cheung and Westland, 2003). Alternatively, the target-

based method can be used for which exposures can be made using reflective test targets 

with known spectral and colorimetric characteristics. This method is efficient and also 

suitable for both devices (Johnson, 1996, Graphic technology and photography--Colour 

characterisation of digital still cameras (DSCs)--Part 1: Stimuli, metrology and test 

procedures. 2006). Although the former method provides often more accurate 

measurement, it was not suitable for characterising one of the cameras with limited 

access to the settings. Therefore, the target-based method was implemented for 

consistency. 

A GretagMacbeth ColorChecker Color Rendition Chart (McCamy et al., 1976), 

which contains 6 achromatic patches with difference densities and 18 chromatic patches 

representing natural colours, was used for the purpose. Spectral reflectance and CIE 

1931 XYZ tristimulus values were measured using the GretagMacbeth ColorEye 7000A 

spectrophotometer. The target was then photographed using both cameras, under similar 

photographing conditions to these employed for the tone characteristics as described in 

Section 3.1.1. The mean luminance was 1,833lux (x=0.4609 and y=0.4128, at a colour 
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temperature of 2700K). The white balance of both camera systems was set at automatic 

mode, since only automatic white balance was available on the Apple iPhone camera. 

 

Figure 3-2. Original and the captured red, green, blue, and white patches of the 
GretagMacbeth ColorChecker by both cameras. 
 

Average pixel values of the captured images were measured using NIH ImageJ 

image analysis software (Rasband, 2013). For the calculation of the colour reproduction 

errors of the capturing devices, mean pixel values of the captured patches in standard 

RGB were converted to XYZ tristimulus values by implementing Equations (2) to (7) 

from the BS ISO 61966-2-1 (Multimedia Systems and Equipment--Colour measurement 

and management--Part 2.1: Default RGB colour space--sRGB. 2000, p.10-12). 

CIELAB	   , ,  coordinates were then calculated from the estimated the tristimulus 

values. Further, the CIE 1976  and	  	    chromaticity coordinates were calculated 

according to Equations 5.12 (a) and (b) (TriantaphillidouandAllen, 2011, p.89). Figure 
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3-2 illustrates the plotted colour coordinates of the captured primary colour patches and 

of the white patch, along with those of the original test target. It was clear that 

reproduction errors were larger for the red patch compared with the other full on 

primary colours. 

Using the CIELAB coordinates, colour reproduction errors of both camera 

systems were calculated using the colour difference formulae. The commonly applied 

CIE 1976 	    (cf. Equation 2.10) and the more perceptually uniform 

CIEDE2000	    were used (Luo et al., 2001). 

The colorimetric performance of both cameras, when set to sRGB setting, was 

poor with  of over 3 for all patches. The errors were especially large for the 

saturated red and purple colours ( =40-50). The biggest differences were found on 

reddish patches, with  of 33.14 and 47.23 for the Canon 30D and the Apple 

iPhone, respectively. Also, the neutral patches appeared rather ‘reddish’, with colour 

differences ranging from 14.15 to 16.08 for the Canon 30D, and from 7.03 to 19.81 for 

the Apple iPhone. However, the colour patches containing ‘strong green and/or blue’ 

colours were captured with smaller colour reproduction errors. The colour differences 

for all colour patches were plotted in Figure 3-3, and the values are shown in Table 3-2. 

 

 
Canon 30D Apple iPhone 

Max 33.14 26.64 47.23 34.80 

Min 5.23 2.10 3.31 2.22 

Mean 15.42 10.34 18.48 11.41 
Table 3-2. Colour differences between the original and captured patches 
for both camera systems. 
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Figure 3-3. Colour production errors between the original and captured patches for both 
camera systems using two commonly used colour difference formulae. 
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3.1.3 SFR measurements using the slanted edge method 

Spatial frequency responses (SFR) (Photography--Electronic still picture cameras--

Resolution measurements. 2000) for both cameras, set at the selected settings, were 

measured using the slanted edge method. Although the standard originally 

recommended a high contrast test target (40-80:1), a simple test target containing a low 

contrast edges (contrast ratio of 3:1) was used (Burns and Williams, 2002, Using 

SFRplus Part 1. 2013). The target was fixed on a flat surface slanted approximately 5° 

at horizontal orientation then captured 3 times using both cameras under the standard 

copy lighting described in earlier sections. The capture was repeated for the vertical 

camera orientation. A Minolta CL-200 chroma meter was used to ensure the variation of 

the luminance across the target below 	  ± 2%, as recommended in ISO 14524 

(Photography--Electronic still picture cameras-Methods for measuring opto-electronic 

conversion functions (OECFs). 1999).  

A series of exposures was made with the Canon 30D at various aperture 

settings to investigate the effect of aperture on the SFR measurements. SFR was found 

to be high with the lens apertures up to f11 then it dropped dramatically at f16 and 

smaller (c.f. 5.1.2 Figure 5-2). SFRs calculated from the edges captured at f5.6-f11 were 

found to be 7 JNDs in relative quality scale higher than those calculated from the edges 

captured at f16-f22. Therefore, the aperture of the Canon 30D camera system was set at 

f8 to obtain the sharpest edge. The aperture of the Apple iPhone was set at f2.8 as a 

default. 
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Figure 3-4. Horizontal (top) and vertical (bottom) SFR of the Apple iPhone camera. 
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Figure 3-5. Horizontal (top) and vertical (bottom) SFR of the Canon 30D camera. 
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SFRs of captured edges were computed using Imatest image analysis software 

(Imatest. 2013) and the SFR up to the Nyquist frequency, 0.5cycles/pixel, were 

recorded. The camera system gamma, , derived in Section 3.1.1 was used as the 

gamma correction function for the data within the software (i.e. implemented to 

linearise the image data before the computation of the SFRs). For each camera, average 

SFRs were calculated for the horizontal and vertical orientations. The SFRs of the 

individual channel and in luminance are plotted in Figures 3-4 and 3-5. 

The Canon 30D camera showed fairly even spatial frequency responses in all 

three channels at both orientations with small temporal variations. However, the SFRs 

of the Apple iPhone varied between colour channels at both orientations with much 

larger temporal variations. Also, the ‘hump’ at the low-mid frequencies was clearly 

caused by the edge enhancement. Overall, the SFR of the Canon 30D camera was found 

to be slightly higher than that of the Apple iPhone camera. 

 

3.1.4 Summary 

Two different format and overall quality cameras were characterised in terms of colour 

reproduction, tone reproduction and spatial frequency response. sRGB colour setting 

and JPEG format was chosen for both cameras (for consistency). This choice was made 

because these were the only setting and format available on the Apple iPhone camera. A 

pair of tungsten lamps was chosen as light source and using automatic white balance 

settings for the characterisations. 

From the tone reproduction characterisation, the reproduction was also found 

rather poor for the dark patches (higher densities) but it was fairly even for the mid-tone 

and lighter patches (lower densities). The Apple iPhone gamma was found to be 
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=0.496, which with a typical sRGB display system gamma of 2.2, would give an 

overall system gamma of approximately =1.09. The Canon 30D system gamma was 

found to be =0.592, would give an overall system gamma of approximately =1.30. 

These meant that the overall contrast of the starting images in the following experiments 

was slightly different, with the images originating from the Canon 30D having higher 

contrast. This difference was not big enough to matter, since the images from each 

individual camera were tested in separate experiments. 

Colour reproduction of both systems set to sRGB was found to be poor 

especially for the saturated red and the purple colours, with the maximum colour 

difference, 	   , of 33.14 and 47.23, for the Apple iPhone and the Canon 30D 

respectively. Colour reproduction errors for the greenish and bluish patches were much 

smaller, producing the minimum colour differences between the original and captured 

patches. The mean  of approximately 10 was found from both devices. 

Although more accurate methods are suggested in ISO standards, alternative 

methods were adapted due to the limited access to the settings, and fixed lens feature on 

one of the cameras. Therefore, the results may have been varied under different lighting 

conditions, and using various settings. 

However, the purpose of employing two camera systems exhibiting different 

image qualities was to produce pleasant images with identical image contents, rather 

than the colorimetrically accurate reproduction of natural scene. Even though the Canon 

30D showed slightly better performance for the characteristics measured above, both 

systems were capable of producing pleasant images under various illumination 

conditions, which is what is required in the experiments. 
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3.2  Liquid crystal displays (LCDs) 

Two In-Plane Switching (IPS) Liquid Crystal Displays (LCDs) from the same 

manufacturer were used in this study. An EIZO ColorEdge CG210 21.3’’ LCD was 

used in research described in Chapter 4 and an EIZO ColorEdge CG245W 24.1’’ LCD 

was used in work described in Chapters 5, 6 and 7. 

The characterisation of both display devices were carried out under the 

environmental conditions described in BS EN 61966-4. The standard recommends the 

measurements of various important display characteristics that have the potential to 

influence psychophysical investigations such as these described in the following 

chapters. 

 

3.2.1 Conditions of measurement, calibration and settings 

The calibration of the display devices and all measurements were carried out with at 

least one hour warm up time as specified in BS EN 61966-4 except for the temporal 

stability characteristics which require measurement with a cool down period 

(Multimedia Systems and Equipment--Colour measurement and management--Part 4: 

Equipment using liquid crystal display panels. 2000, p.28-30). The room temperature 

was approximately 20° Celsius ±3°, as measured in the beginning and in the end of 

measurements which was also used during the psychophysical investigations. 

 For the calibration and profiling of the displays, a GretagMacbeth Eye-One Pro 

was used. During the psychophysical investigations, the EIZO CG210 LCD was 

calibrated daily using the Eye-One Pro. A built-in calibration sensor was used for the 

daily calibration of the EIZO CG245W LCD. The technical specifications of the display 
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devices, the settings for the calibration, profiling and experiments are shown in Table 3-

3. 

 

Table 3-3.Technical specifications of display devices and the settings used during 
calibration and experiments. 
 

 A Konica-Minolta CS-200 tele-chroma meter designed especially for LCDs 

was used for the measurement of both displays. The chroma meter was connected to a 

PC, which drove the instrument using CS-S10w designated software (Konica-Minolta, 

2013). The instrument was placed 150cm away from the centre of the display device, a 

distance little greater than that recommended in the standard (Multimedia Systems and 

Equipment--Colour measurement and management--Part 4: Equipment using liquid 

crystal display panels. 2000), in a plane parallel to that of the display. A set of 240 by 

240 pixel patches with a different pixel value, as described in the standard, was created. 

The instrument was set to measure the luminance and the tristimulus values of displayed 

patches, with a 0.2° field of view, in slow mode. Three measurements were averaged 

  EIZO CG210 EIZO CG245W 

Displayable area (cm) 43.2(H)×32.4(V) 51.8(H)×32.4(V) 

Native pixel resolution 
(pixels) 1600(H)×1200(V) 1920(H)×1200(V) 

Display colour 24bits from a palette 
of 30bits 

24bits (DVI)/30bits (DP) 
from a palette of 48bits 

Viewing angle (°) 170(H), 170(V) 178(H), 178(V) 

Pixel pitch 0.27mm(H), 0.27mm(V) 

Maximum brightness 250cd/m  270cd/m  

Maximum brightness for 
calibration and experiments 120cd/m  

Colour representation sRGB 
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each time. Except for the positional non-uniformity characteristics, a small central area 

in horizontal and vertical orientations of the display was measured. 

 

3.2.2 Tone characteristics (Electro-Optical Transfer Function) 

The relationship between the output luminance and the input pixel values describe the 

tone reproduction of display devices. A total of 32 red, green, and blue patches with a 

pixel value interval of 8 were created. Also, a total of 32-step neutral ramp was created. 

The XYZ tristimulus values for each patch were measured and then normalised. 

The normalised luminance output was plotted against the normalised input pixel values 

in linear-linear scale for individual channels (Red, Green, and Blue) and in combination 

(Neutral), as shown in Figures 3-6 and 3-7, for the EIZO CG210 and the EIZO 

CG245W respectively. The CG245W had excellent tone reproduction characteristics for 

each individual channels and also when all channels were combination with overall 

gamma of =2.16. However, the CG210 had inconsistent tone reproduction in each 

individual channels as well as when all channels were combined. The gamma of the 

CG210 was =2.09. High level of Z values was found for red and green channels on 

both displays, which is typically seen on LCD devices. Non-zero black levels on the 

LCDs are further discussed in a later section (c.f. Section 3.2.4). 
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Figure 3-6. Tone characteristics of the EIZO CG210 display. 

