19,080 research outputs found

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    The dynamics of measles in sub-Saharan Africa.

    Get PDF
    Although vaccination has almost eliminated measles in parts of the world, the disease remains a major killer in some high birth rate countries of the Sahel. On the basis of measles dynamics for industrialized countries, high birth rate regions should experience regular annual epidemics. Here, however, we show that measles epidemics in Niger are highly episodic, particularly in the capital Niamey. Models demonstrate that this variability arises from powerful seasonality in transmission-generating high amplitude epidemics-within the chaotic domain of deterministic dynamics. In practice, this leads to frequent stochastic fadeouts, interspersed with irregular, large epidemics. A metapopulation model illustrates how increased vaccine coverage, but still below the local elimination threshold, could lead to increasingly variable major outbreaks in highly seasonally forced contexts. Such erratic dynamics emphasize the importance both of control strategies that address build-up of susceptible individuals and efforts to mitigate the impact of large outbreaks when they occur

    Uncertainty in epidemiology and health risk assessment

    Get PDF

    Using Real-World Data to Guide Ustekinumab Dosing Strategies for Psoriasis: A Prospective Pharmacokinetic-Pharmacodynamic Study.

    Get PDF
    Variation in response to biologic therapy for inflammatory diseases, such as psoriasis, is partly driven by variation in drug exposure. Real-world psoriasis data were used to develop a pharmacokinetic/pharmacodynamic (PK/PD) model for the first-line therapeutic antibody ustekinumab. The impact of differing dosing strategies on response was explored. Data were collected from a UK prospective multicenter observational cohort (491 patients on ustekinumab monotherapy, drug levels, and anti-drug antibody measurements on 797 serum samples, 1,590 measurements of Psoriasis Area Severity Index (PASI)). Ustekinumab PKs were described with a linear one-compartment model. A maximum effect (Emax ) model inhibited progression of psoriatic skin lesions in the turnover PD mechanism describing PASI evolution while on treatment. A mixture model on half-maximal effective concentration identified a potential nonresponder group, with simulations suggesting that, in future, the model could be incorporated into a Bayesian therapeutic drug monitoring "dashboard" to individualize dosing and improve treatment outcomes
    corecore