3,081 research outputs found

    WiSARD: A Labeled Visual and Thermal Image Dataset for Wilderness Search and Rescue

    Full text link
    Sensor-equipped unoccupied aerial vehicles (UAVs) have the potential to help reduce search times and alleviate safety risks for first responders carrying out Wilderness Search and Rescue (WiSAR) operations, the process of finding and rescuing person(s) lost in wilderness areas. Unfortunately, visual sensors alone do not address the need for robustness across all the possible terrains, weather, and lighting conditions that WiSAR operations can be conducted in. The use of multi-modal sensors, specifically visual-thermal cameras, is critical in enabling WiSAR UAVs to perform in diverse operating conditions. However, due to the unique challenges posed by the wilderness context, existing dataset benchmarks are inadequate for developing vision-based algorithms for autonomous WiSAR UAVs. To this end, we present WiSARD, a dataset with roughly 56,000 labeled visual and thermal images collected from UAV flights in various terrains, seasons, weather, and lighting conditions. To the best of our knowledge, WiSARD is the first large-scale dataset collected with multi-modal sensors for autonomous WiSAR operations. We envision that our dataset will provide researchers with a diverse and challenging benchmark that can test the robustness of their algorithms when applied to real-world (life-saving) applications

    Thermal Cameras and Applications:A Survey

    Get PDF

    Capacitive sensor to detect fallen humans in conditions of low visibility

    Full text link
    This paper examines the potential for a capacitive sensor to be used as part of a system to detect fallen humans at very close range. Previous research suggests that a robotic system incorporating a low cost capacitive sensor could potentially distinguish between different materials. The work reported in this paper stemmed from an attempt to determine the true extent to which such a system might reliably differentiate between fallen humans and other objects. The work is motivated by the fact that there are several different emergency circumstances in which such a system might save lives if it could reliably detect immobile humans. These scenarios include situations where older people have fallen and are unable to move or raise an alert, and circumstances where people have been overcome by smoke in a burning building. Current sensing systems are typically unsuitable in conditions of low visibility such as smoke filled rooms. This analysis focused specifically on the potential for a robot equipped with a capacitive sensing system to identify an immobile human in a low visibility emergency scenario. It is concluded that further work would be required to determine whether this type of capacitive sensing system is genuinely suitable for this task

