18,252 research outputs found

    Air Taxi Skyport Location Problem for Airport Access

    Full text link
    Witnessing the rapid progress and accelerated commercialization made in recent years for the introduction of air taxi services in near future across metropolitan cities, our research focuses on one of the most important consideration for such services, i.e., infrastructure planning (also known as skyports). We consider design of skyport locations for air taxis accessing airports, where we present the skyport location problem as a modified single-allocation p-hub median location problem integrating choice-constrained user mode choice behavior into the decision process. Our approach focuses on two alternative objectives i.e., maximizing air taxi ridership and maximizing air taxi revenue. The proposed models in the study incorporate trade-offs between trip length and trip cost based on mode choice behavior of travelers to determine optimal choices of skyports in an urban city. We examine the sensitivity of skyport locations based on two objectives, three air taxi pricing strategies, and varying transfer times at skyports. A case study of New York City is conducted considering a network of 149 taxi zones and 3 airports with over 20 million for-hire-vehicles trip data to the airports to discuss insights around the choice of skyport locations in the city, and demand allocation to different skyports under various parameter settings. Results suggest that a minimum of 9 skyports located between Manhattan, Queens and Brooklyn can adequately accommodate the airport access travel needs and are sufficiently stable against transfer time increases. Findings from this study can help air taxi providers strategize infrastructure design options and investment decisions based on skyport location choices.Comment: 25 page

    Comparative Evaluation of Community Detection Algorithms: A Topological Approach

    Full text link
    Community detection is one of the most active fields in complex networks analysis, due to its potential value in practical applications. Many works inspired by different paradigms are devoted to the development of algorithmic solutions allowing to reveal the network structure in such cohesive subgroups. Comparative studies reported in the literature usually rely on a performance measure considering the community structure as a partition (Rand Index, Normalized Mutual information, etc.). However, this type of comparison neglects the topological properties of the communities. In this article, we present a comprehensive comparative study of a representative set of community detection methods, in which we adopt both types of evaluation. Community-oriented topological measures are used to qualify the communities and evaluate their deviation from the reference structure. In order to mimic real-world systems, we use artificially generated realistic networks. It turns out there is no equivalence between both approaches: a high performance does not necessarily correspond to correct topological properties, and vice-versa. They can therefore be considered as complementary, and we recommend applying both of them in order to perform a complete and accurate assessment

    Computationally Efficient and Robust BIC-Based Speaker Segmentation

    Get PDF
    An algorithm for automatic speaker segmentation based on the Bayesian information criterion (BIC) is presented. BIC tests are not performed for every window shift, as previously, but when a speaker change is most probable to occur. This is done by estimating the next probable change point thanks to a model of utterance durations. It is found that the inverse Gaussian fits best the distribution of utterance durations. As a result, less BIC tests are needed, making the proposed system less computationally demanding in time and memory, and considerably more efficient with respect to missed speaker change points. A feature selection algorithm based on branch and bound search strategy is applied in order to identify the most efficient features for speaker segmentation. Furthermore, a new theoretical formulation of BIC is derived by applying centering and simultaneous diagonalization. This formulation is considerably more computationally efficient than the standard BIC, when the covariance matrices are estimated by other estimators than the usual maximum-likelihood ones. Two commonly used pairs of figures of merit are employed and their relationship is established. Computational efficiency is achieved through the speaker utterance modeling, whereas robustness is achieved by feature selection and application of BIC tests at appropriately selected time instants. Experimental results indicate that the proposed modifications yield a superior performance compared to existing approaches
    corecore