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On the complexity of optimal homotopies

Erin Wolf Chambers ∗ Arnaud de Mesmay† Tim Ophelders‡

Abstract

In this article, we provide new structural results and algo-
rithms for the Homotopy Height problem. In broad terms,
this problem quantifies how much a curve on a surface needs
to be stretched to sweep continuously between two positions.
More precisely, given two homotopic curves γ1 and γ2 on
a combinatorial (say, triangulated) surface, we investigate
the problem of computing a homotopy between γ1 and γ2
where the length of the longest intermediate curve is min-
imized. Such optimal homotopies are relevant for a wide
range of purposes, from very theoretical questions in quanti-
tative homotopy theory to more practical applications such
as similarity measures on meshes and graph searching prob-
lems.

We prove that Homotopy Height is in the complexity
class NP, and the corresponding exponential algorithm is
the best one known for this problem. This result builds on a
structural theorem on monotonicity of optimal homotopies,
which is proved in a companion paper. Then we show
that this problem encompasses the Homotopic Fréchet
distance problem which we therefore also establish to be
in NP, answering a question which has previously been
considered in several different settings. We also provide an
O(logn)-approximation algorithm for Homotopy Height
on surfaces by adapting an earlier algorithm of Har-Peled,
Nayyeri, Salvatipour and Sidiropoulos in the planar setting.

1 Introduction

This paper considers computational questions pertain-
ing to homotopies: in broad terms, a homotopy between
two curves in a topological space is a continuous defor-
mation between these two curves. This can be formal-
ized either in a continuous setting, where it constitutes
one of the fundamental constructs of algebraic topol-
ogy, but also in a more discrete one, where the input
is a simplicial, or more generally cellular description of
a topological space; this latter setting will be the focus
of this article. While considerably more restrictive than
the more traditional mathematical settings, this setting
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is nonetheless of key importance in applications areas
such as graphics or medical imaging, where inputs are
generally represented by triangular meshes built upon
scanned point sets from an underlying 3D object.

Investigating homotopies from a computational per-
spective is a well-studied problem, dating back to the
work of Dehn [13] on contractibility of curves, which has
strong ties to geometric group theory. While deciding
whether two curves in a 2-dimensional complex are ho-
motopic is well-known to be undecidable in general (see
for example Stillwell [29]), when the underlying space
is a surface, efficient, linear-time algorithms have been
designed to test homotopy [15, 17, 26]. In this article,
we add a quantitative twist to this problem: the Ho-
motopy Height problem consists, starting with two
disjoint homotopic curves on a combinatorial surface, of
finding the homotopy of minimal height, that is, where
the length of the longest intermediate curve in the ho-
motopy is minimized. (We refer the reader to Section 2
for formal definitions.) The notion of homotopy height
has obvious appeal from a practical perspective, as it
quantifies how long a curve has to be to overcome a
hurdle: for example, deciding whether a bracelet is long
enough to slide off over a hand without breaking is es-
sentially the question of homotopy height. From a com-
putational side, deformations of minimal height mini-
mize the necessary stretch and can be used to quantify
how similar curves are, as in map or trajectory analysis.

1.1 Our results
We begin by considering two curves forming the bound-
ary of a discrete annulus, and study the homotopy be-
tween these boundaries of minimal height. Our arti-
cle leverages on recent results in Riemannian geome-
try [10, 11], and in particular on a companion article
co-authored with Gregory Chambers and Regina Rot-
man [6] where we prove that in the Riemannian setting,
such an optimal homotopy can be assumed to be very
well behaved. Firstly, it can be assumed to be an iso-
topy, so that all the intermediate curves remain simple.
Secondly, this isotopy can be assumed to only move in
one direction and never sweeps any portion of the disk
twice; we refer to this property as monotonicity, which
we will define more precisely in Section 3.

