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MONOTONE CONTRACTIONS OF THE BOUNDARY OF THE
DISC

ERIN WOLF CHAMBERS, GREGORY R. CHAMBERS, ARNAUD DE MESMAY,
TIM OPHELDERS, AND REGINA ROTMAN

ABSTRACT. In this paper, we study contractions of the boundary of a
Riemannian 2-disc where the maximal length of the intermediate curves
is minimized. We prove that with an arbitrarily small overhead ε in the
lengths of the intermediate curves, there exists such an optimal contrac-
tion that is monotone, i.e., where the intermediate curves are simple
closed curves which are pairwise disjoint. This proves a conjecture of
Chambers and Rotman.

1. INTRODUCTION

This paper deals with monotone homotopies, which we first define.
Throughout the article, for two disjoint non-contractible homotopic simple
closed curves α and β, we denote by A(α, β) the annulus that they bound.
For a contractible simple closed curve α, we denote by D(α) the disc that it
bounds — since the surfaces we deal with in this paper always have at least
one boundary, this disc is uniquely defined.

Definition 1.1. Let (M, g) be a Riemannian annulus with boundaries γ0
and γ1, and let H : S1 × [0, 1] → M be a homotopy between γ0 and γ1,
i.e., a smooth map such that H(t, 0) = γ0 and H(t, 1) = γ1. We will say
that H is monotone if every intermediate curve γτ := H(t, τ) is a simple
closed curve parameterized by t for each τ ∈ [0, 1] and if the closed 2-
annuli A(γτ , γ1) ⊆ M satisfy the inclusion A(γτ2 , γ1) ⊆ A(γτ1 , γ1) for
every τ1 < τ2.

A monotone contraction of a Riemannian 2-disc is a monotone homotopy
from its boundary to a constant curve.

We prove the following theorem, which was a conjecture by Chambers
and Rotman [6, Conjecture 0.2].

Theorem 1.2. Suppose that (D, g) is a Riemannian disc, and suppose that
there is a contraction of ∂D through curves of length less than L. Then, for
any ε > 0, there is a monotone contraction of ∂D through curves of length
less than L+ ε.
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This theorem has numerous applications in Riemannian geometry, for
which we refer to Chambers and Rotman [6, Section 0.1].

1.1. Applications to applied topology. From the computational topology
literature, much recent work has focused on computing a “best” homotopy
between two curves as a means of measuring similarity of the curves or
determining optimal morphs between them [3, 4, 7]. The main goal in this
setting is to determine the computational complexity of such a problem in
the most common settings, generally where the two curves are in the plane
(possibly with obstacles) or on a meshed surface, as it typically returned by
surface reconstruction algorithms.

The type of optimality we study in this work has been investigated in a
combinatorial setting, where it was called the “height” of the homotopy [2,
7], and in the graph theoretic setting, where it was called a “b-northward
migration” [1]. However, the exact complexity of this problem remains
open, and both papers include a conjecture that the best such morphings
will proceed monotonically. The monotonicity result we present in this
paper is a key ingredient in showing that this problem lies in the complexity
class NP .

2. PRELIMINARIES

Throughout the article, a closed curve γ in a Riemannian annulus A is
called a minimizing geodesic if it is essential (i.e., homotopic to one of the
boundaries), and its length is minimal among the essential curves.

Definition 2.1. A zigzag Z is a collection of homotopies H1, . . . , Hn with
the following properties:

(1) Hi alternates between outward and inwards monotone homotopies,
i.e., each of the Hi is a monotone homotopy, but for any i ∈
{1, . . . , n− 1}, the concatenation of Hi and Hi+1 is not.

(2) Hi(1) = Hi+1(0)

We define γ0 = H1(0) and γi = Hi(1) for 1 ≤ i ≤ n.
Each Hi goes from γi−1 to γi. We define the degree of Z, deg(Z), to be

n.
We define the area of Z, area(Z), to be

∑n
i=1 area(A(γi−1, γi)).

We define the length of Z, length(Z), to be length(γ0) +∑n
i=1 length(γi).

We will also need the following definitions and a theorem from the article
of Chambers and Rotman [6].

Definition 2.2. ([6, Definition 0.6]) Let α : [0, 1] −→M and β : [0, 1] −→
M be two simple closed curves in a Riemannian manifold M . If every two
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FIGURE 1. Meandering curves

points of intersection between α and β are consecutive on α if and only
if they are consecutive on β, then α and β are said to satisfy the simple
intersection property.