    ๋ฌด์ธ๋น„ํ–‰์ฒด ํƒ‘์žฌ ์—ดํ™”์ƒ ๋ฐ ์‹คํ™”์ƒ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•œ ์•ผ์ƒ๋™๋ฌผ ํƒ์ง€ ๊ฐ€๋Šฅ์„ฑ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ํ™˜๊ฒฝ๋Œ€ํ•™์› ํ™˜๊ฒฝ์กฐ๊ฒฝํ•™๊ณผ, 2022.2. ์†ก์˜๊ทผ.์•ผ์ƒ๋™๋ฌผ์˜ ํƒ์ง€์™€ ๋ชจ๋‹ˆํ„ฐ๋ง์„ ์œ„ํ•ด, ํ˜„์žฅ ์ง์ ‘ ๊ด€์ฐฐ, ํฌํš-์žฌํฌํš๊ณผ ๊ฐ™์€ ์ „ํ†ต์  ์กฐ์‚ฌ ๋ฐฉ๋ฒ•์ด ๋‹ค์–‘ํ•œ ๋ชฉ์ ์œผ๋กœ ์ˆ˜ํ–‰๋˜์–ด์™”๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ์ƒ๋Œ€์ ์œผ๋กœ ๋น„์‹ผ ๋น„์šฉ์ด ํ•„์š”ํ•˜๋ฉฐ, ์‹ ๋ขฐ ๊ฐ€๋Šฅํ•œ ํƒ์ง€ ๊ฒฐ๊ณผ๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„  ์ˆ™๋ จ๋œ ํ˜„์žฅ ์ „๋ฌธ๊ฐ€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๊ฒŒ๋‹ค๊ฐ€, ์ „ํ†ต์ ์ธ ํ˜„์žฅ ์กฐ์‚ฌ ๋ฐฉ๋ฒ•์€ ํ˜„์žฅ์—์„œ ์•ผ์ƒ๋™๋ฌผ์„ ๋งˆ์ฃผ์น˜๋Š” ๋“ฑ ์œ„ํ—˜ํ•œ ์ƒํ™ฉ์— ์ฒ˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์นด๋ฉ”๋ผ ํŠธ๋ž˜ํ•‘, GPS ์ถ”์ , eDNA ์ƒ˜ํ”Œ๋ง๊ณผ ๊ฐ™์€ ์›๊ฒฉ ์กฐ์‚ฌ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด์˜ ์ „ํ†ต์  ์กฐ์‚ฌ๋ฐฉ๋ฒ•์„ ๋Œ€์ฒดํ•˜๋ฉฐ ๋”์šฑ ๋นˆ๋ฒˆํžˆ ์‚ฌ์šฉ๋˜๊ธฐ ์‹œ์ž‘ํ–ˆ๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•๋“ค์€ ์—ฌ์ „ํžˆ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ๋Œ€์ƒ์˜ ์ „์ฒด ๋ฉด์ ๊ณผ, ๊ฐœ๋ณ„ ๊ฐœ์ฒด๋ฅผ ํƒ์ง€ํ•  ์ˆ˜ ์—†๋‹ค๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•ด, ๋ฌด์ธ๋น„ํ–‰์ฒด (UAV, Unmanned Aerial Vehicle)๊ฐ€ ์•ผ์ƒ๋™๋ฌผ ํƒ์ง€์˜ ๋Œ€์ค‘์ ์ธ ๋„๊ตฌ๋กœ ์ž๋ฆฌ๋งค๊น€ํ•˜๊ณ  ์žˆ๋‹ค. UAV์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€, ์„ ๋ช…ํ•˜๊ณ  ์ด˜์ด˜ํ•œ ๊ณต๊ฐ„ ๋ฐ ์‹œ๊ฐ„ํ•ด์ƒ๋„์™€ ํ•จ๊ป˜ ์ „์ฒด ์—ฐ๊ตฌ ์ง€์—ญ์— ๋Œ€ํ•œ ๋™๋ฌผ ํƒ์ง€๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค๋Š” ๊ฒƒ์ด๋‹ค. ์ด์— ๋”ํ•ด, UAV๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ, ์ ‘๊ทผํ•˜๊ธฐ ์–ด๋ ค์šด ์ง€์—ญ์ด๋‚˜ ์œ„ํ—˜ํ•œ ๊ณณ์— ๋Œ€ํ•œ ์กฐ์‚ฌ๊ฐ€ ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ํ•˜์ง€๋งŒ, ์ด๋Ÿฌํ•œ ์ด์  ์™ธ์—, UAV์˜ ๋‹จ์ ๋„ ๋ช…ํ™•ํžˆ ์กด์žฌํ•œ๋‹ค. ๋Œ€์ƒ์ง€, ๋น„ํ–‰ ์†๋„ ๋ฐ ๋†’์ด ๋“ฑ๊ณผ ๊ฐ™์ด UAV๋ฅผ ์‚ฌ์šฉํ•˜๋Š” ํ™˜๊ฒฝ์— ๋”ฐ๋ผ, ์ž‘์€ ๋™๋ฌผ, ์šธ์ฐฝํ•œ ์ˆฒ์†์— ์žˆ๋Š” ๊ฐœ์ฒด, ๋น ๋ฅด๊ฒŒ ์›€์ง์ด๋Š” ๋™๋ฌผ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ์ œํ•œ๋œ๋‹ค. ๋˜ํ•œ, ๊ธฐ์ƒํ™˜๊ฒฝ์— ๋”ฐ๋ผ์„œ๋„ ๋น„ํ–‰์ด ๋ถˆ๊ฐ€ํ•  ์ˆ˜ ์žˆ๊ณ , ๋ฐฐํ„ฐ๋ฆฌ ์šฉ๋Ÿ‰์œผ๋กœ ์ธํ•œ ๋น„ํ–‰์‹œ๊ฐ„์˜ ์ œํ•œ๋„ ์กด์žฌํ•œ๋‹ค. ํ•˜์ง€๋งŒ, ์ •๋ฐ€ํ•œ ํƒ์ง€๊ฐ€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋”๋ผ๋„, ์ด์™€ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ๊พธ์ค€ํžˆ ์ˆ˜ํ–‰๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์„ ํ–‰์—ฐ๊ตฌ๋“ค์€ ์œก์ƒ ๋ฐ ํ•ด์ƒ ํฌ์œ ๋ฅ˜, ์กฐ๋ฅ˜, ๊ทธ๋ฆฌ๊ณ  ํŒŒ์ถฉ๋ฅ˜ ๋“ฑ์„ ํƒ์ง€ํ•˜๋Š” ๋ฐ์— ์„ฑ๊ณตํ•˜์˜€๋‹ค. UAV๋ฅผ ํ†ตํ•ด ์–ป์–ด์ง€๋Š” ๊ฐ€์žฅ ๋Œ€ํ‘œ์ ์ธ ๋ฐ์ดํ„ฐ๋Š” ์‹คํ™”์ƒ ์ด๋ฏธ์ง€์ด๋‹ค. ์ด๋ฅผ ์‚ฌ์šฉํ•ด ๋จธ์‹ ๋Ÿฌ๋‹ ๋ฐ ๋”ฅ๋Ÿฌ๋‹ (ML-DL, Machine Learning and Deep Learning) ๋ฐฉ๋ฒ•์ด ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ ์ƒ๋Œ€์ ์œผ๋กœ ์ •ํ™•ํ•œ ํƒ์ง€ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์ฃผ์ง€๋งŒ, ํŠน์ • ์ข…์„ ํƒ์ง€ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์˜ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด์„  ์ตœ์†Œํ•œ ์ฒœ ์žฅ์˜ ์ด๋ฏธ์ง€๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ์‹คํ™”์ƒ ์ด๋ฏธ์ง€ ์™ธ์—๋„, ์—ดํ™”์ƒ ์ด๋ฏธ์ง€ ๋˜ํ•œ UAV๋ฅผ ํ†ตํ•ด ํš๋“ ๋  ์ˆ˜ ์žˆ๋‹ค. ์—ดํ™”์ƒ ์„ผ์„œ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ๊ณผ ์„ผ์„œ ๊ฐ€๊ฒฉ์˜ ํ•˜๋ฝ์€ ๋งŽ์€ ์•ผ์ƒ๋™๋ฌผ ์—ฐ๊ตฌ์ž๋“ค์˜ ๊ด€์‹ฌ์„ ์‚ฌ๋กœ์žก์•˜๋‹ค. ์—ดํ™”์ƒ ์นด๋ฉ”๋ผ๋ฅผ ์‚ฌ์šฉํ•˜๋ฉด ๋™๋ฌผ์˜ ์ฒด์˜จ๊ณผ ์ฃผ๋ณ€ํ™˜๊ฒฝ๊ณผ์˜ ์˜จ๋„ ์ฐจ์ด๋ฅผ ํ†ตํ•ด ์ •์˜จ๋™๋ฌผ์„ ํƒ์ง€ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ํ•˜์ง€๋งŒ, ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ๊ฐ€ ์‚ฌ์šฉ๋˜๋”๋ผ๋„, ์—ฌ์ „ํžˆ ML-DL ๋ฐฉ๋ฒ•์ด ๋™๋ฌผ ํƒ์ง€์— ์ฃผ๋กœ ์‚ฌ์šฉ๋˜๊ณ  ์žˆ์œผ๋ฉฐ, ์ด๋Ÿฌํ•œ ๋ฐฉ๋ฒ•์€ UAV๋ฅผ ํ™œ์šฉํ•œ ์•ผ์ƒ๋™๋ฌผ์˜ ์‹ค์‹œ๊ฐ„ ํƒ์ง€๋ฅผ ์ œํ•œํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์—ดํ™”์ƒ๊ณผ ์‹คํ™”์ƒ ์ด๋ฏธ์ง€๋ฅผ ํ™œ์šฉํ•œ ๋™๋ฌผ ์ž๋™ ํƒ์ง€ ๋ฐฉ๋ฒ•์˜ ๊ฐœ๋ฐœ๊ณผ, ๊ฐœ๋ฐœ๋œ ๋ฐฉ๋ฒ•์ด ์ด์ „ ๋ฐฉ๋ฒ•๋“ค์˜ ํ‰๊ท  ์ด์ƒ์˜ ์ •ํ™•๋„์™€ ํ•จ๊ป˜ ํ˜„์žฅ์—์„œ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•œ๋‹ค.For wildlife detection and monitoring, traditional methods such as direct observation and capture-recapture have been carried out for diverse purposes. However, these methods require a large amount of time, considerable expense, and field-skilled experts to obtain reliable results. Furthermore, performing a traditional field survey can result in dangerous situations, such as an encounter with wild animals. Remote monitoring methods, such as those based on camera trapping, GPS collars, and environmental DNA sampling, have been used more frequently, mostly replacing traditional survey methods, as the technologies have developed. But these methods still have limitations, such as the lack of ability to cover an entire region or detect individual targets. To overcome those limitations, the unmanned aerial vehicle (UAV) is becoming a popular tool for conducting a wildlife census. The main benefits of UAVs are able to detect animals remotely covering a wider region with clear and fine spatial and temporal resolutions. In addition, by operating UAVs investigate hard to access or dangerous areas become possible. However, besides these advantages, the limitations of UAVs clearly exist. By UAV operating environments such as study site, flying height or speed, the ability to detect small animals, targets in the dense forest, tracking fast-moving animals can be limited. And by the weather, operating UAV is unable, and the flight time is limited by the battery matters. Although detailed detection is unavailable, related researches are developing and previous studies used UAV to detect terrestrial and marine mammals, avian and reptile species. The most common type of data acquired by UAVs is RGB images. Using these images, machine-learning and deep-learning (MLโ€“DL) methods were mainly used for wildlife detection. MLโ€“DL methods provide relatively accurate results, but at least 1,000 images are required to develop a proper detection model for specific species. Instead of RGB images, thermal images can be acquired by a UAV. The development of thermal sensor technology and sensor price reduction has attracted the interest of wildlife researchers. Using a thermal camera, homeothermic animals can be detected based on the temperature difference between their bodies and the surrounding environment. Although the technology and data are new, the same MLโ€“DL methods were typically used for animal detection. These ML-DL methods limit the use of UAVs for real-time wildlife detection in the field. Therefore, this paper aims to develop an automated animal detection method with thermal and RGB image datasets and to utilize it under in situ conditions in real-time while ensuring the average-above detection ability of previous methods.Abstract I Contents IV List of Tables VII List of Figures VIII Chapter 1. Introduction 1 1.1 Research background 1 1.2 Research goals and objectives 10 1.2.1 Research goals 10 1.2.2 Research objectives 11 1.3 Theoretical background 13 1.3.1 Concept of the UAV 13 1.3.2 Concept of the thermal camera 13 Chapter 2. Methods 15 2.1 Study site 15 2.2 Data acquisition and preprocessing 16 2.2.1 Data acquisition 16 2.2.2 RGB lens distortion correction and clipping 19 2.2.3 Thermal image correction by fur color 21 2.2.4 Unnatural object removal 22 2.3 Animal detection 24 2.3.1 Sobel edge creation and contour generation 24 2.3.2 Object detection and sorting 26 Chapter 3. Results 30 3.1 Number of counted objects 31 3.2 Time costs of image types 33 Chapter 4. Discussion 36 4.1 Reference comparison 36 4.2 Instant detection 40 4.3 Supplemental usage 41 4.4 Utility of thermal sensors 42 4.5 Applications in other fields 43 Chapter 5. Conclusions 47 References 49 Appendix: Glossary 61 ์ดˆ๋ก 62์„

