Resource Consumption Analysis of Online
Activity Recognition on Mobile Phones and
Smartwatches

Muhammad Shoaib*, Ozlem Durmaz Incel, Hans Scolten*, Paul Havinga*
*Pervasive Systems Research Group, University of Twente, Enschede, the Netherlands
{m.shoaib,hans.scholten,p.j.m.havingaj@utwente.nl
"Department of Computer Engineering, Galatasaray University, Istanbul/ Turkey
{odincel}@gsu.edu.tr

Abstract—Most of the studies on human activity recogni-
tion using smartphones and smartwatches are performed in
an offline manner. In such studies, collected data is analyzed
in machine learning tools with less focus on the resource
consumption of these devices for running an activity recog-
nition system. In this paper, we analyze the resource con-
sumption of human activity recognition on both smartphones
and smartwatches, considering six different classifiers, three
different sensors, different sampling rates and window sizes.
We study the CPU, memory and battery usage with different
parameters, where the smartphone is used to recognize seven
physical activities and the smartwatch is used to recognize
smoking activity. As a result of this analysis, we report that
classification function takes a very small amount of CPU
time out of total app’s CPU time while sensing and feature
calculation consume most of it. When an additional sensor
is used besides an accelerometer, such as gyroscope, CPU
usage increases significantly. Analysis results also show that
increasing the window size reduces the resource consumption
more than reducing the sampling rate. As a final remark,
we observe that a more complex model using only the
accelerometer is a better option than using a simple model
with both accelerometer and gyroscope when resource usage
is to be reduced.

Keywords—Activity recognition, mobile sensors, perfor-
mance analysis.

I. INTRODUCTION

In most of the studies on human activity recognition
using the sensors available on smart devices, such as
smart phones and smartwatches, a typical methodology
is followed: sensor data is collected from device users,
if needed data is pre-processed, features are extracted,
and classification model is built and its performance is
tested using machine learning algorithms on tools, such
as Weka [1]. This type of offline analysis of sensor data
is termed as offline human activity recognition because
the analysis is not performed on the device. Recently,
researchers have been moving towards online activity
recognition in order to verify the offline results and to
analyze the resource consumption of machine learning
algorithms on these devices [1]. In online activity recog-
nition systems, the classification of various activities is

This work is supported by Dutch National Program COMMIT in
the context of the SWELL project P7 and Galatasaray University
Research Fund under Grant Number 15.401.004, by Tubitak with Grant
Agreement Number 113E271.

performed on the device (smartphone or a smartwatch)
in real-time. There are a few studies [2]-[6] where the
authors have implemented various classifiers on mobile
phones and smartwatches. However, in these studies,
only a few classifiers are implemented. Moreover, they
have used different data sets, data features, platforms,
and implementations. They have also used different
methods to compute resource consumption. Due to these
different experimental setups, it is difficult to compare
various aspects of a human activity recognition system
in terms of their resource usage when running on mobile
and wearable devices. Examples of such aspects include
classifiers, feature extraction, sensors, sensor sampling
rate, and window size for segmentation.

In order to compare various classifiers for their re-
source consumption in a similar environment, we devel-
oped an online activity recognition framework for both
mobile phones and smartwatches. This Android-based
framework was presented in [7]. On the framework,
various classifiers, data features, sampling rates, and
sensors can be evaluated for their resource consumption
and recognition performance. In this specific study, we
evaluate the resource consumption of six commonly used
classifiers on both smartphones and smartwatches. We
performed these evaluations for different sensors and
their combinations. We summarize our contributions as
follows:

e We analyze six commonly used classifiers, naive
Bayes, multi-layer perceptron, decision tree, ran-
dom forest, support vector machine and k-
nearest neighbour, for their power (in milli-
watt and in percentages using battery-stats), CPU
(CPU-time, CPU-time/call, etc.) and memory us-
age (total and model size).

e We analyze the resource usage with using ac-
celerometer alone, as well as in combination with
a gyroscope. We also test the resource consump-
tion with varying sensor sampling rates, and
varying window sizes.

e We test the resource usage performance of the
classifiers both on a mobile phone trained for
recognizing seven physical activities, and on a
smart watch trained for recognizing smoking,
both in real-time.