When α, β defined in 2.2 do not satisfy the simple intersection property,
we will say that they are meandering with respect to each other.

Definition 2.3. Let α, β be two simple closed curves in a closed topological
2-disk D. Let αi = α|[ti,ti+1] be an arc of α, such that the interior of the arc
does not intersect β, while its endpoints α(ti), α(ti+1) ∈ β. Then these
points subdivide β into two arcs. Let λ be an arc that together with αi
bounds a disk in the closed annulus A(∂D, β(t)) between ∂D and β. Then
we will call λ a corresponding arc. We will refer to the disk Di with the
boundary αi ∪ β as a corresponding disk, (see fig. 1 (b). The disk that
corresponds to arc αi is shaded).

Definition 2.4. Let α, β be two simple closed curves in a closed topological
2-disk D. Suppose α is meandering with respect to β. We will call an arc
αi of α that intersects β only at its endpoints, maximal, if it is adjacent to
the outer face in the planar graph obtained by superimposing α and β.

Proposition 2.5. Suppose that there is a contraction of ∂D through curves
of length less than L, then for any ε > 0 there exists a zigzag of degree n
such that γ0 = ∂D and γn is a constant curve, and such that all curves of
all homotopies have length less than L+ ε.

Proof. First, by a result of Chambers and Liokumovitch [5, Theorem 1.1],
we know that for any ε > 0, there exists a contraction of ∂D through simple
closed curves of length less than L+ ε.

We say that a corresponding disk between two arcs α and α′ is δ-thin if
there is a reparameterization of α such that α(t) and α′(t) are at distance
at most δ for any t ∈ [0, 1]. Similarly, an annulus A(α, β) is δ-thin if there
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is a reparameterization of α such that α(t) and β(t) are at distance at most
δ. Now, we consider a discretized version of the contraction H , i.e., we
consider an increasing sequence of n times ti ∈ [0, 1] so that

• t0 = 0,
• tn = 1, and
• for 0 ≤ i ≤ n − 1, if H(ti) and H(ti+1) intersect, they have

the simple intersection property and the corresponding disks are δ-
thin, for δ to be precised later. If they do not intersect, the annulus
A(H(ti), H(ti+1)) is δ-thin.

The existence of this sequence follows directly by compactness. Now, if
H(ti) and H(ti−1) intersect, for each 0 < i < n, we define an auxiliary
curve H(ti)

f from H(ti): H(ti)
f is obtained from H(ti) by considering all

of the arcs of H(ti) in D(H(ti−1)) and replacing the other ones by the arcs
they correspond to in H(ti−1). Then we claim that there are monotone ho-
motopies between H(ti) and H(ti)

f , and between H(ti)
f and H(ti+1) such

that the intermediate curves have length less than L + ε. Indeed, one can
go from one to the other using monotone homotopies that interpolate within
the corresponding disks, and if δ is chosen small enough, this interpolation
can be done without incurring an overhead of more than ε on the lengths of
the curves. If H(ti) and H(ti−1) do not intersect, for δ small enough, the
δ-thin assumption implies that there exists a monotone homotopy between
H(ti−1) and H(ti), where the intermediate closed curves have length less
than L+ ε.

Gluing together all of these monotone homotopies, we obtain a zigzag
with curves of length at most L+ ε, which concludes the proof.

�

One of our main technical tools is the following theorem.

Theorem 2.6. Let H be a monotone homotopy between simple closed
curves γ0 and γ1 such that the length of the intermediate curves does not
exceed L, and let γ be another simple closed curve in A(γ0, γ1) such that
γ is a minimizing geodesic in A(γ, γ1). Then for any ε > 0, there exists a
monotone homotopy between γ0 and γ where the lengths of the intermediate
curves do not exceed L+ ε.

Although being not explicitly stated in Chambers and Rotman [6], this
theorem is implicit in the proof of their Theorem 0.7. More precisely, their
proof is divided in two steps, and this is the result obtained by Step 1.

We will also need the following lemma.