    Detection of bodies in maritime rescue operations using Unmanned Aerial Vehicles with multispectral cameras

    Get PDF
    In this study, we use unmanned aerial vehicles equipped with multispectral cameras to search for bodies in maritime rescue operations. A series of flights were performed in openโ€water scenarios in the northwest of Spain, using a certified aquatic rescue dummy in dangerous areas and real people when the weather conditions allowed it. The multispectral images were aligned and used to train a convolutional neural network for body detection. An exhaustive evaluation was performed to assess the best combination of spectral channels for this task. Three approaches based on a MobileNet topology were evaluated, using (a) the full image, (b) a sliding window, and (c) a precise localization method. The first method classifies an input image as containing a body or not, the second uses a sliding window to yield a class for each subimage, and the third uses transposed convolutions returning a binary output in which the body pixels are marked. In all cases, the MobileNet architecture was modified by adding custom layers and preprocessing the input to align the multispectral camera channels. Evaluation shows that the proposed methods yield reliable results, obtaining the best classification performance when combining green, redโ€edge, and nearโ€infrared channels. We conclude that the precise localization approach is the most suitable method, obtaining a similar accuracy as the sliding window but achieving a spatial localization close to 1โ€‰m. The presented system is about to be implemented for real maritime rescue operations carried out by Babcock Mission Critical Services Spain.This study was performed in collaboration with BabcockMCS Spain and funded by the Galicia Region Government through the Civil UAVs Initiative program, the Spanish Governmentโ€™s Ministry of Economy, Industry, and Competitiveness through the RTCโ€2014โ€1863โ€8 and INAER4โ€14Y (IDIโ€20141234) projects, and the grant number 730897 under the HPCโ€EUROPA3 project supported by Horizon 2020