The rest of the paper is organized as follows: In
Section II, we present the related work. We describe our
methodology in Section III and in Section IV, we present
the results of the performance evaluations. Finally, we
report the conclusions in Section V.

II. RELATED WORK

Human activity recognition using smartphone sensors
has been studied extensively for the last few years [1],
[8], [9]. Most of the work in this area is performed offline
such that collected data is analyzed in machine learning
tools such as WEKA, Scikit-learn, R, and MATLAB.
Recently, researchers have been moving towards online
activity recognition in order to verify the offline results
and to analyze the resource consumption of machine
learning algorithms on mobile phones and other wear-
able devices, such as smartwatches [1], [3], [5], [6], [10]-
[12].

In a previous survey paper [1], we reviewed the
studies that implement activity recognition systems on
mobile phones. Though there are a few studies where
the authors have implemented various classifiers on
mobile devices, there is still room for improvements.
For example, in these studies, only a few classifiers are
implemented on different platforms such as Android,
IoS, Debian Linux, and Symbian as shown in Table 4
in [1]. Moreover, they have used different data sets,
different data features, different experimental setups, and
different implementations as presented in Table 1, Table
3, Table 5, Table 12 in [1]. Not all of the studies include
an analysis of resource consumption and and those who
present an analysis, either focus on one resource, such
as battery or use different methods to compute resource
consumption. For example, for the battery consumption,
two types of measurements are made. In one case, the
amount of time a battery lasted was reported, while in
another, the power usage was reported in watt-hours per
hour. We think that, watt-hour per hour is a better option
since it is independent of the battery capacity. The CPU
usage was reported in terms of percentages during which
the CPU was occupied by the recognition process and
memory used was usually reported in MBs (megabytes).

Activity recognition using smartwatch sensors is still
relatively new, compared to smartphones. Most of the
work using smartwatch sensors is still being done offline
[13]-[15]. Only in very recent studies [16]-[18], battery
consumption of sensor logging and online activity recog-
nition process on smart watches has been analyzed.
However, similar to the studies on mobile phones, differ-
ent setups and use of different methods make it difficult
to compare the results.

Overall, due to these different experimental setups, it
is challenging to compare various aspects of a human
activity recognition system, including classifiers, feature
extraction, sensors, sensor sampling rate, and window
size for segmentation, in terms of their resource usage. In
order to address this challenge, we explore the parameter
space in detail and focus on different metrics in terms of
resource usage.

III. METHOD FOR RESOURCE CONSUMPTION
ANALYSIS

The activity recognition process can be divided into
various components, such as sensing, feature extraction,
training, and classification. This process can be divided
into offline and online categories. In online activity recog-
nition, the classification is done on the device (phone
or wearable device). However, the training can still be
done in two ways: online (on the device) and offline.
The training can be very time and resource consuming,
that is why it is usually done offline. We have opted for
offline training in this work. We use offline training and
then port these trained models to the mobile phone and
the smartwatch.

We proposed a conceptual framework in [7] for online
activity recognition which consists of three main com-
ponents: Activity recognition (AR) process on a smart-
phone, AR process on a smartwatch, and a machine
learning tool (WEKA) for training models. This frame-
work proposes different modes of operation, such as
running the activity recognition process only on phone,
only on watch or on both devices. In this paper, we only
test the resource consumption of separate modes, only
on phone and only on watch. Hence, all the mentioned
steps of activity recognition, such as sensing, feature ex-
traction, classification are running on both these devices.
However, the training is performed offline on the WEKA
tool, where machine learning models are trained offline
and then ported to these devices. After training these
models, they are serialized in WEKA and stored in the
relevant Android Apps where they are de-serialized at
the time of their use. This process is described in WEKA
documentation [19].