 
 

  

  
Figure 3-7. Tone characteristics of the EIZO CG245W display. 
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3.2.3 Basic colorimetric characteristics 

Basic colorimetric characteristics of display devices describe the linear relationship 

between the output tristimulus values and the corresponding maximum input pixel 

values (c.f. BS EN 61966-4 Section 8). 

A set of four patches, each containing full on primaries and pure primaries at 

full strength in the centre of the frame, was created and displayed on the calibrated 

display devices. The XYZ tristimulus values were measured. The measured tristimulus 

values were then normalised by the measured luminance value for the white,	   . CIE 

1976	  	   ,	   	  coordinates of the reproduced patches were calculated from the measured 

tristimulus values and plotted in Figure 3-8. Corresponding peaks in sRGB colour space 

were also plotted for comparison purposes. The CIE 1931 tristimulus values and the 

CIE 1976	   ,	   	  coordinates are shown in Table 3-4. 

 

  
CG210 CG245W 

´ ´ ´ ´ ´ ´ ´ ´ ´ ´ 

Red 49.88  25.17  2.85  0.456  0.520  51.85  26.01 2.22 0.462 0.522  

Green 37.63  78.76  12.16 0.120  0.565 41.50  85.19 11.45 0.127 0.566 

Blue 19.89  7.53 109.22 0.178  0.147 22.46 8.73 117.89 0.177 0.155 

White 105.59  109.8 123.01 0.199  0.466  114.18 118.54 131.04 0.177 0.436 
Table 3-4. CIE 1931 tristimulus values and CIE 1976 chromaticity coordinates for the 
full on primaries and the white from both display devices. 
 

Both display systems were calibrated to produce white luminance of 120cd/m 	   

at	  D . The reproduction accuracy of all four colours on both systems was excellent 

when compared with the peak colours in sRGB colour space. The CG245W display 

performed slightly better than the CG210 display. The white point colour temperatures 
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were found at 6583K and 6455K on the CG210 and CG245W, respectively, although 

both systems were calibrated to 6504K. 

 

 

Figure 3-8. Reproduction of the full on primaries and the white on display devices and 
their corresponding values in sRGB colour space. 
 

The values in Table 3-4 were used to derive elements of a 3×3 conversion 

matrix, S, defined as: 

 

	  
	  
	  

= 	  S 	   	  
	  

     (3.2) 

 

where R, G, B are the normalised input pixel values thus determined as; 
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S = 	   	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  1	  
	  	  0	  	  	  	  	  	  0	  	  

	  0	  	  	  	   	  	  	  0
	  0	  	  	  	  0	  	  	  	  	  

   (3.3) 

 

where	   , ,  are the solution of Equation 3.4; 

 

	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  	  	  	  	  	  	  	  	  	  	  	  	  1	  
	  
= 	  

	  
1   (3.4) 

 

The derived coefficient matrix, S, for each display devices are shown in 

Equation 3.5a (CG210), 3.5b (CG245W), along with that of the sRGB (Equation 3.5c) 

(Multimedia Systems and Equipment--Colour measurement and management--Part 2.1: 

Default RGB colour space--sRGB. 2000). 

 

   S = 	  
	  0.4461	  	  0.3383	  	  0.1796	  
	  0.2251	  	  0.7080	  	  0.0680	  
	  0.0255	  	  0.1093	  	  0.9860	  

    (3.5a) 

   S = 	  
	  0.4275	  	  0.3469	  	  0.1887	  
	  0.2144	  	  0.7122	  	  0.0734	  
	  0.0183	  	  0.0957	  	  0.9906	  

    (3.5b) 

   S = 	  
	  0.4124	  	  0.3576	  	  0.1805	  
	  0.2126	  	  0.7152	  	  0.0722	  
	  0.0193	  	  0.1192	  	  0.9505	  

    (3.5c) 

 

3.2.4 Colour tracking characteristics 

Colour tracking characteristics of display devices describe the chromaticity variations 

depending on input pixel values for the achromatic and chromatic colours. A set of 8 

red, green, and blue patches with an interval of 32 pixel values between them was 
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created for primary colours and achromatic colours. CIE 1976 	   , 	   	  chromaticity 

coordinates of displayed patches were measured. The loci of each of the reproduced 

patches were plotted on	   ,	   	  diagrams in Figures 3-9 and 3-10. 

The chromaticities varied depending on the input pixel values. It was especially 

clear with pixel values below 64. This is a typical characteristic of LCD devices mainly 

due to inter-channel reflections and back light leak though the LCD filters (Fairchild 

and Wyble, 1998, Chou et al., 2008). Non-zero black levels of 0.24cd/m 	    and 

0.15cd/m 	   were measured on the CG210 and the CG245W, respectively. Further 

analysis of data was carried out by taking black levels into account using the model 

suggested by Fairchild and Wyble (Fairchild and Wyble, 1998). Colour tracking 

characteristics of both displays were plotted before and after the black level 

compensation in Figures 3-9 and 3-10, for the CG210 and the CG245W, respectively. 
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Figure 3-9. Colour tracking characteristics of the EIZO CG210, before (top) and after 
the black level compensation (bottom). 
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Figure 3-10. Colour tracking characteristics of the EIZO CG245W, before (top) and 
after the black level compensation (bottom). 
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3.2.5 Positional non-uniformity 

Positional non-uniformity characteristics of display devices describe the variations in 

lightness and chromatic coordinates across the displayable area of an LCD screen. For 

the evaluation of the positional non-uniformity characteristics, the entire screen was 

filled with a white (R=G=B=255) patch. A total of 25 points were measured across the 

screen. The selected measuring points are illustrated in Figure 3-11. 

 
Figure 3-11. Positions of 25 selected points for positional non-uniformity characteristics 
of a display device. The ‘h’ and ‘w’ are height and width of the screen, respectively. 
Adapted from BS EN 61966-4 (Multimedia Systems and Equipment--Colour 
measurement and management--Part 4: Equipment using liquid crystal display panels. 
2000, p.25). 
 

 CIELAB , ,  values were measured and the differences between the 

reference point (No.13) and the measured points across the screen were calculated. 

The variations in lightness, across the screen were as big as 6.12 and 3.00 

on the CG210 and the CG245W, respectively. On the CG210, the reference point 

(centre of the screen) was the brightest and the edges were measured to be darker. 

Lightness decreased as distance from the central region to the measured point increased. 
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The CG245 display, however, showed different characteristics. The top right area of 

screen was much brighter than the central region. The bottom area of the screen was the 

darkest. The results are shown in Figure 3-12. 

The variation in chroma,	   , across the screen was fairly large on the CG210 

compared with that on the CG245W. The maximum chromatic variations,	   , were 

3.04 and 0.56 on the CG210 and the CG245W, respectively. The results are plotted in 

Figure 3-13. 

In addition to the chromatic and lightness variations across the screen, the 

colour differences,	   , were evaluated. Overall average colour difference,	   , of 

6.28 and 3.89 were found on the CG210 and the CG245W, respectively. Although the 

differences were not proportional to the distance from the reference point, position no. 

13, the reproduction error,	   , were generally higher at the edges of screen on both 

devices, as shown in Figure 3-14. 
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Figure 3-12. Lightness differences, , from the reference point to the measured points 
across the screen. The CG210 (top) and the CG245W (bottom). 
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Figure 3-13. Chromatic differences,	   , from the reference point to the measured 
points across the screen. The CG210 (top) and the CG245W (bottom). 
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Figure 3-14. Colour differences,	   , from the reference point to the measured points 
across the screen. The CG210 (top) and the CG245W (bottom). 
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3.2.6 Dependency on background 

Dependency on background characteristics of display devices describes the effect of the 

background brightness on the centrally displayed patches or images. A pair of test 

patches was created. One contained a black background with a white patch in the central 

area, while the other contained a white on the entire patch. 

CIELAB values of both patches were measured and the colour differences were 

calculated and shown in Table 3-5. From the results, it was found that the luminance 

and the chromaticity of the central measured region were independent from the 

background colour on both displays. 

 

Display 
model 

Black background White background 
  

      

CG210 105.10 -7.33 -8.57 104.99 -7.55 -8.85 0.37 0.21 

CG245W 106.79 -8.81 -8.12 106.73 -8.85 -8.26 0.16 0.18 
Table 3-5. Measured CIELAB values and evaluated colour differences. 

 

3.2.7 Temporal stability 

Temporal stability characteristics of display devices describe the time required to 

reproduce stabile output luminance and chromaticity of the display devices, and the 

variation in performance over period of time. Short-term stability characteristics for the 

duration of 2 hours with an interval of one minute and mid-term stability characteristics 

for the duration of 24 hours with an interval of ten minutes were investigated. Once the 

each display device was prepared to display a white patch, the display was turned off to 

cool down for minimum one day before the measurement. Then the displays were 

turned on and measurements were made one minute after the display was turned on. 
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Measurements were carried out for the duration of 2 hours for the short-term stability 

characteristics. For the mid-term stability characteristics, the first measurement was 

made 10 minutes after the display devices were turned on and the measurements were 

carried out for the duration of 24 hours. 

The output luminance, Y (in	  cd/m ), and the chromaticity coordinates x, y were 

measured and plotted against time in Figures 3-15 and 3-16. From the short-term 

stability characterisation, the CG245W display performed excellent with a standard 

deviation, , of 0.318 in luminance whilst the CG210 showed 5.279 after the first 

measurement. From the mid-term stability characterisation, the CG245W display 

performed excellent with a standard deviation of 0.191 in luminance whilst the CG210 

showed 1.735. Both mid-term and short-term stability in chromaticities were, however, 

excellent with a standard deviation of less than 0.001 from both devices. 

Both systems were calibrated and set to display at the peak luminance of 

120cd/m . However, the CG210 was found to be resetting the calibration settings 

automatically when powered off. It is also clear in Figure 3.15 that the output luminance 

of the EIZO CG210 fluctuated even after a long warm up time. 
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Figure 3-15. Short-term stability in luminance (top) and in chromaticities (bottom), on 
the CG210 (left) and on the CG245W (right). 
 

 

 
Figure 3-16. Mid-term stability in luminance (top) and in chromaticities (bottom), on 
the CG210 (left) and on the CG245W (right).  
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3.2.8 Viewing angle dependency 

Viewing angle dependency characteristics of display devices describe the effect of the 

viewing angle on the output luminance and chromaticity. Both devices were equipped 

with a tilt stand which allowed changes in the vertical viewing angle. A turntable device 

which allowed accurate horizontal swivel was placed under the display stand for the 

evaluation of horizontal viewing angle characteristics. 

A set of test patches containing 8 neutral and 3 pure primaries in the centre area, 

with a black background, were prepared. Angular dependency on luminance, Y, as well 

as CIE 1976	   ,	   	  chromaticity coordinates over a horizontal range of centre ±40° at 

an interval of 10° were measured. The ( ) angles represent viewing from the left side 

and the (+) angles represent viewing from the right. The measurement was repeated for 

a vertical range of 5° and +20° for the CG245W and a vertical range of 0° and +20°. 

The angular measurement distance interval was 5°. 

 The changes in output luminance at various viewing angles are plotted in Figure 

3-17. The variations in chromaticities are also plotted on chromaticity diagrams in 

Figure 3-18. It was clear that the loss in luminance was fairly large on both devices. The 

loss in luminance was slightly higher when the viewing angle was changed vertically. 

However, the changes in chromaticities at different viewing angle were fairly small on 

both devices. 

In addition to the pure primary colours and the white, a set of neutral patches 

were measured and plotted in Figure 3-19. 
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Figure 3-17. Luminance output of the pure primaries and the white at various horizontal 
and vertical viewing angles. Solid lines represent vertical luminance and broken lines 
represent horizontal luminance. The CG210 (top) and the CG245W (bottom). 
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Figure 3-18. Changes in chromaticities at various viewing angles. The CG210 (top) and 
the CG245W (bottom). 
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Figure 3-19. Changes in luminance output of neutral patches at various horizontal and 
vertical viewing angles. Solid lines represent vertical luminance and broken lines 
represent horizontal luminance. On the CG210 (top) and on the CG245W (bottom). 
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3.2.9 Positional non-uniformity at the observation plane 

All of the above characteristics were measured on the plane of the display faceplate. 