    A Comprehensive Review on Computer Vision Analysis of Aerial Data

    Full text link
    With the emergence of new technologies in the field of airborne platforms and imaging sensors, aerial data analysis is becoming very popular, capitalizing on its advantages over land data. This paper presents a comprehensive review of the computer vision tasks within the domain of aerial data analysis. While addressing fundamental aspects such as object detection and tracking, the primary focus is on pivotal tasks like change detection, object segmentation, and scene-level analysis. The paper provides the comparison of various hyper parameters employed across diverse architectures and tasks. A substantial section is dedicated to an in-depth discussion on libraries, their categorization, and their relevance to different domain expertise. The paper encompasses aerial datasets, the architectural nuances adopted, and the evaluation metrics associated with all the tasks in aerial data analysis. Applications of computer vision tasks in aerial data across different domains are explored, with case studies providing further insights. The paper thoroughly examines the challenges inherent in aerial data analysis, offering practical solutions. Additionally, unresolved issues of significance are identified, paving the way for future research directions in the field of aerial data analysis.Comment: 112 page

    Planar Pร˜P: feature-less pose estimation with applications in UAV localization

    Get PDF
    ยฉ 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We present a featureless pose estimation method that, in contrast to current Perspective-n-Point (PnP) approaches, it does not require n point correspondences to obtain the camera pose, allowing for pose estimation from natural shapes that do not necessarily have distinguished features like corners or intersecting edges. Instead of using n correspondences (e.g. extracted with a feature detector) we will use the raw polygonal representation of the observed shape and directly estimate the pose in the pose-space of the camera. This method compared with a general PnP method, does not require n point correspondences neither a priori knowledge of the object model (except the scale), which is registered with a picture taken from a known robot pose. Moreover, we achieve higher precision because all the information of the shape contour is used to minimize the area between the projected and the observed shape contours. To emphasize the non-use of n point correspondences between the projected template and observed contour shape, we call the method Planar Pร˜P. The method is shown both in simulation and in a real application consisting on a UAV localization where comparisons with a precise ground-truth are provided.Peer ReviewedPostprint (author's final draft
    • โ€ฆ
    corecore