For sensing, we have analyzed the resource usage of
classifiers with an accelerometer, in combination with
gyroscope and with linear acceleration. For feature ex-
traction, simple features, min, max, mean and standard
deviation, are used. Other features can be added on
demand. For the classification part, the trained models
from WEKA are used to predict the current window of
sensor data and map it to the relevant activity. These
trained models can be placed in the asset or other folders
in our app and they are ready to use. These three
modules or parts are implemented as an Android service
which runs in the background and it does not need any
user interaction.

In our specific use case, we run physical activity recog-
nition process on the phone and smoking recognition
process on the watch. For training purpose, we used
two data sets, one for the smartphone [20] and one
for the smartwatch [21]. We added an additional data
of around 5 hours to the smoking data set in order
to improve the null or other class, so smoking should
not be confused with other activities. This additional
data includes various activities such as drinking, eating,
walking, biking, washing dishes, cooking, taking part in
conversations, inactive (sitting, standing, laying in bed
etc.) and others. On both devices, we used a sampling
rate of 50 for sensor readings and a window size of 5
seconds for feature extraction.

We trained six classifiers in WEKA: decision tree (DT),

support vector machine (SMO), random forest (RF), mul-
tilayer perceptron (MLP), naive Bayes (NB), K-nearest
neighbor (KNN). We use these classifiers in their default
settings except few changes. For example, KNN was
used with 3 neighbors instead of its default value 1. We
use an odd number to avoid tie in voting. For the random
forest, we used two variants: with 9 trees (RF9) and with
99 trees (RF99).

We used different tools to measure the resource usage.
For CPU usage of individual method calls, we used
Android Device Monitor with Trace-View. For CPU usage of
our app, we used top and DUMPSYS cpuinfo tools. For
power consumption, we used an Android application:
POWERTUTOR and also built-in battery stats. For mem-
ory usage, we used DUMPSYS meminfo tool. We briefly
describe these tools here:

e Android Device Monitor with Trace-View [22]: Using
this tool, we can track individual methods or
functions (such as classification) in our applica-
tions for CPU consumption. It is achieved by
recording each method’s entry and exit point for
its CPU consumption. The CPU time reported
using this tool should not be taken as an absolute
time taken by these function but it is rather used
for a comparative purpose which is what we
used it for. According to Android documentation
[22]: Don't try to generate absolute timings from the
profiler results (such as, "function X takes 2.5 seconds
to run”). The times are only useful in relation to other
profile output, so you can see if changes have made the
code faster or slower relative to a previous profiling
run.

o DUMPSYS cpuinfo [23]: It gives detailed informa-
tion about CPU usage of various running pro-
cessing both in user and kernel space. It reports
the CPU usage per single CPU. We run this com-
mand every 3 seconds to record the CPU usage
of our app. We take the average of these reported
values at the end of each recording session. Each
recording session was of ten minutes.

e TOP [24]: This command also reports the CPU
usage of all running processes. It reports the CPU
usage per a single CPU. We ran this command
every second for each session where each session
lasted for ten minutes. We take an average of
these values at the end of each session.

e POWERTUTOR [25]: This app measures power in
watts per process. Its power model was built on
specific phones (HTC G1, HTC G2, and Nexus
one), and its results on other phones may be
rough [25]. However, it can still report accurate
results for relative comparisons because any bias
in reported results will be the same for all our
measurements. It reports average power usage
for the amount of time this app is running.

o Android Built-in Battery statistics: This tool tells
about the percentage of used battery by running
applications.

o DUMPSYS meminfo [23]: For memory usage, we
used DUMPSY'S meminfo. It gives us memory use
(PSS). We ran this command every second and

took an average at the end of each session which
lasted ten minutes.