Lemma 2.7. Let α : [0, 1] −→ D, β : [0, 1] −→ D be two simple closed
curves in a closed topological disk D. Let A(∂D, α), A(∂D, β) be two
(closed) annuli between, ∂D and α, and ∂D and β respectively, (see fig. 2
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ᾱ

FIGURE 2. Obtaining ᾱ from β

(a)). Let α be a shortest closed curve homotopic to ∂D in A(∂D, α), while
β is a shortest closed curve in A(∂D, β) homotopic to ∂D. We will refer to
shortest curves in annuli, homotopic to the boundary curves as geodesics.
One can construct a new closed curve ᾱ by by replacing all of the arcs of
α that lie in A(∂D, β) by the corresponding arcs of β, (see fig. 2 (c)). Then
length(ᾱ) ≤ min{length(α), length(β)}.

Proof. It is easy to see that ᾱ is not longer than α. Indeed, let e be an arc of
α that lies in A(∂D, β). Let f be the arc of β that corresponds to e. Then
the length of f is less than or equal to the length of e. If it was not the case,
we could have replaced f by e, obtaining a closed curve in A(∂D, β) that is
homotopic to ∂D of length shorter than that of β, which would contradict
β being a geodesic. We will now show that ᾱ is also shorter than β.

In order to see it, note that one can obtain ᾱ from β via the following
two-step procedure.
Step 1. In a first step, we consider the maximal arcs of β with respect to α,
and replace those by their corresponding arcs in α. This yields a curve β̃,
which we claim is not longer than than β. Indeed, if f is a maximal arc of
β, and its corresponding arc is e, then e cannot be longer than f , otherwise
α would not be a minimizing geodesic in A(∂D, α).
Step 2. Next, let us consider the curve β̃. We will replace the arcs of
β̃ that lie in A(∂D, β) with the corresponding arcs of β, (see fig. 2 (c)).
Once again, the length of the curve cannot increase during this process, as
it would contradict the fact that β is a minimizing geodesic in A(∂D, β).

It now remains to show that the curve that we obtain after performing
steps 1 and 2 above is the same as ᾱ. To see that, let us first order the
maximal arcs of α with respect to the parametrization of α, and denote the
resulting sequence of maximal arcs by a1, . . . , ak, and their corresponding
arcs by b1, . . . bk. Fig. 3 depicts the curve α that is meandering with respect
to β with the ordered maximal arcs, a1, a2, a3, a4. Let us denote the arc of
β that connects the endpoint of ai, i ∈ 1, ..., k with the starting point of ai+1
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FIGURE 3.

by si (where we use the convention that that ak+1 = a1, (see fig. 3). Observe
that the si are exactly the maximal arcs of β with respect to α , and denote
by t1, . . . , dk their corresponding arcs. Now, recall that step 1 replaces all of
the maximal arcs si, i = 1, ..., k with their corresponding arcs ti. We claim
that this yields the same curve as replacing all of the maximal arcs ai of α
with the corresponding arcs bi. Indeed, α is the concatenation of the arcs
a1, t1, . . . ak, tk, while β is the concatenation of the arcs s1, b1, . . . sk, bk.
Both procedures yield the concatenation of the arcs a1, b1, . . . , ak, bk, i.e.,
the same curve.

Then, step 2 switches the remaining arcs of α that are in A(∂D, β) to the
corresponding arcs of β. Therefore we obtain ᾱ.

�

The proof of Theorem 1.2 relies on the following two propositions al-
lowing us to modify small portions of zigzags. The first one follows rather
directly from Theorem 2.6, but the second one requires more work.

Proposition 2.8. Suppose that Z is a degree 2 zigzag where the interme-
diate curves have length at most L. If γ1 is not a minimizing geodesic in
A(γ1, γ2), and if a minimizing geodesic γ in this annulus also lies in the
interior of A(γ0, γ1) and is essential in it, then, for any ε > 0, there is a
zigzag Z ′ where the intermediate curves have length at most L+ε and such
that

(1) deg(Z ′) = 2, and Z ′ has the same order as Z.
(2) length(Z ′) < length(Z).
(3) γ′0 = γ0, and γ′2 = γ2.

Suppose that Z is a degree 2 zigzag where the intermediate curves have
length at most L, and that γ0 is a minimizing geodesic in A(γ1, γ2), or that
γ2 is a minimizing geodesic in A(γ0, γ1). Then for any ε > 0, there is a
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degree 1 zigzag Z ′ of length less than that of Z, where the intermediate
curves have length at most L+ ε and such that γ′0 = γ0, and γ′1 = γ2.

