5,718 research outputs found

    Resource consumption analysis of online activity recognition on mobile phones and smartwatches

    Get PDF
    Most of the studies on human activity recognition using smartphones and smartwatches are performed in an offline manner. In such studies, collected data is analyzed in machine learning tools with less focus on the resource consumption of these devices for running an activity recognition system. In this paper, we analyze the resource consumption of human activity recognition on both smartphones and smartwatches, considering six different classifiers, three different sensors, different sampling rates and window sizes. We study the CPU, memory and battery usage with different parameters, where the smartphone is used to recognize seven physical activities and the smartwatch is used to recognize smoking activity. As a result of this analysis, we report that classification function takes a very small amount of CPU time out of total app’s CPU time while sensing and feature calculation consume most of it. When an additional sensor is used besides an accelerometer, such as gyroscope, CPU usage increases significantly. Analysis results also show that increasing the window size reduces the resource consumption more than reducing the sampling rate. As a final remark, we observe that a more complex model using only the accelerometer is a better option than using a simple model with both accelerometer and gyroscope when resource usage is to be reduced

    Human Avtivity Recognition Using Smartphones

    Get PDF
    Human activity recognition is a problem of classifying activity of a human using accelerometer and gyroscope data recorded by smartphones into well-defined movements. However, it is still a challenging problem to compute a large number of observations in each second and it is also hard to translate the measurements from smartphones into physical activity patterns. In the past few decades, researchers have designed different human activities recognition systems using different algorithms. In this paper, I investigate different approaches to HAR system based on smartphones. I provide a comparison of these approaches and provide recommendations of the best performing solution

    Seeking Optimum System Settings for Physical Activity Recognition on Smartwatches

    Full text link
    Physical activity recognition (PAR) using wearable devices can provide valued information regarding an individual's degree of functional ability and lifestyle. In this regards, smartphone-based physical activity recognition is a well-studied area. Research on smartwatch-based PAR, on the other hand, is still in its infancy. Through a large-scale exploratory study, this work aims to investigate the smartwatch-based PAR domain. A detailed analysis of various feature banks and classification methods are carried out to find the optimum system settings for the best performance of any smartwatch-based PAR system for both personal and impersonal models. To further validate our hypothesis for both personal (The classifier is built using the data only from one specific user) and impersonal (The classifier is built using the data from every user except the one under study) models, we tested single subject validation process for smartwatch-based activity recognition.Comment: 15 pages, 2 figures, Accepted in CVC'1

    Multi-sensor classification of tennis strokes

    Get PDF
    In this work, we investigate tennis stroke recognition using a single inertial measuring unit attached to a player’s forearm during a competitive match. This paper evaluates the best approach for stroke detection using either accelerometers, gyroscopes or magnetometers, which are embedded into the inertial measuring unit. This work concludes what is the optimal training data set for stroke classification and proves that classifiers can perform well when tested on players who were not used to train the classifier. This work provides a significant step forward for our overall goal, which is to develop next generation sports coaching tools using both inertial and visual sensors in an instrumented indoor sporting environment

    Comparing CNN and Human Crafted Features for Human Activity Recognition

    Get PDF
    Deep learning techniques such as Convolutional Neural Networks (CNNs) have shown good results in activity recognition. One of the advantages of using these methods resides in their ability to generate features automatically. This ability greatly simplifies the task of feature extraction that usually requires domain specific knowledge, especially when using big data where data driven approaches can lead to anti-patterns. Despite the advantage of this approach, very little work has been undertaken on analyzing the quality of extracted features, and more specifically on how model architecture and parameters affect the ability of those features to separate activity classes in the final feature space. This work focuses on identifying the optimal parameters for recognition of simple activities applying this approach on both signals from inertial and audio sensors. The paper provides the following contributions: (i) a comparison of automatically extracted CNN features with gold standard Human Crafted Features (HCF) is given, (ii) a comprehensive analysis on how architecture and model parameters affect separation of target classes in the feature space. Results are evaluated using publicly available datasets. In particular, we achieved a 93.38% F-Score on the UCI-HAR dataset, using 1D CNNs with 3 convolutional layers and 32 kernel size, and a 90.5% F-Score on the DCASE 2017 development dataset, simplified for three classes (indoor, outdoor and vehicle), using 2D CNNs with 2 convolutional layers and a 2x2 kernel size

    Is the timed-up and go test feasible in mobile devices? A systematic review

    Get PDF
    The number of older adults is increasing worldwide, and it is expected that by 2050 over 2 billion individuals will be more than 60 years old. Older adults are exposed to numerous pathological problems such as Parkinson’s disease, amyotrophic lateral sclerosis, post-stroke, and orthopedic disturbances. Several physiotherapy methods that involve measurement of movements, such as the Timed-Up and Go test, can be done to support efficient and effective evaluation of pathological symptoms and promotion of health and well-being. In this systematic review, the authors aim to determine how the inertial sensors embedded in mobile devices are employed for the measurement of the different parameters involved in the Timed-Up and Go test. The main contribution of this paper consists of the identification of the different studies that utilize the sensors available in mobile devices for the measurement of the results of the Timed-Up and Go test. The results show that mobile devices embedded motion sensors can be used for these types of studies and the most commonly used sensors are the magnetometer, accelerometer, and gyroscope available in off-the-shelf smartphones. The features analyzed in this paper are categorized as quantitative, quantitative + statistic, dynamic balance, gait properties, state transitions, and raw statistics. These features utilize the accelerometer and gyroscope sensors and facilitate recognition of daily activities, accidents such as falling, some diseases, as well as the measurement of the subject's performance during the test execution.info:eu-repo/semantics/publishedVersio
    corecore