IV. PERFORMANCE EVALUATION

For resource consumption analysis, we used three met-
rics: CPU usage, memory usage, and power consump-
tion. CPU usage is the percentage of time spent by our
app on CPU. Memory usage is measured in terms of PSS
(proportional set size). Proportional Set Size is defined as
the amount of main memory (RAM) used by a process
which contains both the private memory of that process
as well as the part which is shared by that process with
other processes. For example, if this process shares a
specific portion of RAM with one other process, then half
of that portion will be counted towards its PSS value. For
power consumption, we used Watt as a measure and it
is defined as one joule per second. We ran our app for
a specific amount of time (ten minutes), repeatedly, and
measured all these metrics. We used Samsung Galaxy S2
and LG Watch R in our evaluations.

A. CPU and Memory Usage on Smart Phone

First, we evaluated all six classifiers using accelerome-
ter alone for their resource consumption. Random Forest
classifier was used in two variants (with 9 and 99 trees)
to see the effect of increasing the number of trees on
resource consumption. For a benchmark application, we
use music player as it is commonly used on smartphones.
The results for CPU, memory, and power consumption
of our app running these classifiers and the bench-
mark application are given in Table I(a). These results
are the average of multiple recording sessions where
each recording session lasts for around ten minutes.
The classification function takes a small percentage of
the CPU compared to feature extraction and sensing,
therefore the difference between various classifiers is not
clearly visible in the resource consumption of our app
as is shown in Table I(a). There is one exception: KNN
classifier. The resource consumption of KNN is higher
than all other classifiers, in terms of CPU and power
usage. It is higher because KNN searches through the
whole training set to find the nearest neighbors which
is an expensive task in terms of computations. We can
also see that RF99 consumes slightly more CPU than
RF9 due to its larger number of trees. As shown in
Table I(a), the power consumption shows similar trends
as CPU consumption. As for as the memory usage is
concerned, Random forest with 99 trees consumes the
highest memory. However, overall the memory usage of
all these different versions of our app is not very high
and shows that memory usage is not a problem for these
apps on smartphones and smartwatches. We also present
the size of each trained model in Table I(a) and it can be
seen that it is very small for all these models.

To zoom in at CPU consumption of each classifier, we
used method-tracing with the Trace-View tool. Using this
tool, we looked at the CPU time of classification function
for each classifier. These measurements were repeated
multiple times. The results for zoomed in CPU usage
for various classifiers using accelerometer are shown in
Table I(b). From this table, we can see a clear difference
between the CPU usage of these classifiers. For example,

Table 1.

RESOURCE CONSUMPTION ANALYSIS OF OUR APP ON PHONE USING ACCELEROMETER

NB | MLP | DT | RF9 | RF99 | SMO | KNN3 2’1"5“ player as
enchmark application
CPU Usage 491% | 4.60% | 459% | 4.59% | 4.77% | 4.69% | 7.10% 13.00%
Memory Usage (MB) 10.91 11.30 11.03 11.73 15.19 11.18 12.04 16.00
Power using power tutor(mW) | 16.00 16.00 16.00 16.00 17.00 16.00 23.00 45.00
Power using battery stats 9.00% | 9.00% | 9.00% | 9.00% | 9.00% | 9.00% | 10.50% | NA
Model Size (KB) 13 440 36 219 2327 19 412 NA

(a) Average CPU usage, memory usage, and power consumption on smartphone

CPUtime % CPUtime | CPUtimelcall | total calls | total CPUtime | total wall-clock time
NB 2.80 1928.95 26.79 72 68925.00 360000
MLP 1.90 1276.56 17.73 72 68392.00 360000
DT 0.30 219.25 3.04 72 66768.00 360000
RF9 0.40 269.39 3.74 72 67089.00 360000
RF99 4.30 3114.79 43.26 72 71668.00 360000
SMO 1.50 1003.00 13.94 72 68975.00 360000
KNN3 | 75.00 54526.00 757.30 72 72232.00 360000

(b) CPU time (milliseconds) of classification function only on smartphone

Table II. RESOURCE CONSUMPTION ANALYSIS OF OUR APP ON SMARTWATCH USING ACCELEROMETER
NB MLP DT RF9 RF99 SMO KNN3
CPU 3.67% 3.41% 3.55% 3.48% 3.58% 3.49% 4.65%
Memory (MB) 11.81 12.42 12.41 13.97 28.09 12.27 13.47
Model Size (KB) 13 947 137 947 10397 19 919