However, the psychophysical investigations were carried out by observations made at a 

certain viewing distance and in a plane of observation parallel to the display. The size of 

a standard reference image had a horizontal visual angle of approximately 20 degrees at 

the set observation distance. In order to investigate the impact of the display 

characteristics on the psychophysical experiments in the following chapters, the 

positional non-uniformity of the CG245W display was investigated at the observation 

plane. 

A Konica-Minolta CS-200 tele-chroma meter was placed 60cm away from the 

centre of the display device, in a plane parallel to the display to mimic the position of 

the observations. The entire screen was filled with white (R=G=B=255). A total of 13 

points (position 6 to 20, covering the display area used in Chapters 5 and 6) were 

measured from the observation plane by tilting and swivelling the measuring instrument 

(c.f. Section 3.2.5). 

Results showed that every position measured was darker compared with the 

central reference position (No.13), the differences in lightness,	   , ranging from 0.20 

to 4.11. The differences in lightness were larger at the horizontal orientation than at the 

vertical orientation. Also, the differences in chroma,	  	   , were evaluated to be higher 

(maximum of 1.45) than the results obtained from positional non-uniformity 

characterisation (maximum of 0.56). Overall, the colour differences, 	   , were 

calculated and plotted in Figure 3-20. The average error was 2.36 with a ranged from 

0.97 to 5.24. 
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Figure 3-20. Colour differences, 	   , from the reference point to the measured 
positions across the screen. 
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edges of the screen; however, it was not proportional to the distance from the reference 

point (centre of the screen). After the characterisation of the display, it was found that 

the positional non-uniformity of the display not sufficiently uniform for further 

investigations (c.f. Chapters 5 and 6). Therefore, the EIZO CG245W was purchased at 

the stage of the project for use in the matching experiments. 

The CG245W exhibited black levels of less than 0.1% and accurate 

reproduction of tone and colours at the central region of the screens. Also, the CG245 

display showed a good temporal stability. The standard deviations of the output 

luminance, were =0.27% over a period of 2 hours and =0.16% over a period of 24 

hours. However, the CG245W exhibited slight variations, just over a perceptible limit 

(Berns et al., 1993), of its performance across the screen. Average reproduction 

error,	   , was 1.53, ranging from 0.38 to 3.89. This was mainly due to the variations 

in lightness. 

Further, the CG245W also showed considerable angular dependency on 

luminance. However, the observations were made at set distance without changing the 

angle of display plane, the viewing angle dependency characteristic evaluated by tilting 

and swivelling did not have significant meaning. Therefore, the positional non-

uniformity characteristic of the limited display area, where the test images are displayed 

during the visual investigations in Chapters 5 and 6, was evaluated from the position of 

the observation to mimic the position of the observations. The colour differences,	   , 

were found to be higher with an average of 2.53, ranging from 0.97 (near central 

reference point) and 5.24 (at the edges); it was relatively proportional to the distance. 

Even though the colour reproduction of the CG245W was not spatially independent, the 

errors were below the commonly accepted limit (Abrardo et al., 1996). 



J.Y.Park, 2014, Chapter 3: Device characterisation  

97  

  

Since the display device was used to display a pair of images side by side for 

the visual matching experiments in the further experimental work in Chapters 5 and 6, 

the positional uniformity characteristic of the display was main concern, limiting the 

display systems’ performance. By repeating the pair of displayed images in random 

order each time, the experiments were carried out, the impact of the slight display non-

uniformity was minimised (Jin et al., 2009). The various characteristics of the display 

devices evaluated in this chapter were considered for the determination of the final 

choice of devices, the software preparation and interface design (i.e. determination of 

the display areas, randomisation of the displayed image positions, etc.).
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Chapter 4 

 

 

Psychophysical investigation 1: 

Identification of image attributes that are 

most affected by changes in displayed image size 

 

 

 

 

 

 

 

 

This chapter is concerned with the investigation of changes in image appearance when 

images are viewed at different image sizes on an LCD device. Aim of this 

psychophysical investigation was to identify image attributes that were most affected 

visually by changes in displayed image size. This was achieved by collecting data from 

a series of visual experiments using the rank order method to obtain ordinal scales. This 

chapter first describes the preparation of test stimuli by the image capture, the selection, 

and the image processing. Secondly, it briefly describes the experimental set up and the 
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method employed. Finally, the results were further discussed in relation to the scene 

characteristics. Further, research was carried out to link original scene content to the 

attributes that changed most with changes in image size. 

 

4.1  Preparation of test stimuli 

4.1.1 Image capture 

Two digital image capturing devices (with built-in LCDs) of different overall image 

quality were used for recording identical natural scenes with a variety of pictorial 

contents. An eight megapixel Canon 30D digital SLR camera, equipped with an EF-

S10-22mm lens and a two megapixel Apple iPhone camera with a built-in lens were 

used for capturing the test images. Both cameras were characterised by the methods 

described in Chapter 3. Camera specifications and settings employed during scene 

capture are also explained in Chapter 3. 

For each captured scene both devices were set to the same focal length to record 

‘identical’ image frames. Because shutter speed and lens aperture are not adjustable 

manually on the Apple iPhone camera, several exposures were made for each scene 

with the Canon 30D camera in manual mode to visually match the captured image by 

the Apple iPhone. As the Apple iPhone allowed saving captured scene as JPEG files in 

sRGB 8-bit per channel colour coding only, all images captured by both cameras were 

saved in JPEG format (Information technology--Digital compression and coding of 

continuous-tone still images: Requirements and guidelines. 1994). The most similarly 

exposed images from both cameras were selected by visual inspection to create the 

appropriate test set. 
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4.1.2 Image selection 

Image selection was carefully carried out, to include scenes representative of various 

possible situations and conditions from ordinary digital camera users. For each 

capturing device, a total of sixty-four captured scenes, including architecture, nature, 

portraits, still and moving objects, and artwork under various illumination conditions 

and recorded noise levels were selected. The selected test sets included some colourful 

and some rather neutral images, images that contained sharp edges, or unsharp (out of 

focus) edges resulting shallow depth of fields, images with more or less fine detail, 

some relatively dark and some light images. The purpose for this variation on test image 

content was to investigate the relationship between groups of images with varying 

characteristics and their appearance changes with changes in the displayed image size. 

For the investigation of the effect of motion blur on image appearance, the test sets 

included some images where camera shake was purposefully introduced. 

 

4.1.3 Image processing 

The original captured images from both capturing devices were too large to be 

displayed at full resolution on an EIZO ColorEdge CG210 21.3” LCD, which was used 

in this investigation. Thus, the test images were sub-sampled from their original sizes to 

744(H)×560(V) pixels, using bi-cubic interpolation. The effect of the interpolation on 

the Spatial Frequency Response (SFR) of the images was investigated; it is presented in 

Chapter 5. The size of the sub-sampled reference images was approximately half of the 

LCD’s native horizontal and vertical pixel resolutions. It is an appropriate image size to 

be displayed on commonly used displays. Achromatic versions of the test stimuli were 

also prepared to investigate various image attributes, such as contrast, sharpness, 
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brightness and noise, which are affected mostly by the luminance (achromatic) channel 

(Hunt, 2004, p.48-59). The achromatic versions of the test stimuli were obtained using 

Adobe Photoshop v.7.0, by converting all sub-sampled images from sRGB to CIELAB 

space and selecting the lightness channel ( ) for the purpose. 

 

4.2  Psychophysical investigation 

Due to difficulties in controlling the ambient lighting in the laboratory, the experimental 

work was conducted in a totally dark environment. Although the reference sRGB 

display viewing conditions are dim (ambient illuminance of 64lux, and veiling glare of 

0.2 cd/m ) (Multimedia Systems and Equipment--Colour measurement and 

management--Part 2.1: Default RGB colour space--sRGB. 2000), the advantage of 

conducting experiments in such an environment was that the display was free from 

veiling glare, which is known to decrease the perceived contrast and colour saturation 

(Hunt, 1952). Displaying images in dark rather than in dim conditions produced a 

slightly reduced overall image contrast (Chapter 4 of Fairchild, 2005). This variation 

was not considerable and did not affect the visual quality of the original test images. 

The rank order method was chosen and implemented in this chapter. It is the 

quickest and most straight forward for obtaining ordinal data (Engeldrum, 2000, p.79). 

As we have discussed in the earlier section (c.f. 2.3.3.2), the main disadvantage of the 

ordinal scale is that it does not possess any significance of differences. However, the 

aim of this investigation was to find which attribute(s) were most affected by displayed 

image size. The magnitude of differences was secondary importance, since we planned 

to further evaluate the perceptual differences in later research (c.f. Chapters 5 and 6). 

 



J.Y.Park, 2014, Chapter 4: Psychophysical investigation 1: Identification of image attributes that are 
most affected by changes in displayed image size  

102  

  

4.2.1 System calibration and settings 

The EIZO ColorEdge CG210 21.3” LCD, presented in Chapter 3, driven by a Sony 

VAIO VGN-T92S computer with an on-board graphics controller, was used in the 

psychophysical investigation (c.f. Section 3.2.10). Calibration was achieved using the 

GretagMacbeth Eye-One Pro with Profilemaker v5.0 to the settings presented in 

Chapter 3. Display calibration was repeated daily throughout the period of the 

psychophysical investigations. 

 

4.2.2 Software preparation and interface design 

The psychophysical display application was designed to display an image in two 

different displayed image sizes, side by side. It was written in JavaScript and optimised 

in Mozilla Firefox v3.0.1 web browser (Mozilla, 2013). A mid-grey (50% luminance) 

background was selected; at a display gamma of 2.2, it was corresponded to a pixel 

value of 186 for all three R, G and B channels. This mid-grey was selected to minimise 

background effect on the appearance of test images (Choi et al., 2007b, Choi et al., 

2007a). 

During the experiment, each test image was displayed simultaneously at two 

different sizes; one at the “original” control size of 744(H)×560(V) and the other 

equivalent to the size of the built-in LCDs of each capturing device (186(H)×140(V) for 

the Canon 30D and 244(H)×182(V) for the Apple iPhone). Test images were displayed 

in random order and in random left-right display positions, (i.e. left: large image, right: 

small image, or vice versa). The application automatically recorded the observation data 

and saved them as a text file on the computer’s hard disk. The display interface is 

illustrated in Figure 4-1. 
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Figure 4-1. Display interface for the psychophysical test page in achromatic mode. 

 

4.2.3 Rank order method 

Rank order experiments were conducted by displaying the same image at two different 

sizes, side by side. The display interface is illustrated in Figure 4-1. Each observer took 

the test four times: for each camera, they judged both the achromatic and the chromatic 

versions of the test stimuli. Observers were seated approximately 60cm away from the 

display to keep the angle of subtense and were asked to sustain the viewing distance. 

However, observers were not forced to keep it with a chin-rest, which was used in later 

experiments (c.f. Chapters 5 and 6). At the set distance, visual angle of the reference 

image was approximately 20 degrees. Observer’s instructions were provided to the 

observers to rank-order the attributes that were affected with changes in displayed 

image size. For the achromatic version of the stimuli they rank ordered the following 
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attributes (from 4 being the most affected to 1 being the least affected): contrast, 

brightness, sharpness and noisiness. For the chromatic versions, in addition to the 

previous attributes, they also rank ordered hue and colourfulness (rank order from 6 to 1, 

including the previous four attributes). A total of seventeen observers, 9 females and 8 

males, took the experiment. Their age ranged between 20 and 60 years old and had 

normal, or corrected, visual acuity. They had all previously been tested for colour 

deficiencies and they were mostly from imaging and design backgrounds. 