Proof. The first part of the proposition follows from two applications of
Theorem 2.6. We first apply it to the homotopy H0 and the curve γ, and
then to the reversal of the homotopy H1 and the curve γ. This yields two
new homotopies H ′0 and H ′1, going respectively from γ0 to γ and from γ to
γ2 and their concatenation satisfies the needed properties.

For the second part of the proposition, let us first deal with the first case
where γ0 is a minimizing geodesic in A(γ1, γ2). Then one application of
Theorem 2.6 to the homotopy H1 and γ0 yields the homotopy from γ0 to γ2.
The other case is obtained by applying the theorem to H0 and γ2 instead.

�

Proposition 2.9. Suppose that Z is a zigzag of degree 3 where the interme-
diate curves have length at most L and such that
(1) γ1 is a minimizing geodesic in A(γ1, γ2) but not a constant curve, and
(2) One of the following two conditions if fulfilled:

Case a. There is a minimizing geodesic γ ∈ A(γ2, γ3) which is not fully
contained in the interior of A(γ1, γ2).

Case b. There is a minimizing geodesic γ ∈ A(γ2, γ3) which is fully
contained in the interior of A(γ1, γ2) but not essential in A(γ1, γ2).

Then for any ε > 0, there is a zigzag Z ′ of degree 3 where the intermedi-
ate curves have length at most L+ ε and such that

(1) length(Z ′) ≤ length(Z).
(2) area(Z ′) > area(Z).
(3) γ′0 = γ0, and γ′3 = γ3.

Proof. First, note that one can always modify the homotopy H3 to obtain
a new homotopy H ′3, such that the maximal length of curves of H ′3 is not
larger than the maximal length of curves in H3, the area spanned by H ′3 is
the same as the area spanned by H3, and γ is one of the curves of H ′3. One
achieves this by applying Theorem 2.6 twice to the homotopy H3 and γ: let
Dγ be a closed disk that has γ as its boundary. Applying the theorem in this
particular case amounts to first replacing all of the curves, or the segments
of the curves of the homotopyH3 that lie inDγ by the segments of γ, which
results in the new monotone homotopy S between the original curve of H3

and γ, in which the lengths of curves in the homotopy is not increased in
comparison with those H3. Likewise, we can next replace all of the curves,
or the segments of the curves of H3 that lie outside of Dγ resulting in a
new monotone homotopy P between γ and the final curve of H3. After
concatenating S and P we obtain the desired homotopy H ′3.
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FIGURE 4. γ̃

Thus, without loss of generality assume that γ = (H3)t for some t ∈
[0, 1]. Let S be the restriction of H3 to the interval [0, t].
Case a. In that case, the disk bounded by γ intersects the disk bounded by
γ1. Then the new zigzag Z ′ is obtained in the following manner: the first
forward step is obtained by replacing the forward monotone homotopy H1

between the curves γ0 and γ1 by the new forward monotone homotopy H ′1
between γ0 and a new curve γ̃ (see fig. 4 (a)). This homotopy is constructed
by “gluing” the two forward monotone homotopies H1 between γ0 and γ1
and S between γ2 and γ. The construction of H ′1 is completely analogous
to the proof of Theorem 0.7 in [6] and will be summarized at the end of the
proof. The new homotopy H ′1 will be a concatenation of two homotopies:
an old homotopy H1 and a new homotopy H̃ obtained from S by replacing
all of the arcs that lie outside the closed disk bounded by γ1 by their corre-
sponding arcs in γ1, and when a whole intermediate closed curve of S lies
outside of the closed disk bounded by γ1, we replace it by γ1.

In particular, the new curve γ̃ is constructed by replacing the segments
of γ that lie in A(γ1, γ2) by the corresponding segments of γ1. Note that if
there are none, γ̃ = γ.

Recall that, during H̃ , when we replace the arcs of γ by the corresponding
arcs of γ1

the length of the resulting curve does not increase.
Note that any closed curve α that lies in the disk bounded by γ2 and

intersects A(γ1, γ2) can be modified by γ1 in such a way to obtain α̃, with
the length not larger than the length of α. Moreover, the resulting curve γ̃
will lie in the closed disk bounded by γ1. Note also that (1) the area spanned
by performing the first step of the new zigzag will be larger than the area
spanned by the first step of the original zigzag Z, (see fig. 4 (b)), (2) By
Lemma 2.7 the length of γ̃ will be at most the length of γ1. To apply this
lemma we let ∂D = γ0, α = γ and β = γ1.