(a) Average CPU Usage, and Memory Consumption on Smartwatch

CPUtime % CPUtime CPUtimelcall total calls toal CPUtime total wall-clock time
NB 4.90 2876.00 57.53 50 58693.88 252000
MLP 2.50 1446.00 28.92 50 57840.00 252000
DT 0.90 509.00 10.18 50 56555.56 252000
RF9 0.90 528.00 10.58 50 58666.67 252000
RF99 8.70 5308.00 106.17 50 61011.49 252000
SMO 2.00 1118.00 22.36 50 55900.00 252000
KNN3 72.00 51706.00 3693.00 14 71813.89 252000

(b) CPU time (milliseconds) of classification function on Smartwatch

KNN takes a large amount of time compared to all other
classifiers. We see that decision tree and random forest
with nine trees are light-weight classifiers in terms of
prediction.

B. CPU and Memory Usage on Smart Watch

We also evaluated all these scenarios on the smart-
watch and observed similar results for classifier compar-
isons. For smartwatch, the CPU usage, memory usage,
and model size of our wearable app running various
classifiers are given in Table II(a). We also looked at
the CPU usage of the individual classification method
for each classifier and observed similar results as on
the phone. For example, KNN was taking the highest
amount of CPU time among classifiers whereas decision
tree and RF9 was taking the smallest fraction of CPU
time. These zoomed in CPU times and their percentages
are given in Table II(b).

C. CPU Usage with Different Sensors

We also evaluated these classifiers using the combi-
nation of the accelerometer and the gyroscope. A com-
parison of CPU usage using an accelerometer and its
combination with the gyroscope are shown in Figure 1.
There is a significant increase in CPU usage due to the
addition of the gyroscope.

Impact of gyroscope on CPU usage

RF9 RF99 sMo KNN3
Classifiers

25%

20%

0% I I I I
NB ot

m CPU Usage (Accelerometer only)

$

% CPU Usage
E

$

m CPU Usage (Accelerometer + Gyroscope)

Figure 1. Impact of adding gyroscope (G) with accelerometer (A) on
CPU consumption

To see this effect in detail, we zoomed in at the sensing
part for accelerometer and gyroscope. We tested this
scenario with two classifiers such as support vector ma-
chine, and random forest (RF9) out of the six classifiers.
These results are shown in Figures 2(a) and 2(b). It can
be seen from these figures that the CPU consumption
increases significantly, mainly because of the sensing and
feature extraction part since the CPU needs to process
all changes in gyroscope values and make it available
for reading by the Android App. Although we use a
sampling rate of 50 samples per second, sensor values are

made available by Android at higher sampling rate over
which we do not have any control. Any time gyroscope
value changes, onStatusChanged() function is called where
these sensors values are stored so users can read them
according to their own sampling rate. Moreover, the CPU
needs to process 16 additional features for the gyroscope.
Therefore, we see a higher increase in CPU usage due to
sensing compared to the prediction function. Previously
we observed that there is a very small increase in CPU
usage when we increase the number of trees in a random
forest classifier from 9 (CPU usage:4.47%) to 99 (CPU
usage:4.61%) as shown Table I(a). It shows that it is better
to use a complex training model with accelerometer
instead of using a simple model with both accelerometer
and gyroscope if the former can provide an acceptable
recognition performance.