 

4.3  Classification of test images 

The original full size versions of the test stimuli were categorised by both an objective 

method, suggested by Triantaphillidou et al. (Triantaphillidou et al., 2007), and by 

visual inspection. The authors have suggested a method to analyse and classify  scenes 

by deriving certain scene metric values that identify how much or how little of a ‘scene 

characteristic’ relevant to an image quality attribute the image may possess. In brief, to 

discuss the proximity of the scene metric values between the different scenes and 

therefore the similarity in their characteristics, they classified these scene metrics into 

four ranges, ordered by relative distance from the median value quantifying the ‘scene 

characteristic’. Values found to be within one standard deviation, , from the median 

value were considered ‘average’ and were split into ‘average-to-low’, if below the 

median and ‘average-to-high’, if above the median. Another two categories included 

‘extreme’ values, i.e. values that were more than ±1  away from the median, 

comprising the ‘very low’ category if more than 1  below the median, and ‘very high’ 

if more than 1 above the median. 
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To investigate the relationships between the attribute rankings and the test-

scene content, the test stimuli in this work were classified according to five different 

image characteristics: three characteristics were affected by both scene content and the 

capturing system’s performance and two further characteristics were affected solely by 

the system’s performance. For examining the lightness (i.e. how light/dark they may 

look to the observer) and the colourfulness (i.e. how colourful/non-colourful they may 

look) of the test images, the original stimuli were classified using objective scene 

analysis. In addition, all pairs of stimuli (same imagery with both cameras) were 

visually inspected to investigate the effect of system performance on the classification. 

For examining the busyness, sharpness and noisiness of the stimuli, only visual 

inspection in a dark surround was used. 

Table 4-1 shows the selected image characteristics and the number of images 

that fall in each category, for both the Canon 30D and the Apple iPhone cameras. The 

median CIELAB	    values were used to classify image lightness. The test images 

obtained by both devices were similarly classified, i.e. similar number of images in each 

category. The variance in chroma of the images,	   , which has been shown to 

correlate with the perceived colourfulness (Triantaphillidou et al., 2007), was used for 

the ‘colourful/non-colourful’ classification. In this case, images were classified 

differently for each device, due to differences in the capturing system performance. For 

example, some images from the Apple iPhone camera were objectively classified as 

‘colourful’ , simply due to high colour noise levels, even if they were not otherwise 

especially colourful in visual appearance. 

The test images were finally categorised for busyness, sharpness and noisiness, 

by visual inspection. Careful subjective classification was carried out using a calibrated 
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to sRGB monitor and similar viewing conditions to these employed in the 

psychophysical tests. For the busyness characteristics, images possessing high amount 

of detail and texture were categorised as ‘busy’, whereas those possessing mainly 

slowly varying areas were categorised as ‘non busy’. For the sharpness characteristics, 

images that were in sharp focus and/or possessing sharp edges were categorised as 

‘sharp’, whilst those that appeared out-of-focus and/or possessing blurred and moving 

objects and/or where camera shake had been introduced during capture, were 

categorised as ‘un-sharp’. For the noisiness characteristics, the test images appeared to 

possess any visible noise were categorised as ‘noisy’. The number of images assigned in 

each category for latter two characteristics were different for the two camera systems, 

since sharpness and noisiness are highly dependent on imaging system performance 

(Triantaphillidou, 2011a, p.348). 

 

  

Dark/Light Colourful Busy Sharp Noisy 

Dark Moderately 
dark 

Moderately 
light Light Colourful Moderately 

colourful 

Moderately 
non 

colourful 

Non 
colourful Yes No Yes No Yes No 

Canon 
30D 8 24 22 10 17 15 21 11 

30 34 
49 15 30 34 

Apple 
iPhone 8 24 21 11 21 11 11 21 43 21 62 2 

Table 4-1. Images classified according to their lightness, colourfulness, busyness, 
sharpness and noisiness. 
 

4.4   Results and discussion 

The ranked data for all test stimuli were averaged for each mode (achromatic and 

chromatic) and each camera. The attribute with highest average rank means ‘the most 

affected attribute’ with changes in the display image size. Figure 4-2 shows the average 

ranks with standard error bars for all images captured by both cameras. The attributes 
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with the higher average rank mean that the corresponding attributes are affected more 

by changes in the displayed image size. 

Overall, for the achromatic version of the stimuli obtained by both cameras, 

observers ranked sharpness as the most affected attribute and contrast as the second 

most affected attribute, by changes in the displayed image size. Brightness and 

noisiness were ranked third and fourth, respectively. However for the stimuli obtained 

using the Apple iPhone camera, the difference in average ranks for brightness and 

noisiness became very small, with 2.19 for brightness and 2.20 for noisiness. In Figure 

4-2, the variations in the average ranks were similar for contrast and brightness with 

approximately 0.3 for both stimuli sets. However, it was clear that the variations in the 

average ranks for sharpness and noise were higher for stimuli obtained by Apple iPhone 

camera compared with those obtained by the Canon 30D camera. 

For the chromatic version of the stimuli captured with the Canon 30D, 

observers again ranked sharpness, contrast, and brightness in the same order (i.e. first, 

second and third) as for the achromatic stimuli. Colourfulness and hue were found to be 

affected less, whilst noisiness was the least affected attribute, although it is to be noted 

that most test images did not contain significant amounts of noise. 

For the chromatic version of stimuli from the Apple iPhone camera, observers 

again ranked sharpness and contrast as the two most affected attributes. However, 

noisiness, colourfulness and brightness were ranked as third, fourth and fifth whilst hue 

was ranked last. 

The ranking of the attributes for the chromatic version of stimuli from the 

Apple iPhone camera was different, with noise and colourfulness having higher ranks, 

compared to the stimuli from the Canon 30D. This result is related to the relatively 
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lower average lightness and the higher level of chromatic noise that were present in 

most of the test stimuli originating from the Apple iPhone camera. 

Overall, hue was affected less, or not at all with changes in displayed image 

size. This was also found by Xiao et al. in various colour appearance experiments (Xiao 

et al., 2003, Xiao et al., 2004). 

Overall rank-orders of the attributes are as below: 

 

Achromatic stimuli: Sharpness > Contrast > Brightness > Noisiness   (Both devices) 

Chromatic stimuli: Sharpness > Contrast > Brightness > Colourfulness > Hue > Noisiness (Canon 30D) 

  Sharpness > Contrast > Noisiness > Colourfulness > Brightness > Hue (Apple iPhone) 

 

 
Figure 4-2. Average ranks from all test stimuli. 

 

Figures 4-3 to 4-7 present the average ranks in relation to image categories that 

were described in Section 4.3. 
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Figure 4-3. Average ranks of the image attributes of test stimuli categorised by their 
average lightness. Results from the achromatic versions of stimuli (top) and from the 
chromatic versions of stimuli (bottom). 
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Figure 4-4. Average ranks of the image attributes of test stimuli categorised by their 
colourfulness. Results from the achromatic versions of stimuli (top) and from the 
chromatic versions of stimuli (bottom). 
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Figure 4-5. Average ranks of the image attributes of test stimuli categorised by their 
busyness. Results from the achromatic versions of stimuli (top) and from the chromatic 
versions of stimuli (bottom). 
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Figure 4-6. Average ranks of the image attributes of test stimuli categorised by their 
sharpness. Results from the achromatic versions of stimuli (top) and from the chromatic 
versions of stimuli (bottom). 
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Figure 4-7. Average ranks of the image attributes of test stimuli categorised by their 
noise level. Results from the achromatic versions of stimuli (top) and from the 
chromatic versions of stimuli (bottom). 
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In general, for test stimuli categorised as ‘dark’ and containing higher levels of 

noise, sharpness was affected less and noisiness was affected more compared with other 

stimuli classified in different categories (Figure 4-3). For test stimuli obtained by the 

Canon 30D, the average ranks for brightness was slightly increased as the average 

lightness of the test stimuli increased (Figure 4-3). In a similar fashion, the average rank 

of colourfulness was higher for ‘colourful’ stimuli and lower for ‘non colourful’ stimuli 

(Figure 4-4). 

The average rank of noisiness was lower for stimuli categorised as ‘busy’ and 

higher for stimuli categorised as ‘non busy’ (Figure 4-5). This is due to noise being 

masked by the high frequency information in the scene (Keelan, 2002, Triantaphillidou 

et al., 2007, p.35). The average rank of contrast was lower for stimuli that were 

categorised as ‘sharp’, while the ranks of sharpness and noisiness were higher (Figure 

4-6). The noise level of the test stimuli were also related to colourfulness in the 

chromatic versions (Figure 4-7). The average rank of noisiness was affected more for 

stimuli categorised as ‘noisy’, indicating that when noise is visible in the image then 

noisiness becomes an important attribute with respect to changes in image size (Figure 

4-7). 

 

4.5  Summary 

A novel psychophysical experiment was carried out to investigate the changes in image 

appearance when images were viewed at different image sizes. Two sets of digital 

capturing devices with different overall quality were used to record sixty four natural 

test scenes, with varying scene content and under various illumination conditions. Six 

image attributes in total (four attributes for achromatic versions) were investigated. 
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Expert observers with imaging and design backgrounds were selected, because of the 

complexity of understanding the terms used to describe the perceptual attributes by non-

expert observers. 

Results from the experiments for the achromatic stimuli indicated that the 

perceived sharpness and contrast were two most affected image attributes when images 

are displayed in different sizes, followed by brightness. Noisiness was found to be the 

least affected attribute. However, results from the experiments for the chromatic stimuli 

were slightly different. Although sharpness and contrast were again the two most 

affected attributes by the changes in displayed image size, noisiness came third. This 

result is not surprising since most of the test images obtained by the Apple iPhone 

camera possessed some perceptible noise to start with (c.f. Table 4-1). In conclusion, 

noise can potentially be an attribute affected considerably by display image size, but 

only when the starting level of noise is quite important. 

Also, the results varied with scene content and characteristics. The average 

lightness level of a scene was found to relate to the attributes of sharpness and noisiness, 

while the colourfulness of a scene was found to relate more to the attribute of 

colourfulness (Choi et al., 2007b). The busyness of a scene was also found to relate to 

noisiness, i.e. as busyness increased noisiness became less important due to visual 

masking (Keelan, 2002, Triantaphillidou et al., 2007). Finally, the perceptual sharpness 

of a scene was found to be related to the attributes of sharpness and noisiness (they are 

complimentary (Johnson and Fairchild, 2000)) whilst the noise level of a scene was 

related to noisiness. 

Although the image size is of one of the important factors affecting the image 

appearance, there are various other factors should be considered. Due to difficulties in 
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controlling the ambient lightings in the laboratory, the visual investigations were carried 

out in a dark environment, to avoid veiling glare. However, this is not the reference 

viewing condition for sRGB setting. The visual image quality of the test stimuli was 

nevertheless not affected. Furthermore, the CG210 display used in this experimental 

work was found to exhibit inaccurate tone reproduction and considerable positional 

non-uniformity characteristics (c.f. Section 3.2), which may have influenced the results. 
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Chapter 5 

 

 

Psychophysical investigation 2: 

Evaluation of changes in perceived 

sharpness with changes in displayed image size 

 

 

 

 

 

This chapter is concerned with the quantification of the degree of change in perceived 

image sharpness with respect to changes in displayed image size. This was achieved by 

collecting data from the visual sharpness matching investigations using the method of 

adjustment in a dark viewing environment. This chapter first describes a method 

adapted from ISO 20462-3 (Photography--Psychophysical experimental methods for 

estimating image quality--Part 3: Quality ruler method. 2005), employed to create a 

series of frequency domain filters for sharpening and blurring. The filters are designed 

to provide equal intervals in image quality from a certain viewing distance. The effect 

of bi-cubic interpolation on image sharpness is also examined. Secondly, it explains the 

method and steps used for the evaluation of changes in image quality due to the changes 
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in displayed image size. Finally, the validation of results obtained from the sharpness 

matching experiments, and the details of calibration of the relative quality scale to 

sharpness JND scale are explained. 

 

5.1  Preparation of test stimuli 

5.1.1 System tone reproduction 

The experimental methodology involved the measurement of the transfer functions of 

the capturing and display devices and the consequent determination of the combined 

(overall) system gamma, which was further used for signal linearisation during SFR 

measurements. Measurement of the transfer function of the Canon 30D camera and 

EIZO ColorEdge CG245W display systems used in this investigation were carried out 

individually and described in Chapter 3. The combined transfer function was also 

measured and used in this investigation for both simplicity and accuracy. 