The second, backward step of the zigzag will be obtained by running H̃
back, and then following it by the monotone homotopy between γ1 and γ2.
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Finally, the third step of the new zigzag will be the same as the third step
of the old zigzag. Thus, H ′1 will be the forward homotopy between γ′0 = γ0
and γ′1 = γ̃, H ′2 will be the backward homotopy between γ′1 and γ′2 = γ2,
and H ′3 = H3.

Case b. In that case, the disk bounded by γ does not intersect the disk
bounded by γ1. Thus, by monotonicity, the homotopy S “sweeps” D(γ1)
completely. Denote by p one of the last points of D(γ1) swept by S, i.e., a
point on γ1 such that p ∈ D(S(t)) for some t but D(S(t′) ∩ D(γ1)) = ∅
for any t′ > t. We will construct a new homotopy H ′1 between γ0 and the
constant curve p, and a new homotopy H ′2 between p and γ2. Let us denote
by S ′ the restriction of S to the interval [0, t]. The two homotopies H ′1 and
H ′2 are built almost identically to the ones in Case 1: H ′1 results from the
gluing of the homotopy H1, and a new homotopy H̃ obtained from S ′ by
replacing all the arcs that lie outside of D(γ1) by the corresponding arcs
of γ1 (and as before, whole intermediate closed curves lying of S ′ lying in
A(γ1, γ2) are replaced by γ1). Once again, details of this construction are
deferred to the end of the proof. Notice that by definition of p, the curve
γ̃ we obtain at the end of γ̃ is contained in the boundary of D(γ1), and is
homotopic to pwithin this boundary. Since this homotopy can be performed
without increasing the lengths of the curve, we can concatenate H̃ with it
to obtain a homotopy to the constant curve p. The second, backward step
of the zigzag will be obtained by running H̃ back, and then following it by
the monotone homotopy between γ1 and γ2. Finally, the third step of the
new zigzag will be the same as the third step of the old zigzag. Thus, H ′1
will be the forward homotopy between γ′0 = γ0 and γ′1 = γ̃, H ′2 will be the
backward homotopy between γ′1 and γ′2 = γ2, and H ′3 = H3.

Note that since γ1 is a minimizing geodesic in A(γ1, γ2), the lengths of
the curves in H ′1 and H ′2 do not exceed L, and the area spanned by the new
zigzag is larger than that spanned by H1. Since p is a constant curve, its
length has zero, and thus the length of the new zigzag is not larger than that
of the original one.

Therefore, the proof of the lemma will follow if we can show that there
exists a monotone homotopy H ′1 between the curves γ1 and γ̃. To keep
the proof simple, we focus on Case a, Case b being completely analogous.
The existence of such homotopy follows from the construction given in the
proof of Theorem 0.7 in [6].
H ′1 will be a concatenation of two homotopies: H1 and a monotone ho-

motopy G between γ1 and γ̃ obtained from H3 by replacing the segments
of curves of the homotopy S that lie outside the closed disk bounded by γ1
by segments of γ1 that are not longer than the corresponding segments that
they are replacing via the procedure described in the previous paragraph.
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FIGURE 6.

The main difficulty lies in implementing this procedure continuously with
respect to the curves in the homotopy. In fact, stated as it is the procedure
can result in discontinuities, which appear when the replacement algorithm
is not unique. Let αs denote the curves of homotopy S. If for some s ∈ [0, 1]
the intersection between αs and γ1 is not transversal, the procedure can be
discontinuous at αs. Fig. 5 depicts such a situation. Here α2 touches γ1 at
point Q. There are two ways to exchange the segments of γ2 in the neigh-
borhood of Q, (see fig. 6 (a) that depicts this situation locally). One way
is to replace the segment of α2 that connects the points Q1 and Q2 that lies
outside of the open disk bounded by γ1 by path P1, (see fig. 6 (b)). Let us
call this replacement the type 1 replacement. Another way is depicted in
fig. 6 (c). Here we replace the segment of α2 that connects Q1 and Q2 by
P2. P2 is a path that consists of two paths: the first one replaces the segment
of α2 that connectsQ andQ2, while the second one, β, replaces the segment
of α2 that connects Q1 and Q. Let us call this replacement the type 2 re-
placement. However, while there are two ways of replacing this segment of
α2, our procedure gives one canonical way to replace the relevant part of α1,
a curve that is close to α2 and is outside of the disk bounded by α2 (fig. 5).
If we want the procedure to result in a homotopy, that forces us to choose
the type 2 replacement on α2. On the other hand, there is also, one type of
replacement that can be performed on α3, the curve that is close to α2 and
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lies inside the disk that is bounded by α2. Again, if we want that our proce-
dure to result in a homotopy, it forces us to choose the type 1 replacement
for α2. Hence, we have a discontinuity at α2. To avoid this discontinuity,
note that P2 = β ∗ β̄ ∗ P1, (see fig. 6 (c)). Here β̄ denotes path β traversed
in the opposite direction. Therefore, P1 and P2 can be connected by the ob-
vious length non-increasing path homotopy, which amounts to contracting
β ∗ β̄ to Q1. This path homotopy extends to the homotopy between the two
curves derived from α2. Allowing both the type 1 and type 2 replacements
for the segment of α2 and including the homotopy between the two different
resulting curves solves the discontinuity problem.