CPU usage of AR pipeline and sensing

25%

20%

15% . . I I
0%

Sensing"®

% CPU Usage
S
R

"
=

AR pipeline® AR pipeline*® Sensing®
AR pipeline(classification, feature extraction) vs. sensing

®RF9 ®SMO

(a) %CPU time of AR pipeline vs. sensing using accelerometer (A)
and its combination with gyroscope (AG)

CPUTIME Classification | CPUTIME Sensing | TOTAL APP CPUTIME | TOTAL APP RUN TIME
Acc [Acc + Gyro Acc [Acc + Gyro Acc [Acc + Gyro
RF [2790215 | 30217.44 18574.83 | 52061.79 | 68212.00 111641.33 360000

SMO | 28851.93 | 3T141.51

18583.68 | 52482.64 68913.67 | 113516.67 360000
(b) CPU time (milliseconds) using accelerometer, and its combi-
nation with gyroscope

Figure 2. Impact of adding gyroscope (G) with accelerometer (A) on
CPU consumption of prediction and sensing

We also measured the CPU usage of the linear accel-
eration sensor with respect to an accelerometer to see its
resource consumption. For random forest classifier, the
average CPU-usage of the linear acceleration sensor was
5.11% whereas that of the accelerometer was 4.49%. We
observe a higher CPU usage for the linear acceleration
sensor because there is additional processing required
to get its values from the accelerometer by removing
gravity.

D. Impact of Sampling Rate and Window Size

The power consumption of our app can be optimized
in many ways. For example, a larger window size can
reduce the CPU usage, thereby leading to less battery
usage. Similarly, a lower sampling rate can also help
in reducing the battery usage. However, these should
not compromise the recognition performance. In order
to see how these two parameters affect the CPU usage,
we evaluated our app with three different window sizes

(10, 5, 2 seconds) and three sampling rates (50, 20,
10). We measure the CPU usage of our app on the
phone as well as we measure CPU time of the activity
recognition pipeline (AR Pipeline with SMO). In our
case, this pipeline means storing sensor values in a
data structure after every sampling interval, extracting
features after each window, and prediction using the
trained classifier. These results are shown in Figure 3 for
both varying window sizes and sampling rates. We see
that CPU usage decreases with increasing window sizes
and lower sampling rates. The impact of window size is
higher than that of sampling rate on the CPU usage in
terms of reduction.

Win: 2 sec | Win: 5 sec | Win: 10 sec
CPU TIME (AR Pipline) 39804.13 236382 17953.61
% CPU Time (AR Pipeline) | 55.31% 40.9% 34.3%
%CPU Usage (APP) 5.44% 4.69% 4.49%

(a) CPU time (milliseconds) for varying window
sizes: AR means Activity Recognition

SR: 50 | SR: 20 SR: 10
CPU TIME (AR Pipline) 23638.2 | 15139.36 | 12872.96
% CPU Time (AR Pipeline) | 40.9% 34.3% 32.3%
% CPU Usage (APP) 4.69% 3.96% 3.64%

(b) CPU time (milliseconds) for varying Sampling
Rates

% CPU Time (AR Pipeline)

w0
B
s
L ® ..,
£ H
> 0
) H
N
15 Fa
10
0
s
0 3

50 samples/sec 2

% CPU Time (AR Pipeline)

250 ec

10 samplessec 5
Segmentation Window Size

Sar

' Rate

(d) CPU usage with varying
window sizes

(c) CPU usage with varying
sampling rates

Figure 3. Impact of sampling rates and window sizes on CPU Usage

Table III. BATTERY USAGE OF OUR ANDROID APP ON
SMARTPHONE AND SMARTWATCH (BL: BATTERY LEVEL AFTER ONE HOUR, RH:

APPROXIMATE REMAINING HOURS

Physical activity recognition on smartphone Smoking recognition on smartwatch
Our app (DT) Our app (KNN3) Our app (DT) Our app (KNN3)
Acc | Acc + Gyro | Acc Acc + Gyro Acc [Acc + Gyro | Acc [Acc + Gyro
[BL [95% 93% 94% 91% 88% 86% 88% %86
| RH 19 13 16 10 7 6 7 6