The LCD display device was calibrated to a white point luminance of 

120cd/m , a gamma of 2.2, and a colour temperature of	  D . For the measurement of 

the combined (camera-display) transfer function, the average pixel value of the patches 

of captured greyscales presented in Section 3.1 was displayed on the calibrated display. 

The output luminance values of the displayed patches were measured using a calibrated 

Konica Minolta CS-200. Normalised output luminance values were plotted against 

normalised input luminance values in log-log scale, as shown in Figure 5.1. The overall 

gamma of =1.21 was derived from a linear portion of the curve (c.f. Section 3.1.3). 
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Figure 5-1. Transfer function of the Camera-Display combined system. 

 

5.1.2 System SFR 

The slanted edge method (BS ISO 12233:2000 (Photography--Electronic still picture 

cameras--Resolution measurements. 2000)) was implemented to measure the combined 

spatial frequency response (SFR) of the capturing and display devices. A test target with 

scalable vector graphics (SVG) patterns containing vertical and horizontal edges was 

created using Imatest software (Imatest. 2013). The test target had a contrast ratio of 3:1, 

at a gamma of 2.2. It was displayed on the calibrated EIZO LCD employed in the 

sharpness matching and was captured using the Canon EOS 30D camera with the zoom 

lens set to focal length of 22mm, from a distance of 100cm. This distance was chosen to 

avoid aliasing originating from the LCD pixel structure during the image acquisition, 

while maintaining the spatial frequencies of interest. 

The system gamma of =1.21 (c.f. Section 5.1.1) was taken into account for the 

gamma correction in the computation of the combined system SFR. The horizontal and 
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vertical SFRs were weighted 1/3 and 2/3 to determine the ‘average’ SFR of the 

combined system at each of the aperture stops (Photography--Psychophysical 

experimental methods for estimating image quality--Part 3: Quality ruler method. 2005). 

The spatial frequency units were then converted from cycles/pixel to cycles/degree. 

 

 
Figure 5-2. Spatial frequency responses (SFRs) of the combined system at major 
aperture stops. 
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bandwidth. Note that k values are key parameters in the determination of the sharpening 

and blurring filters (Photography--Psychophysical experimental methods for estimating 

image quality--Part 3: Quality ruler method. 2005, p.11) and are discussed in the next 

section. 

 

5.1.3 Determination of the reciprocal measure of the system bandwidth, k 

A set of model curves was computed to determine the reciprocal measures of the 

combined systems, using Equation 2.16 by varying the values of k. They are shown in 

Figure 5-3. The combined system SFRs (for the set observation distance) were 

compared with the modelled curves at modulation of 0.5 and 0.3. Then the k values of 

the nearest modelled curves were selected. The k values, which represent the ‘shape 

parameter’ of the model curve, were k=0.030 for apertures up to f11 and k=0.047 for f16. 

The secondary standard quality scale, 	  SQS , values associated with the system 

bandwidth, k, at each aperture were then calculated using Equation 2.17 (Photography--

Psychophysical experimental methods for estimating image quality--Part 3: Quality 

ruler method. 2012). The SQS  values associated with k=0.030 and k=0.047 were 

found to be approximately 27 and 20, respectively, as shown in Figure 5-4. 
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Figure 5-3. Modelled MTF curves with the various k values. 

 

 
Figure 5-4. Secondary standard quality value at k=0.030 and k=0.047. 
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5.1.4 Sharpness filters 

A total of thirteen modelled curves with k values associated with SQS  values, ranging 

between 27 and 14 for the aperture at f11 and below and between 20 and 8 for f16, were 

selected with constant intervals of 1	  SQS . The curves were then divided by the 

corresponding combined system SFR. SFRs beyond the Nyquist frequency,	   , of the 

LCD display for the given observation distance were replaced by 0. The resulting curves 

represented the functions to be used for blurring; they are illustrated in Figure 5-5. 

Vertically flipped versions of these represented the functions for sharpening, shown in 

Figure 5-6. The x-axes in the Figures 5-5 and 5-6 represent the image dimensions in 

pixels, thus leading to the filter functions is dependent upon the image size. The 1-D 

Gaussian filter functions (Gonzalez and Woods, 2002, p.175) in Figures 5-5 and 5-6 

were obtained for the dimensions of the original images, using Oakdale Engineering 

Datafit software v9.0 (Oakdale Engineering, 2007). 

Equation 5-1 represents the 2-D circularly symmetric Gaussian filter functions 

(Easton, 2010, p.197) for blurring and sharpening, H, 

 

   = 	  1 ×   for blurring    (5-1) 
   = 	  1 + × 	   for sharpening 

where D is the digital image dimensions and their spectra, and a, and b are the variables 

which controls widths of the filter apertures. 
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Figure 5-5. Cross section of blurring filters for the images taken at f11 and below. 

 

 
Figure 5-6. Cross section of sharpening filters for the images taken at f11 and below. 
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5.1.5 Frequency domain filtering and bi-cubic interpolation 

The filtering operations were carried out using MATLAB. The original images were 

first converted from the sRGB space to the linear with luminance	  R´G´B´	  space. The 

filters were applied to the spectra of the R, G, and B channels. The mean pixel values of 

the images were subtracted before the filtering and added back after the filtering to 

maintain the mean luminance of the scenes unaltered. 

A total of 25 ruler images, possessing different image quality levels with 

intervals of 1	  SQS  (original, 12 blurred versions and 12 sharpened versions) were 

generated for each original size image. We discuss the relationship between 1 JND in 

perceived sharpness and 1	  SQS  in image quality in a later section (c.f. Section 5.3.3). 

The ruler images were then resized to five versions of the same scenes of different sizes 

by bi-cubic interpolation to minimise interpolation artefacts with a cost of sharpness 

loss (Park et al., 2012). The test image dimensions were 744(H)×560(V) pixels, 

635(H)×478(V), 526(H)×396(V), 449(H)×338(V), and 372(H)×280(V) and represented 

large, large-medium, medium, medium-small and small sizes commonly displayed on 

computer and mobile device monitors. The smallest size was based on prevalent 

dimensions of LCD of digital SLR cameras. The largest version was approximately half 

the size of CG245W LCD’s native horizontal and vertical resolutions. 

 

5.1.6 Effect of bi-cubic interpolation on image quality 

The test stimuli were converted from the original capture size to five different sizes 

using bi-cubic interpolation. Because the interpolation affects the spatial characteristics 

of the images (Jin et al., 2009), effect of the bi-cubic interpolation on image quality was 

examined. 
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Figure 5-7. Effect of the bi-cubic interpolation on SFR, Tate Modern scene. 

 

 
Figure 5-8. Effect of the bi-cubic interpolation on SFR, Pembroke lodge sign scene. 
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To quantify the effects of the resizing operation on image quality, two scenes 

possessing strong, measurable edges were selected by visual inspection. The SFRs of 

the two different scenes were measured for large size versions and small ones from a 

selected edge in each scene. 

Image quality loss, as seen in Figures 5-7 and 5-8, was detected after the 

interpolation. The extent of this effect was however observed to be scene independent. 

The less sharp image, shown in Figure 5-7 to have a lower SFR, was affected 

approximately 3	  SQS  at the SFR of 0.5 in standard quality scale by the interpolations, 

while the sharper image, with a higher SFR shown in Figure 5-8, was affected 

approximately 2	  SQS  at the SFR of 0.5. The effect of the bi-cubic interpolation was 

taken into account for the data analysis in Section 5.3. 

 

5.2 Psychophysical investigation 

5.2.1 Display settings and calibration 

The EIZO ColorEdge CG245W 24.1’’ LCD, driven by a Dell Optiplex 760 computer 

with an ATI Radeon HD 3450 graphics controller, was used in the psychophysical 

investigation. The LCD has a native spatial resolution of 1,920×1,200 pixels and a tonal 

resolution of 24bits (with a DVI connector). The system was set to a white point 

luminance of 120cd/m , a gamma of 2.2 and a colour temperature of	  D , using the 

GretagMacbeth Eye-One Pro with Profilemaker v5.0. Daily calibration was carried out 

using the built-in calibration sensor throughout the period of the psychophysical 

investigations. 
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5.2.2 Software preparation and interface design 

The application employed in the sharpness matching experiment was written in PHP, 

HTML and CSS, the user interface being controlled using JavaScript. It was tested and 

optimized for Mozilla Firefox v5.0 web browser (Mozilla, 2013). A mid-grey 

background in luminance (pixel value of R=G=B=186, at a gamma of 2.2) was selected. 

The application gathered some personal information provided by the observers before 

the experiments started and it automatically wrote the observation data and saved them 

in a comma-separated value (CSV) file. The display interface is illustrated in Figure 5-9. 

 

 
Figure 5-9. Display interface of sharpness matching test with a slider. 

 

5.2.3 Sharpness matching experiment 

Visual sharpness matching experiments, using a slider controlled by the computer 

mouse, were conducted in a totally dark environment as described in Section 4.2.3. 

Observers were seated on a comfortable seat with a chin rest to hold the observation 
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distance at 60cm from the display and were requested to only move their eyes from side 

to side. During the tests, a randomly selected test image was displayed simultaneously 

at two different sizes. The test images were displayed with random display position, one 

on the left side and the other on the right side of the display, to minimise the impact 

caused by the positional non-uniformity and viewing angle dependency of the display 

device (c.f. Section 3.2.9). Observers were asked to match the sharpness of the smaller 

‘test’ images to that of the larger ‘standard’ images using a slider. The slider was 

programmed to simulate to the user an enhancement of quality of the images in 

response to changes in the slider position, by replacing the test image with the 

appropriate ruler image, according to the selected slider position. 

 Preliminary experiments consisting of three sharpness matching sessions was 

carried out using large, medium, and small size test image sets. The purpose of this step 

was to select ‘average’ scenes and consistent observers. A total of twenty-two observers, 

10 females and 12 males, participated in the experiment using all sixty-four scenes. 

Their ages ranged between 20 and 40 years old; fifteen observers had imaging and 

design backgrounds (considered as experts). Each observation took less than one hour 

per session; one session per day was conducted to avoid fatigue. 

As a first step for the elimination of extreme observers, the responses obtained 

by each individual observer were summed and the observers who responded in opposite 

direction to the majority of observers were discounted. Then the results obtained from 

all the remaining observers were averaged for each individual scene and the standard 

deviation, , was computed. As the purpose of this step is to select average scenes and 

consistent observers, to eliminate extreme results for each scene, any observations 

outside mean	  ±1  range (68% confidence interval) were excluded. After the elimination 
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of the extreme observations, means and standard deviations, , were re-calculated for 

each scene and for each observer. The above calculations were repeated using the 

median value ±1 . Sixteen common images and seven average observers, 3 females 

and 4 males, from the above steps were selected for the final experiments with the 

images at five different sizes. 

Final sharpness matching experiments at five different image sizes were carried 

out using 16 ‘average’ scenes by seven ‘average’ observers selected by the step above. 

The experiments consisting four sharpness matching sessions: small size to large size, 

medium-small size to large size, medium size to large size, and large-medium size to 

large size. Each observation took less than 20 minutes per session, with sufficient time 

being allowed between experiments for recovery from possible fatigue. 

 

5.3 Results and discussion 

For the analysis of the responses from the psychophysical experiments, the mean, , 

changes in image quality and standard error of the mean, SEM, was calculated for each 

scene and size pair. During the calculation, the effect of bi-cubic interpolation on image 

quality was taken into account (c.f. Section 5.1.6). 

 

5.3.1 Results from the psychophysical tests 

Observations from matching the sharpness of the small version image to that of the 

large version image, resulted in an average image quality loss of 9.179 JNDs (in 

secondary standard quality scale,	  SQS ), with an average standard error of mean (SEM) 

of 1.151. The range of image quality losses was from 7.79 to 10.50. The losses in image 

for each scene, along with standard error, are plotted in Figure 5-10.  
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Figure 5-10. Average perceived loss in image quality from the small vs. large 
experiment for each scene with SEM. 
 

 
Figure 5-11. Average perceived loss in image quality from the medium-small vs. large 
experiment for each scene with SEM. 
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Figure 5-12. Average perceived loss in image quality from the medium vs. large 
experiment for each scene with SEM. 
 

