7,661 research outputs found

    A Simultaneous Extraction of Context and Community from pervasive signals using nested Dirichlet process

    Get PDF
    Understanding user contexts and group structures plays a central role in pervasive computing. These contexts and community structures are complex to mine from data collected in the wild due to the unprecedented growth of data, noise, uncertainties and complexities. Typical existing approaches would first extract the latent patterns to explain human dynamics or behaviors and then use them as a way to consistently formulate numerical representations for community detection, often via a clustering method. While being able to capture high-order and complex representations, these two steps are performed separately. More importantly, they face a fundamental difficulty in determining the correct number of latent patterns and communities. This paper presents an approach that seamlessly addresses these challenges to simultaneously discover latent patterns and communities in a unified Bayesian nonparametric framework. Our Simultaneous Extraction of Context and Community (SECC) model roots in the nested Dirichlet process theory which allows a nested structure to be built to summarize data at multiple levels. We demonstrate our framework on five datasets where the advantages of the proposed approach are validated

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure

    Comprehensive Security Framework for Global Threats Analysis

    Get PDF
    Cyber criminality activities are changing and becoming more and more professional. With the growth of financial flows through the Internet and the Information System (IS), new kinds of thread arise involving complex scenarios spread within multiple IS components. The IS information modeling and Behavioral Analysis are becoming new solutions to normalize the IS information and counter these new threads. This paper presents a framework which details the principal and necessary steps for monitoring an IS. We present the architecture of the framework, i.e. an ontology of activities carried out within an IS to model security information and User Behavioral analysis. The results of the performed experiments on real data show that the modeling is effective to reduce the amount of events by 91%. The User Behavioral Analysis on uniform modeled data is also effective, detecting more than 80% of legitimate actions of attack scenarios

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)
    corecore