E. Battery Consumption on Smart Phone and Smart Watch

Finally, we evaluated how much the smartphone and
smartwatch battery last while running our activity recog-
nition app. For this purpose, we ran our app for one
hour on smartphone and smartwatch. We only used
DT and KNN classifiers. We expect the overall battery
consumption of DT to be closer to that of SMO, RF9,
RF99, and NB based on our reported CPU usages in
Table I(a). We present the battery usage after one hour
in different scenarios in Table III. We kept the screen off
in all these situations. In the case of idle mode with off
screen, the battery level after one hour was 98% for the
smartphone and 99% for the smartwatch. The results in

Table III show that smartphones are capable of running
an activity recognition system for a reasonable amount of
time (14-20 hours). In case of the smartwatch, the results
are encouraging, too (6-8 hours) taking into account its
low battery capacity (410 mAh). Battery capacities are
improving with time so we expect the battery life to
improve as well. As for as running trained classifiers
for small data sets are concerned, it should not be an
issue for a smartphone or a smartwatch. However, if
online training is taken into account, then some of the
classifiers may not be feasible for these devices such as
MLP and random forest with a huge number of trees.
Though training these classifiers take a small amount
of time on a desktop machine, it can take considerably
long on these small devices, thereby leading to a quick
drainage of the battery.

V. CONCLUSIONS

In this paper, we presented an analysis on the resource
usage of various aspects of a activity recognition system
running on smart phones and smart watches. In terms
of resource consumption, we observed that classification
function takes a very small amount of CPU time out
of total app CPU time. Most of the CPU is consumed
by sensing and feature calculation. We recommend not
to use the gyroscope unless it is necessary because due
to the addition of the gyroscope CPU usage increases
significantly. We observed that a complex model such as
MLP or an ensemble model such as RF99 (99 trees) using
accelerometer only is a better option than using a simple
model such as a decision tree with both accelerometer
and gyroscope as for as the resource consumption is
concerned. We also observed that impact of window size
on resource consumption is higher than the sampling
rate. Therefore, increasing window size will lead to more
saving in resources compared to decreasing sampling
rates. A combination of decreasing sampling rate and in-
creasing window size can be used to reduce the resource
consumption. Based on our resource consumption anal-
ysis, we conclude that both smartphone and smartwatch
are capable of running activity recognition systems for
recognizing various activities for a reasonable amount
of time. As a future work, we plan to develop a context-
aware activity recognition algorithm where sensors, sam-
pling rates, window sizes are decided on demand.

REFERENCES

[1] M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga,
“A survey of online activity recognition using mobile phones,”
Sensors, vol. 15, no. 1, pp. 2059-2085, 2015.

[2] O. Lara and M. Labrador, “A mobile platform for real-time hu-
man activity recognition,” in 2012 IEEE Consumer Communications
and Networking Conference (CCNC), Jan. 2012, pp. 667-671.

[3] P. Siirtola and J. Roning, “Ready-to-use activity recognition
for smartphones,” in Computational Intelligence and Data Mining
(CIDM), 2013 IEEE Symposium on. IEEE, 2013, pp. 59-64.

[4] C. Schindhelm, “Activity recognition and step detection with
smartphones: Towards terminal based indoor positioning sys-
tem,” in IEEE 23rd International Symposium on Personal Indoor and
Mobile Radio Communications (PIMRC), Sep. 2012, pp. 2454-2459.

[5] S. Bhattacharya and N. D. Lane, “From smart to deep: Robust ac-
tivity recognition on smartwatches using deep learning,” in IEEE
International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops). 1EEE, 2016, pp. 1-6.

[6]

[71

[8]

191

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]
(24]

[25]

S. Sen, K. K. Rachuri, A. Mukhertji, and A. Misra, “Did you take a
break today? detecting playing foosball using your smartwatch,”
in IEEE International Conference on Pervasive Computing and Com-
munication Workshops (PerCom Workshops). IEEE, 2016, pp. 1-6.

M. Shoaib, “Sitting is the new smoking: online complex human
activity recognition with smartphones and wearables,” Ph.D.
dissertation, 5 2017, cTIT Ph.D. thesis series no. 17-436.

O. D. Lara and M. A. Labrador, “A survey on human activity
recognition using wearable sensors,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 3, pp. 1192-1209, 2013.