 
Figure 5-13. Average perceived loss in image quality from the large-medium vs. large 
experiment for each scene with SEM. 
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From the experiment of the medium-small against large pairs of images, an 

average change was 6.214 JNDs with an average SEM of 1.726. The range of quality 

losses was from 4.02 to 8.02. From the medium version against the large version image, 

an average change was 5.420 JNDs with an average SEM of 1.237. The range of quality 

losses was from 2.39 to 7.39. And the large-medium version against the large version 

matching experiment showed that the average image quality change was 3.179 JNDs 

with an average SEM of 1.253. The range of quality losses was from 0.77 to 5.20. The 

results are plotted in Figures 5-11 to 5-13. 

In addition to the above figures, the average changes in perceived image quality 

in SQS  from all four experiments were plotted as a function of displayed image size in 

Figure 5-14. The figure clearly shows that the perceived sharpness was affected by 

changes in the displayed image size linearly. Smaller version images were perceived 

sharper than that of the larger version whilst the relationship between perceived 

sharpness and image size was very close to an inverse linear relationship. Mirrored data 

at zero point have also been estimated by extrapolation and plotted as linear function to 

predict change in perceived sharpness when images may be displayed at larger scales. 

This assumes that the relationship remains linear. The linear trend line showed the 

relationship as; y = 0.11 0.05. 
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Figure 5-14. Perceived changes in image quality with respect to the changes in 
displayed image size (blue) and estimated changes (red) in non-calibrated relative image 
quality JND scale (SQS ). 
 

5.3.2 Validation of the results 

In order to validate the results acquired by the sharpness matching investigations, a 

series of pair rating experiments was conducted by adapting the magnitude estimation 

method. A total of sixteen large size average scenes (c.f. Section 5.2.3) and their 

corresponding smaller versions, one unmodified and one sharpness modified version, 

were prepared. A total of 7 average participants, who carried out the sharpness matching 

investigation, carried out the experiments under the same experimental environment 

described in the earlier section (c.f. Section 4.2). A randomly selected test image pair 

was displayed to the observers at a time during the experiments. The observers were 

then asked to rate the test image pair in terms of their appearance matching (from 10 
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minimum rates for the first image pair. Observer calibration was carried out for the 

analysis of data.  

Results from these experiments confirmed that the image pairs with sharpness 

modified version, average rating of 5.00, appeared to be the better matching compared 

with those with unmodified version, 4.62, as shown in Figure 5-15. 

 

Figure 5-15. Average ratings of the unmodified pairs and the sharpness matched pairs. 
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experiments more efficient (c.f. Section 2.3.3.2), central region of the scale (original 

±6 steps) was used. 

Three male expert observers participated to a total of one hundred and ninety 

two sessions. Each observation took less than 10 minutes per session and a maximum of 

10 sessions per day was conducted to avoid fatigue. 

The outcome was used to calibrate the results plotted in Figure 5-14 into 

perceptually meaningful JND scale for the sharpness attribute. From the experiments for 

the sharpness step validation, an average of 0.71 JNDs (in	  SQS scale) was found to be 

1 JND in perceived sharpness. The results obtained in Section 5.3.1 were then calibrated 

and plotted in Figure 5-16. The linear trend line showed the relationship as; y = 0.159x 

 0.069. The change in perceived sharpness was as much as 11.86 JNDs with 75% 

change in the displayed image size. 

 

 
Figure 5-16. Changes in perceived sharpness with respect to the changes in displayed 
image size (blue) and estimated changes (red) in sharpness JND scale. 
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5.4 Summary 

From the previous experiments, sharpness attribute was identified as the most affected 

perceptual image attribute by changes in displayed image size. Therefore, a series of 

five psychophysical experiments were carried out to quantify the changes in perceived 

sharpness with respect to the changes in displayed image size using the method of 

adjustment. This method was chosen because it allowed direct evaluation of the visual 

differences between a pair of images of difference sizes, viewed at the same time and on 

the same display. A total of sixty-four natural scenes, captured using Canon 30D camera, 

with varying scene content were initially selected. For the image display, a new 

CG245W monitor, exhibiting better overall characteristics was employed. This was 

because of the monitor used in the rank order investigation (c.f. Chapter 4) exhibited 

positionally inhomogeneous characteristic, which made the monitor unsuitable for the 

purpose of the matching experiment. 

A set of 25 images of varying image sharpness with an equal quality interval 

were created for each original, using frequency domain filtering by adapting the method 

described in ISO 20462-3. The filtered images were resized to generate five different 

sizes: large, large-medium, medium, medium-small and small. The observers were 

requested to start to match the small version to the large reference since the difference 

in displayed image size was the biggest. Results from all four psychophysical 

experiments indicated that the smaller version images were perceived as sharper (i.e. 

better quality) than the reference ones with approximately linear trend. Average 

difference of perceived image quality between the reference version images and the 

small ones was approximately 9.18 JNDs. 
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The softcopy ruler images were created by an adaptation of ISO 20462-3. In 

different literature (Keelan, 2002, p.73), Keelan who is one of the co-authors of the 

standard has described one relative quality JND in Secondary Standard Quality Scale 

(SQS ) as a multivariate JND increment, which is larger than a univariate increment. 

Univariate increments vary in one attribute, such as in sharpness or noisiness only, 

where multivariate increments are based on all attributes that affect overall quality. In 

the case of sharpness, Keelan found JND increments of quality to be approximately 

twice as large as JND increments of sharpness (Keelan, 2002). Keelan calibrated the 

relative quality JND scale in the standard using images with negligible artefacts and 

noise, and with excellent colour and tone rendition (Jin et al., 2009). 

However, the image set used in this experiment was carefully selected to 

comprise examples of imagery captured by ordinary camera users, rather than 

professionals. Therefore, the images were expected to be “not at the best quality the 

camera system can produce” in colour and tone as well as in sharpness. Thus, the results 

obtained from the sharpness matching experiments do not in all cases correspond 

directly to the standard quality scale, 	  SQS , presented in the standard. Therefore, 

calibration of the results from the	  SQS 	  	  into perceived sharpness scale was carried out 

next. Since the results acquired from the matching experiments were in image quality 

(multivariate) scale, rather than in a sharpness (univariate) scale, the results were 

rescaled to convert quality steps to sharpness steps, by employing a validation test. In 

calibrated perceived sharpness scale, the average difference in perceived sharpness was 

approximately 11.86 JNDs with 75% change in the displayed image size. The red dots 

in both Figures 5-14 was estimated by linear extrapolation, and was based on the rather 
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assumption that the response of the visual mechanisms remains the same when images 

are displayed in larger sizes. 
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Psychophysical investigation 3: 

Evaluation of changes in perceived contrast 

with changes in displayed image size 

 

 

 

 

 

 

This chapter is concerned with a quantification of the degree of change in the perceived 

image contrast with respect to changes in displayed image size. This was achieved by 

collecting data from psychophysical investigations that used techniques to match the 

perceived contrast of displayed images of five different sizes using the method of 

adjustment in a dark environment. The chapter also details a method employed to create 

a series of S-shaped filters, which were implemented in the spatial domain and were 

designed to provide 25 equal intervals in global perceived image contrast. In addition, 

the validation of results obtained from the contrast matching experiments, the 
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evaluation of the step intervals and the calibration of the gamma scale to a contrast JND 

scale were described. 

 

6.1  Introduction 

The contrast of reproduced scenes depends on the tone reproduction of the imaging 

systems employed. Fairchild (Fairchild, 1995) described objective contrast as “the rate 

of change of the relative luminance of image elements of a reproduction as a function of 

the relative luminance of the same image elements of the original image”. 

Perceived contrast is, however, a visual phenomenon. Even if the visual 

contrast is dependent upon the objective contrast and affected by the absolute luminance 

levels of the image being viewed (Giorgianni and Madden, 2008, p.26), it is greatly 

influenced by the background (and the surround) (Fairchild, 2005, p.111-127). 

Braun and his colleague have remapped lightness using sigmoid functions to 

enhance image contrast based on the phenomenon of simultaneous lightness contrast 

(Braun and Fairchild, 1999). Image appearance is known to be affected by the 

background (and the surround) (Hunt, 1952). Thus, it is possible to make the highlight 

image area in an image appear lighter by making the shadow areas darker, which results 

in an increase in the perceived image contrast. This technique is based on the 

knowledge that the human visual system does not work on an absolute basis but instead 

it works on a relative basis (Giorgianni and Madden, 2008, p.26). In other words, the 

human visual system is more sensitive to contrast rather than absolute luminance. 

In LCD systems, tone reproduction is defined as the functional relationship 

between the input pixel values and the output luminance, and contrast can be expressed 

by gamma, . When the relationship is plotted in linear units and described by a power 
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function, the exponent represents gamma (c.f. Section 2.2.2.1). Bilissi et al. (Bilissi et 

al., 2008) have conducted various psychophysical experiments to evaluate acceptable 

and just perceptible gamma differences using cathode ray tube (CRT) displays under 

both controlled and uncontrolled environments. The just perceptible differences in 

gamma were 0.12 and 0.10 under controlled and uncontrolled environments, 

respectively. 

The purpose of the creation of the filters was to produce test images with 

different contrast and thus enabling us to quantify the changes in perceived image 

contrast with respect to changes in displayed image size. In this task, it was essential to 

take into account the perceptual gamma differences whilst keeping the mean image 

luminance unaltered. 

 

6.2  Preparation of test stimuli 

6.2.1 Creation of a series of contrast filters with n-JND interval 

In order to create a set of filters to increase the image contrast and their corresponding 

inverse functions, the S-shaped filter functions were manually created. For this work, a 

set of twenty four filter functions were created using the following steps. The step 

intervals were calculated by adjusting the gamma of the input to output transfer curve. 

 

1. Pixel values (PV) ranging between 0 and 128 (half way the pixel values range) 

were selected and normalised (divided by 128). 

2. Corresponding output PVs were calculated using a power function with 

exponent (gamma, ), ranging between 1.6 and 1/1.6 with intervals of 0.05 
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gammas (approximately half a perceptible gamma difference) (Bilissi et al., 

2008). 

3. Normalised original and corresponding PVs were converted back to their 

original range (0 to 128). 

4. Corresponding output PVs were then mirrored at PV of 128 for the calculation 

of PVs between 128 and 255. 

5. 6th order polynomials were fitted to the calculated output pixel values using 

Oakdale Engineering Datafit v9.0 (Oakdale Engineering, 2007). 

6. Actual gammas of each function were obtained for the mid-tones (PV between 

96 and 160). 

 

Filter functions for the gamma adjustment are illustrated in Figures 6-1 and 6-3. 

 

 
Figure 6-1. Sample S-shaped filter functions, calculated by gamma adjustment by power 
transformation. 
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Figure 6-2. A series of gamma increasing filter functions. 

 

 
Figure 6-3. A series of gamma decreasing filter functions. 
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6.2.2 Spatial domain filtering 

The filtering operation was carried out using MATLAB. The filter functions were 

applied directly on each pixel of the sixty-four original version images on the R, G, and 

B channels. A total of 25 ruler images, each possessing different perceived contrast 

level with equal gamma difference (original, 12 contrast decreased versions and 12 

contrast increased versions), were generated in spatial domain. Filtered images were 

then resized to five different versions by bi-cubic interpolation. The changes in mean 

luminance of the images were not evident. The dimensions of the resized test images 

were identical to those described in Chapter 5. 

 Sample image and its filter versions were present with image histograms in 

Figure 6-4. 

 
Figure 6-4. Sample S-shaped filters and the contrast manipulated images. Original 
image (top), contrast increased version at =1.52 (bottom left) and contrast decreased 
version at =0.48 (bottom right). 
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6.2.3  Contrast measurement of the ruler images 

In order to confirm the contrast changes in ruler images objectively, the root mean 

square (RMS) contrast, which is one of the most commonly employed metric for the 

purpose, was measured (Peli, 1990). RMS has been shown to correlate successfully with 

human contrast detection not only for the laboratory stimuli but also for natural images 

(Bex and Makous, 2002, Frazor and Geisler, 2006). RMS contrast is defined by the root 

mean square deviation of the pixel luminance from the mean pixel luminance of the 

image, divided by the image dimension (Pavel et al., 1987). RMS contrast,	   , of a 

two dimensional image are defined in Equation 6.1, adapted from Peli (Peli, 1990). 

