9 research outputs found

    How to Walk Your Dog in the Mountains with No Magic Leash

    Full text link
    We describe a O(log⁥n)O(\log n )-approximation algorithm for computing the homotopic \Frechet distance between two polygonal curves that lie on the boundary of a triangulated topological disk. Prior to this work, algorithms were known only for curves on the Euclidean plane with polygonal obstacles. A key technical ingredient in our analysis is a O(log⁥n)O(\log n)-approximation algorithm for computing the minimum height of a homotopy between two curves. No algorithms were previously known for approximating this parameter. Surprisingly, it is not even known if computing either the homotopic \Frechet distance, or the minimum height of a homotopy, is in NP

    Constructing monotone homotopies and sweepouts

    Full text link
    This article investigates when homotopies can be converted to monotone homotopies without increasing the lengths of curves. A monotone homotopy is one which consists of curves which are simple or constant, and in which curves are pairwise disjoint. We show that, if the boundary of a Riemannian disc can be contracted through curves of length less than LL, then it can also be contracted monotonously through curves of length less than LL. This proves a conjecture of Chambers and Rotman. Additionally, any sweepout of a Riemannian 22-sphere through curves of length less than LL can be replaced with a monotone sweepout through curves of length less than LL. Applications of these results are also discussed.Comment: 16 pages, 6 figure

    Monotone contractions of the boundary of the disc

    Get PDF
    In this paper, we study contractions of the boundary of a Riemannian 2-disc where the maximal length of the intermediate curves is minimized. We prove that with an arbitrarily small overhead in the lengths of the intermediate curves, there exists such an optimal contraction that is monotone, i.e., where the intermediate curves are simple closed curves which are pairwise disjoint. This proves a conjecture of Chambers and Rotman

    On the complexity of optimal homotopies

    Get PDF
    In this article, we provide new structural results and algorithms for the Homotopy Height problem. In broad terms, this problem quantifies how much a curve on a surface needs to be stretched to sweep continuously between two positions. More precisely, given two homotopic curves Îł1\gamma_1 and Îł2\gamma_2 on a combinatorial (say, triangulated) surface, we investigate the problem of computing a homotopy between Îł1\gamma_1 and Îł2\gamma_2 where the length of the longest intermediate curve is minimized. Such optimal homotopies are relevant for a wide range of purposes, from very theoretical questions in quantitative homotopy theory to more practical applications such as similarity measures on meshes and graph searching problems. We prove that Homotopy Height is in the complexity class NP, and the corresponding exponential algorithm is the best one known for this problem. This result builds on a structural theorem on monotonicity of optimal homotopies, which is proved in a companion paper. Then we show that this problem encompasses the Homotopic Fr\'echet distance problem which we therefore also establish to be in NP, answering a question which has previously been considered in several different settings. We also provide an O(log n)-approximation algorithm for Homotopy Height on surfaces by adapting an earlier algorithm of Har-Peled, Nayyeri, Salvatipour and Sidiropoulos in the planar setting

    Four Soviets Walk the Dog-Improved Bounds for Computing the Fr\'echet Distance

    Get PDF
    Given two polygonal curves in the plane, there are many ways to define a notion of similarity between them. One popular measure is the Fr\'echet distance. Since it was proposed by Alt and Godau in 1992, many variants and extensions have been studied. Nonetheless, even more than 20 years later, the original O(n2log⁥n)O(n^2 \log n) algorithm by Alt and Godau for computing the Fr\'echet distance remains the state of the art (here, nn denotes the number of edges on each curve). This has led Helmut Alt to conjecture that the associated decision problem is 3SUM-hard. In recent work, Agarwal et al. show how to break the quadratic barrier for the discrete version of the Fr\'echet distance, where one considers sequences of points instead of polygonal curves. Building on their work, we give a randomized algorithm to compute the Fr\'echet distance between two polygonal curves in time O(n2log⁥n(log⁥log⁥n)3/2)O(n^2 \sqrt{\log n}(\log\log n)^{3/2}) on a pointer machine and in time O(n2(log⁥log⁥n)2)O(n^2(\log\log n)^2) on a word RAM. Furthermore, we show that there exists an algebraic decision tree for the decision problem of depth O(n2−Δ)O(n^{2-\varepsilon}), for some Δ>0\varepsilon > 0. We believe that this reveals an intriguing new aspect of this well-studied problem. Finally, we show how to obtain the first subquadratic algorithm for computing the weak Fr\'echet distance on a word RAM.Comment: 34 pages, 15 figures. A preliminary version appeared in SODA 201
    corecore