O. D. Incel, M. Kose, and C. Ersoy, “A review and taxonomy
of activity recognition on mobile phones,” BioNanoScience, vol. 3,
no. 2, pp. 145-171, 2013.

Y. Liang, X. Zhou, Z. Yu, B. Guo, and Y. Yang, “Energy efficient
activity recognition based on low resolution accelerometer in
smart phones,” in Advances in Grid and Pervasive Computing.
Springer, 2012, pp. 122-136.

V. Stewart, S. Ferguson, J.-X. Peng, and K. Rafferty, “Practical
automated activity recognition using standard smartphones,” in
Pervasive Computing and Communications Workshops, IEEE Inter-
national Conference on, vol. 0. Los Alamitos, CA, USA: IEEE
Computer Society, 2012, pp. 229-234.

Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K. Aberer,
“Energy-efficient continuous activity recognition on mobile
phones: An activity-adaptive approach,” in 2012 16th International
Symposium on Wearable Computers (ISWC), Jun. 2012, pp. 17-24.

M. Gjoreski, H. Gjoreski, M. Lustrek, and M. Gams, “How
accurately can your wrist device recognize daily activities and
detect falls?” Sensors, vol. 16, no. 6, p. 800, 2016.

M. Gjoreski, H. Gjoreski, M. Lustrek, and M. Gams, “Recognizing
atomic activities with wrist-worn accelerometer using machine
learning,” in Proceedings of the 18th International Multiconference
Information Society (IS), Ljubljana, Slovenia, 2015, pp. 10-11.

E Attal, S. Mohammed, M. Dedabrishvili, F. Chamroukhi,
L. Oukhellou, and Y. Amirat, “Physical human activity recogni-
tion using wearable sensors,” Sensors, vol. 15, no. 12, pp. 31314~
31338, 2015.

R. Rawassizadeh, M. Tomitsch, M. Nourizadeh, E. Momeni,
A. Peery, L. Ulanova, and M. Pazzani, “Energy-efficient integra-
tion of continuous context sensing and prediction into smart-
watches,” Sensors, vol. 15, no. 9, pp. 22 616-22 645, 2015.

E. Poyraz and G. Memik, “Analyzing power consumption and
characterizing user activities on smartwatches: summary,” in
2016 IEEE International Symposium on Workload Characterization
(IISWC), Sept 2016, pp. 1-2.

X. Liu, T. Chen, E. Qian, Z. Guo, F. X. Lin, X. Wang, and K. Chen,
“Characterizing smartwatch usage in the wild,” in Proceedings
of the 15th Annual International Conference on Mobile Systems,
Applications, and Services, ser. MobiSys "17. New York, NY, USA:
ACM, 2017, pp. 385-398.

“Weka serialization and deserialization,” https://weka.
wikispaces.com/Serialization, last accessed on 11th Sep 2017.

M. Shoaib, S. Bosch, O. D. Incel, H. Scholten, and P. J. Havinga,
“Fusion of smartphone motion sensors for physical activity
recognition,” Sensors, vol. 14, no. 6, pp. 10146-10176, 2014.

M. Shoaib, H. Scholten, P.]J. Havinga, and O. D. Incel, “A
hierarchical lazy smoking detection algorithm using smartwatch
sensors,” in IEEE 18th International Conference on e-Health Network-
ing, Applications and Services (Healthcom),. 1EEE, 2016, pp. 1-6.
“Traceview in android device monitor,” https://developer.
android.com/studio/profile/traceview.html, last accessed on
11th Sep 2017.

“Dumpsys:,” https:/ /source.android.com/devices/tech/debug/
dumpsys.html, last accessed on 11th Sep 2017.

“Top command:,” http://www.unixtop.org/man.shtml, last ac-
cessed on 11th Sep 2017.

“Power tutor:,” http:/ /ziyang.eecs.umich.edu/projects/
powertutor/, last accessed on 11th Nov 2016.