 

	  = 	       (6.1) 

 

where R and C are the number of rows and columns in the image, 	  is the normalised 

luminance of   pixel,   is the mean normalised luminance of the image. 

 

  of all sixty-four test images and that of their ruler versions were 

measured in display luminance space. Each original scene possessed a different	    

value and the degrees of change in	    differed on ruler versions of each scene. 

However, changes in	    on filtered images showed a linear trend.	    values of 

four selected images of the large version are plotted in Figure 6-5 for illustration 

purposes. The selected scenes include those possessing the highest 	    and the 

lowest	    and two scenes possessing average	   . 
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Figure 6-5.  of four selected scenes at a different ruler scale. 

 

 
Figure 6-6.	   	  of ‘Regent’s Park 2’ at a different ruler scale in 3 different image sizes. 
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In addition, the effect of bi-cubic interpolation on the measured image contrast 

was investigated.	   	  	  of all test images at five different sizes were measured. However, 

the effect of bi-cubic interpolation on 	   	  was not evident. 	   	  of the filtered 

‘Regent’s Park 2’ scene at various image sizes are shown in Figure 6-6. 

 

6.3  Psychophysical investigation 

Visual contrast matching tests, using a slider controlled by the computer mouse, were 

also conducted in a totally dark environment, as described in Section 5.2.3. The same 

display, settings, calibration, and user interface were used as for the sharpness matching 

experiment (c.f. Section 5.2). 

Observers were seated on a comfortable seat with a chin rest to hold the 

observation distance at 60cm from the display. Observers were requested to move their 

eyes from side to side only. During the tests, a randomly selected test image was 

displayed simultaneously at two different sizes. The test images were displayed in 

random display sides, one on the left side and the other on the right side of the display. 

Observers were asked to match the contrast of the smaller ‘test’ images to that of the 

larger ‘standard’ images using a slider. The slider was programmed to simulate to the 

user an enhancement of contrast of the images in response to changes in the slider 

position by replacing the test image with the appropriate ruler image, according to the 

selected slider position. 

Experiments consisting of four contrast matching sessions were carried out: 

small size to large size, medium-small size to large size, medium size to large size, and 

large-medium size to large size. A total of twenty observers, 5 females and 15 males, 

participated in the experiment using all 64 scenes. Their age ranged between 20 and 40 
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years old and all of the observers had imaging and design backgrounds. Each 

observation took less than one hour per session; one session per day was conducted to 

avoid fatigue. 

 

6.4  Results and discussion 

The mean, , and standard error of the mean (SEM) were calculated for each scene and 

size pairs. 

 

6.4.1 Results from the psychophysical tests 

Observations from matching the contrast of the small version image to that of the large 

version image, resulted in an average change in tone reproduction of 0.087 gamma (or 

2.0 steps in the contrast scale), with an average standard error of mean (SEM) of 0.030. 

The range of change for all scenes was from	   0.04 to 0.19. The changes for each scene, 

along with standard error, are plotted in Figure 6-7. 

From the experiment of the medium-small against large pairs of images, the 

average change was 0.050 gamma with an average SEM of 0.027. The range of change 

was from	   0.08 to 0.14. From the medium version against the large version image, the 

average change was 0.043 gamma with an average SEM of 0.022. The range of change 

was from	   0.02 to 0.13. And the large-medium version against the large version 

matching experiment showed that the average change was 0.036 gamma with an 

average SEM of 0.023. The range of change was from	   0.054 to 0.096. The results are 

plotted in Figures 6-8 to 6-10. 
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Figure 6-7. Average perceived change in tone reproduction from the small vs. large 
experiment for each scene with SEM. 
 

 
Figure 6-8. Average perceived change in tone reproduction from the medium-small vs. 
large experiment for each scene with SEM. 
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Figure 6-9. Average perceived change tone reproduction from the medium vs. large 
experiment for each scene with SEM. 
 

 
Figure 6-10. Average perceived change in tone reproduction from the large-medium vs. 
large experiment for each scene with SEM. 
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In addition to the above figures, the average changes in perceived tone 

reproduction in gamma from all four experiments were plotted as a function of 

displayed image size in Figure 6-11. The figure clearly shows that the perceived 

contrast was proportionally affected by the changes in displayed image size. Smaller 

version images were perceived a higher contrast than that of the larger version and their 

relationship was very close to an inverse linear relationship as seen in the previous 

chapter. Therefore, mirrored data at zero point have also been estimated by 

extrapolation and plotted as linear function to predict change in perceived contrast when 

images may be displayed at larger scales. This assumes that the relationship remains 

linear. The linear trend line showed the relationship as; y = 0.001x + 0.000. 

 

 
Figure 6-11. Perceived changes in tone reproduction with respect to the changes in 
displayed image size (blue) and predicted changes (red) in non-calibrated relative image 
quality gamma scale. 
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6.4.2 Validation of the results 

Pair rating experiments, to validate the results obtained from the contrast matching, 

were conducted and analysed in conjunction with the validation of the results obtained 

from the sharpness matching. Therefore in addition to the test images prepared in 

section 5.3.2), the contrast modified smaller version images were prepared. 

Results from the validation experiments confirmed that most of the contrast 

matched pairs, average rating of 4.90, appeared to be better matching compared with 

that of the original pairs, 4.62, as shown in Figure 6-12. 

 

 
Figure 6-12. Average rating of the unmodified pairs and the contrast modified pairs. 
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described in Section 4.2. A series of paired comparison experiments to evaluate the 

contrast step intervals were conducted using all sixty four scenes. For the contrast step 

interval evaluation, only the central region of the scale (original	  ±6 steps) was used, as 

most of the appearance changes were found within the range. Experiments were carried 

out by the expert observers who have also participated in sharpness step evaluation. 

Each observation took less than 10 minutes per session and a maximum of 10 sessions 

per day was conducted to avoid fatigue. 

 

 
Figure 6-13. Changes in perceived contrast with respect to the changes in displayed 
image size (blue) and predicted changes (red) in contrast JND scale. 
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were then calibrated and plotted in Figure 6-13. The change in perceived contrast was 

approximately 1.24 JNDs with 75% change in the displayed image size. The linear trend 

line showed the relationship as; y = 0.014x + 0.006. 

 

6.5  Summary 

Since contrast was identified in Chapter 4, as the second most affected image attribute 

when displayed image size changes, a series of psychophysical experiments were 

carried out to evaluate the changes in perceived contrast when the images are viewed at 

different displayed sizes on an LCD device. A total of sixty-four natural scenes, which 

were used for the experimental work described in Chapters 4 and 5, were also used in 

this investigation. For each original scene, a set of 25 images of varying image contrast 

with equal gamma interval were created, using ‘S’ shaped 6th order polynomials. The 

processed images were resized to generate five different sizes: large, large-medium, 

medium, medium-small and small using bi-cubic interpolation. As for the sharpness 

matching, the observers started to match smaller version to the large reference. Results 

from all four experiments showed that most for majority of the test scenes, the smaller 

version images were perceived as slightly more contrasty compared with the reference 

images. A minority of test images did not show the same trend. Examples include 

‘British museum’ scene, which contained large amount of the dark reflection 

(Normalised PV of less than 0.5). Although overall gamma of the processed images was 

decreased when contrast decreasing filters were applied, such compressed shadow 

details became more evident.  

Overall results from the psychophysical experiments indicated that the 

perceived contrast was affected by changes in displayed image size; however, it was 
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much smaller compared with the changes in perceived sharpness. Average difference 

was approximately 0.087 gamma between large version images and small ones. 

Also, the changes were quantified and presented in a “gamma” scale rather than 

in a perceived contrast scale from the contrast matching experiments. Therefore, paired 

comparison experiments to evaluate the step intervals of the contrast were carried out. 

The results acquired from the contrast matching tests were rescaled to contrast scale by 

step validation test. In calibrated scale, average difference was approximately 1.24 

JNDs in perceived contrast with 75% change in the displayed image size. This is a 

rather insignificant visual difference when compared to the sharpness difference. We 

may thus conclude that the visual contrast difference produced by changing displayed 

image sizes probably do not affect significantly the overall quality of the images. 
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Chapter 7 

 

 

Discussion 

 

 

 

 

 

 

 

 

 

This chapter provides a summary of the characterisation of imaging devices used for 

image capture and display, and discusses their effects and limitations with respect to the 

psychophysical experiments carried out in this research project. Detailed discussions on 

the results from the psychophysical investigations described in Chapters 4, 5, and 6 are 

also included. 

 

7.1  Capturing devices 

In this research, two digital cameras, exhibiting difference overall image qualities, were 

used for the image capture of natural scenes. The Canon EOS 30D digital SLR was 
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equipped with an EF-S 10-22mm (35mm equivalent focal length of 16-35mm) lens. The 

Apple iPhone mobile phone camera (1st generation) was equipped with a fixed lens 

(35mm equivalent focal length of 35mm). Although Canon 30D allowed full access to 

camera functions, this was not allowed on the Apple iPhone. This fact restricted us of 

implementing the most accurate characterisation methods (such as spectral 

characterisation). Tone reproduction and colorimetric characteristics of the capturing 

devices were carried out for the sRGB setting, using target-based methods for both 

cameras, for consistency. In addition, the Spatial Frequency Responses (SFRs) of 

cameras were measured under identical conditions. Under the experimental set up for 

the camera characterisation, both systems exhibited difference characteristics and 

overall quality, with the Canon 30D exhibiting the better quality. Colour reproduction 

of both devices was not accurate with colour differences of over 10	   	  from both 

devices. Greater differences were observed from the ‘reddish’ patches reproduced by 

both devices, as seen in Figure 3-3. The maximum colour differences were as high as 

33.14	    and 47.23	    on reddish patches by the Canon 30D and the Apple 

iPhone, respectively. The main cause of such inaccurate colour reproduction was the 

small difference in the white point colour temperature of the light source (2700K) and 

the colour balance of the cameras (3200K). Despite these large colour differences, the 

image quality was not visually affected by the slight failure of colour balance. Since the 

purpose of most commercial digital camera is to prioritise pleasing reproduction over 

colorimetric reproduction, also since the research was not focused on colour appearance, 

the colorimetric inaccuracies in the captured images did not affect the image quality of 

the selected test stimuli, or the design of the psychophysical experiments. 
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The sharpness characteristics of both cameras were assessed by SFR evaluation. 

SFRs were measured using the slanted edge method (ISO 12233). Enhanced edge 

sharpening was evident on the SFRs obtained for the Apple iPhone. Also, SFRs varied 

considerably between measurements and channels, even within the same test 

environment. On the other hand, the SFRs obtained by the Canon EOS 30D camera 

indicated repeatable results, whilst the variations between channels were fairly small. 

Consistent SFR measurement was essential for this research, since the camera SFR was 

used to predict the sharpness of the original test stimuli, and further employed in the 

creation of a series of test stimuli with different sharpness levels. 

 

7.2  Display devices 

In this research, two LCD monitors were used to display test stimuli during the 

psychophysical investigations. The purpose of employing LCD devices in 

psychophysical investigations is to display test stimuli with good positional uniformity, 

rather than accurate colorimetric reproduction. Originally, the EIZO ColorEdge CG210 

display was used in the investigation. Although the CG210 exhibited a good black level 

and accurate reproduction of primarily colour at full strength, positional non-uniformity 

nature of the display was considerably large. Since the positional independence was the 

main concern for the experimental works conducted in this research, the CG210 was not 

good enough for further investigations. Therefore, a new EIZO ColorEdge CG245W 

display was employed for the further experiments. 

The CG245W exhibited better characteristics compared with the CG 210 

display in all aspects, including positional uniformity. Average colour reproduction 

error,	  	   , was 1.53 across the screen with maximum error of 3.89 (at the edges). As 
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the psychophysical investigation was carried out using standard reference images with a 

horizontal visual angle of approximately 20 degrees at the set observation distance, 

positional uniformity characteristics were further evaluated at the observation position. 

The colour reproduction error,	  	   , was slightly bigger with an average of 2.53. 

Maximum error of	   =5.24 was found at the edges. Although the errors were rather 

bigger, perceptible and acceptable colour differences are subjective and their 

significance depends on the application. Theoretically, 1	    is approximately 1 JND. 