Note that this new zigzag Z ′ still satisfies the first property of the hypoth-
esis of the proposition.

�

3. PROOF OF THEOREM 1.2

The proof of Theorem 1.2 uses a variational method. We will find a
zigzag which starts at the boundary of the Riemannian disc, ends at a con-
stant curve, and traverses curves of length less than L which optimizes sev-
eral quantities.

Definition 3.1. Let ZL denote the set of all zigzags that start at ∂D, end at
a constant curves, and pass through curves of length less than L.

Let
L = inf

Z∈ZL

length(Z),

and let
ZL,Length = {Z ∈ ZL : length(Z) = L}.

Let
A = sup

Z∈ZL,Length

Area(Z),

and let
ZL,Length,Area = {Z ∈ ZL,Length : Area(Z) = A}.

Proposition 3.2. Suppose that there exists a contraction of ∂D through
curves of length less than L. Then for any ε > 0, the set ZL+ε,Length,Area is
not empty.

The proof follows directly from Proposition 2.5
We now have all the tools to prove our main theorem.

Proof of Theorem 1.2. Let Z ∈ ZL+ε,length,Area; by Proposition 3.2, there
exists such a Z. We will show that Z has degree 1, and so Z consists of
a single monotone homotopy which starts at ∂D, and ends at a constant
curve. This completes the proof.
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Suppose that the degree of Z is greater than 1. If γ1 is a constant curve,
then the first homotopy in Z satisfies the conclusions of the theorem. If not,
then the degree of Z must be at least 3, as the zigzag must end at a constant
curve.

Suppose that n = deg(Z) is greater than or equal to 3. We will show that
for every i between 1 and n− 2, γi is a minimizing geodesic in A(γi, γi+1),
and every minimizing geodesic in A(γi+1, γi+2) lies in A(γi, γi+1) and is
essential in it. Note that my minimality of Z, none of the curves γi outside
of the γ0 and the last one are constant.

We will prove this by induction, and by using Proposition 2.9 and Propo-
sition 2.8. We begin by proving this for i = 1. Since γ0 = ∂D,
A(γ1, γ2) ⊂ A(γ0, γ1). As a result of this fact, due to Proposition 2.8,
γ1 must be a minimizing geodesic in A(γ1, γ2). Furthermore, since Z min-
imizes area in ZL+ε,length, and due to Proposition 2.9, every minimizing
geodesic in A(γ2, γ3) is contained in A(γ1, γ2) and is essential in it.

The proof of the inductive step works in the same way. Suppose that the
result holds for i < n− 2. By Proposition 2.8, and since every minimizing
geodesic in A(γi+1, γi+2) lies in A(γi, γi+1) and is essential in it, γi+1 is a
minimizing geodesic in A(γi+1, γi+2). As a result of this fact and Propo-
sition 2.9, every minimizing geodesic in A(γi+2, γi+3) lies in A(γi+1, γi+2)
and is essential in it. This completes the proof of the induction.

In particular, every minimizing geodesic in A(γn−1, γn) lies in
A(γn−2, γn−1). Since γn is a constant curve, it is a minimizing geodesic,
this implies that γn lies in A(γn−1, γn−2). In particular, the second part
of Proposition implies that there is a zigzag Z ′ which lies in ZL, and of
smaller length than Z. This contradicts the definition of Z, completing the
proof. �
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