However, display system with a	   	  	  of smaller than 6 is commonly accepted for 

displayed images (Abrardo et al., 1996). 

 

7.3  Identification of image attributes 

The purpose of the experimental works described in Chapter 4 was to identify the image 

attributes that were most affected visually by changes in displayed image size. Other 

workers have previously conducted research in attempts to identify the image attributes 

that are affected by changes in image size, or visual angle. Research work by Choi and 

her colleagues (Choi et al., 2007b) confirmed that perceived colourfulness was affected 

by changes in colour patch size as well as changes in viewing conditions such as 

surround and relative luminance. Nezamabadi and his colleagues confirmed that 

perceived contrast (Nezamabadi et al., 2007), lightness, and chroma (Nezamabadi and 

Berns, 2006) were affected by the changes in visual angle and perceived image size. 

However, spatial effects and appearance of digital image artefacts were not considered 

in depth. 

 Therefore, in this research, a novel psychophysical experiment was designed to 

investigate spatial effects such as sharpness and noisiness, along with other colour 
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attributes. The experiment was carried out using natural scenes with different scene 

content, taken under various illumination conditions. Investigated attributes in the 

forced choice experiments included contrast, brightness, sharpness, and noise for both 

achromatic and chromatic versions of the stimuli. Hue and colourfulness were also 

investigated for chromatic version stimuli. Various approaches were made to analyse 

the data obtained by the experiments to identify the effects of scene characteristics, such 

as average scene luminance, colourfulness, busyness, sharpness, and noisiness. The 

results differed slightly when analysed according to the scene characteristics listed 

above. However, the first two, most affected attributes, were found to be the first two 

for the majority of the test scenes. 

Results from the rank order experiments using achromatic stimuli showed that 

the most affected image attributes with respect to change in displayed image size were 

sharpness followed by contrast. Experiments using chromatic versions confirmed these 

results. 

Contrast is considered as the most important aspect of image quality 

(Triantaphillidou, 2011a, p.346, Hunt, 1998), whilst sharpness is directly related to the 

micro-image (edge) contrast (c.f. Section 2.2.2.4) as well as to the image’s angular 

subtense. The fact that these two attributes were found to be the most affected ones 

when changing displayed image size is thus not a surprising finding. 

 

7.4  Sharpness matching 

The purpose of the experimental works described in Chapter 5 was to quantify the 

degree of change in perceived image sharpness with respect to changes in displayed 

image size. A novel method was designed to create a range of images with varying 
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sharpness levels, by adapting the softcopy ruler method (Photography--Psychophysical 

experimental methods for estimating image quality--Part 3: Quality ruler method. 2005), 

as described in Chapter 5. A series of filters were created for the purpose, having equal 

intervals in image quality, by taking into account the SFR of the imaging system. This 

method assumed that images acquired by the same capturing device and using identical 

lens settings (i.e. aperture and focal length) would have the same SFR. Effects of scene 

content and illumination conditions during image capture on image sharpness were not 

taken into account. 

A series of visual sharpness matching experiments were carried out using the 

method of adjustment. Results from the sharpness matching experiment showed that all 

test images were perceived sharper when image size was deceased. In other words, 

perceived sharpness may decrease when image size increases (c.f. Section 5.3.1). The 

results suggest that when images are viewed in the small camera displays just after 

capture, they are likely to appear much sharper, in most cases, than when they are 

viewed later at a 1:1 magnification on a computer display. This is a common experience 

of camera users. The effect is particularly important when the lack of sharpness is due to 

camera, or object movement introduced during capture. Images that included either 

moving objects or camera shake were less affected, and images that included texts or 

repeated objects were most affected (Park et al., 2012). 

A psychophysical experiment to validate the results obtained from the 

sharpness matching experiments was also conducted (c.f. Section 5.3.2). On some 

images, unmodified versions were perceived to be closer matching. However, majority 

of the sharpness modified small versions were perceived to be closer matching to the 

large original than the unmodified small versions for the majority of the images, as 
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shown in Figure 5-15. Further, in some cases the error bars however overlap, making it 

unclear whether the modified sharpness of the small images was clearly better than the 

unmodified original. Further work is needed to identify the original sharpness 

characteristics of the scenes with close results, also to determine whether the average 

sharpness JND that was applied as a correction in this validation stage was rather 

simplistic solution. 

 

7.5  Contrast matching 

The purpose of the experimental work described in Chapter 6 was to quantify the degree 

of change in perceived image contrast with respect to changes in displayed image size. 

A method of creating a series of S-shaped spatial domain filters for contrast 

manipulation, with equal gamma intervals, was described in Chapter 6. The step 

intervals were selected by adapting acceptable and just perceptible gamma differences 

evaluated using CRT displays by Bilissi et al.(Bilissi et al., 2008), for a small image 

size of 75(H)×112(V) mm that corresponded to an angle of subtense of approximately 

15 degrees. 

A set of four visual sharpness matching experiments were carried out using the 

method of adjustment. Results from the contrast matching experiment showed that 

perceived contrast was increased when image size was deceased, what was also 

observed in the sharpness matching experiment. In other words, perceived contrast may 

also decrease when image size increases (c.f. Section 6.4.1). 

A psychophysical experiment to validate the results obtained from the contrast 

matching experiments was also conducted (c.f. Section 6.4.2). As shown in Figure 6-12, 

the majority of the large original-contrast modified small version image pairs rated 
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superior compared with the large original-small unmodified image pairs. On some 

images, unmodified version images were perceived to be closer matching to the large 

original. The error bars indicate that the difference between the modified and the 

unmodified contrast in small images is not as important as for in the case of sharpness. 
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Chapter 8 

 

 

Conclusions and recommendations for 

further work 

 

 

 

 

 

This chapter contains conclusions drawn from this research project along with 

recommendations for further work. 

 

8.1  Conclusions 

The following conclusions were drawn from the research work conducted in this thesis: 

 Image attributes affected visually by changes in image size in softcopy 

reproduction were identified using natural scenes. Two camera systems were 

employed to capture the same scenes to investigation the effect of original 

image quality on image appearance. Six image attributes were investigated by 

ranking experiments. Results varied slightly with scene content and original 

image quality characteristics. However, sharpness and contrast were identified 
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as two of the most affected attributes for the large majority of scenes, followed 

by contrast and brightness. 

 A series of filters were successfully created to create a series of image with 

equal intervals in image quality. This was done by taking into account the 

Spatial Frequency Response (SFR) of the imaging system and by adapting ISO 

20462-3. 

 The effect of bi-cubic interpolation on image quality was investigated also via 

SFR measurements. SFRs of the interpolated versions of a number of images 

were found to be lower than the SFR of the larger reference version. 

 Matching experiments with images displayed in different sizes showed that 

perceived sharpness increased when image size was decreased. Test images 

containing either moving objects or camera shake were less affected and 

images that included texts or repeated objects were more affected by image 

size changes. Changes in image appearance between the smaller version 

images and the larger versions had an average of approximately 12 sharpness 

JNDs. 

 The effect of bi-cubic interpolation on image contrast was investigated by 

measuring the root mean square contrast,	   , on all interpolated version 

images and was compared to the	    of the original test image. Each test 

image possessed a different	   . However, the effect of interpolation on 

contrast was minimal for all images. Although	    was not affected by 

change in image size, perceived contrast increased when image size decreased 

on the majority of test images. Changes between smaller version images and 

larger reference were approximately 1 contrast JND. 
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8.2  Recommendations for further work 

Some recommendations for further work were as follows: 

 Perceived sharpness and contrast in complex pictorial images were investigated 

in this work to identify how these attributes were affected by change in 

displayed image size. However, the appearance of colour attributes (such as 

colourfulness and hue), noise, as well as various image artefacts (such as 

blocking, banding and aliasing) have not been researched here. Further work 

could include such investigations, relating image size and appearance of these 

attributes and artefacts with changes in image size, which to the author’s 

knowledge have not been studied in depth up to date. 

 Investigations were carried out in a totally dark environment. Effects of the 

surrounding viewing conditions on image appearance, with respect to change 

in displayed image size, can be investigated further. 

 Results obtained by the matching experiments varied scene to scene even 

though majority of the tested images appeared to sharper and possessing higher 

contrast with decreasing image size. Investigation on objective techniques for 

analysis and classification of scene content and characteristics is suggested to 

link variability in image appearance results with original scene content. 
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Appendix A. Thumbnails of test images 
 

A.1  16 ‘average’ scenes 
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A.2  Test images (in alphabetical order) 
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A.2 Test images (in alphabetical order) - continued 
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A.2 Test images (in alphabetical order) - continued 
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Appendix B. Instructions for observers 

 

The following instructions were provided to the observers before each psychophysical 

investigation. 
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B.1 Observer instructions for rank order experiments 
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B.2 Observer instructions for sharpness matching experiments 
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B.3 Observer instructions for contrast matching experiments
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B.4 Observer instructions for result validation experiments 
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B.5 Observer instructions for step validation experiments 
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Appendix C. Publications 

 

The following related papers were produced by the author during the production of this 

work and are reproduced in the following appendix. 
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Appendix D. List of abbreviations  
 

Abbreviation Description 

  CIE……………………….. International Commission on Illumination 

CDP………………………. Cycles per visual Degree 

CIE76 ……………… Colour Difference Formula defined in 1976 

CIEDE2000 ……….. Colour Difference Formula defined in 2000 

CIELAB………………….. CIE 1976 L*a*b* colour space 

CIELUV………………….. CIE 1976 L*u*v* colour space 

CIEXYZ………………….. CIE 1931 XYZ tristimulus values 

CPP………………………. Cycles per Pixel 

CRI………………………. Colour Reproduction Index 

CRT………………………. Cathode Ray Tube 

CSS………………………. Cascading Style Sheets 

CSV………………………. Comma Separated Value 

DCT………………………. Discrete Cosine Transform 

DFT………………………. Discrete Fourier Transform 

DP………………………... Display Port 

DVI………………………. Digital Visual Interface 

DWT……………………... Discrete Wavelet Transform 

EPIC……………………… 

EOTF…………………….. 

Effective Pictorial Information Capacity 

Electro-Optical Transfer Function 

FIR……………………….. Finite Impulse Response 
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FOV………………………. Field of View 

FPN………………………. Fixed Pattern Noise 

FUN………………………. Fidelity, Usefulness, and Naturalness 

GUN……………………… Genuineness, Usefulness, and Naturalness 

HTML…………………… Hyper Text Markup Language 

HVS……………………… Human Visual System 

iCAM……………………... Image Appearance Model 

IPS………………………... In-Plane Switching 

IQM………………………. Image Quality Metric 

ISO………………………... International Organization for Standardization 

JND……………………….. Just Noticeable Difference 

JPEG……………………… Joint Photographic Experts Group 

LCD………………………. Liquid Crystal Display 

LSF……………………….. Line Spread Function 

MSE………………………. Mean Square Error 

MTF………………………. Modulation Transfer Function 

OECF……………………... Opto-Electronic Conversion Function 

PDF……………………….. Probability Density Function 

PHP……………………….. Hypertext Preprocessor 

PIC………………………… Perceived Information Capacity 

PSE………………………... Point of Subjective Equality 

PSF………………………... Point Spread Function 

PV…………………………. Pixel Value 

RGB………………………. Red, Green, Blue 



J.Y.Park, 2014, Appendix D: List of abbreviations  

212  

  

RMS………………………. Root Mean Square 

RMSE……………………..... Root Mean Square Error 

ROI………………………..... Region of Interest 

s-CIELAB…………………... Spatial extension of CIELAB 

SEM………………………… Standard Error of Mean 

SFR………………………...... Signal Frequency Response 

SNR………………………..... Signal to Noise Ratio 

SQF…………………………. Subjective Quality Factor 

SQRI………………………... Square Root Integral 

SQS…………………………. Standard Quality Scale 

SQS ………………………… Secondary Standard Quality Scale 

sRGB……………………….. Standard RGB colour space 

SSIM………………………… Structural Similarity Index 

SVG…………………………. Scalable Vector Graphics 

TIFF………………………… Tagged Image File Format 

VC …………………………. Variance in chroma 

VIF………………………….. Visual Information Fidelity 
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