These isotopy and monotonicity properties turn
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Figure 1: Left: the height of a homotopy between homotopic curves γ0 and γ1 measures the maximum amount
an intermediate curve must stretch during the homotopy. Homotopies minimizing this amount of stretch measure
the homotopy height. Right: the width of a homotopy measures the maximum length of a “slice” of the homotopy
connecting the two boundary curves. Homotopies minimizing the length of this slice measure the homotopy width,
also known as the homotopic Fréchet distance.

out to be a key ingredient for computational purposes,
once we translate those results to the discretized set-
ting. First, via some surgery arguments, it allows us
to prove that Homotopy Height is in NP (Theo-
rem 5.1). The corresponding exponential time algo-
rithm is to our knowledge the best exact algorithm for
Homotopy Height. We note that our setting is very
general, and also implies NP-membership for a variant
of Homotopy Height in a more restricted setting that
was considered in earlier papers [3, 9, 22], as well as for
Homotopic Fréchet distance, where this was still
open despite the recent articles investigating this dis-
tance [7, 22]. Then, further surgery arguments allow
us to provide an O(log n)-approximation algorithm for
Homotopy Height (Corollary 6.2), by relying on an
earlier O(log n) approximation-algorithm of Har-Peled,
Nayyeri, Salvatipour and Sidiropoulos [22] for homo-
topy height in a more restricted setting. Finally, we
show that monotonicity directly implies an equivalence
between the Homotopy Height problem and a seem-
ingly unrelated graph drawing problem which we call
Minimal Height Linear Layout. Therefore, we ob-
tain that this problem is also in NP and we provide an
O(log n) approximation for it.

1.2 Related work
Optimal homotopies (for several definitions of optimal)
have been studied extensively in the mathematical com-
munity, mainly in Riemannian settings. This literature
fits broadly in the setting of quantitative homotopy the-
ory, initially introduced by Gromov [20], which aims at
introducing a quantitative lens in the study of topo-
logical invariants on manifolds. Probably the most ex-
tensively considered notion of optimality is the study
of homotopies minimizing the area swept; see for exam-
ple [25] for an overview of some variants of this problem,
or [30] for a discussion of how minimum area homo-
topies and homologies are connected in higher dimen-
sions. The notion of controlling the width of a homotopy

has also been studied [5, 23], and more recent work on
minimal height homotopies [10, 11] laid the foundation
for the results in this paper.

On the computational side, the rise of Fréchet
distance for measuring similarity between curves was
a prime motivation for the notion of comparing two
curves; see for example [1] for a survey. Generalizing
the Fréchet distance to curves on surfaces led to the
homotopic Fréchet distance, which is essentially the
same as finding a minimum width homotopy given two
input cycles on a surface. Polynomial time algorithms
are known for the special case where the two input
curves lie in the plane minus a set of obstacles [8].
Approximation algorithms exist for discrete settings
where the two curves bound a disk [22].

More directly, minimum height homotopies have
been studied from the computational perspective in
various discretized settings [9, 22], although mainly to
discuss the complexity of the problem. Indeed, as it
was not known if the optimal height homotopy was
even monotone, the complexity of the problem was
completely open. Since the monotonicity result also
holds in more geometric settings [6], a recent paper
also examined one natural geometric setting, where
the goal is to morph across a polygonal domain in
Euclidean space with point obstacles; this work presents
a lower bound that is linear in the number of obstacles,
as well as a 2-approximation for the arbitrary weight
obstacles and an exact polynomial time algorithm when
all obstacles have unit weight [4]. The same problem
also arises as a combinatorics question in lattice theory
as a b-northward migration, where the authors leave
monotonicity of such migrations as an open question [3].

1.3 Relations to graph searching and width
parameters
This work also connects to sweep and search parameters
in graph theory; see for example [18] for a survey of this
topic. In each variant, the game consists of finding the
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minimum number of searchers needed, where the goal
is to find or isolate a hidden fugitive. For example,
in the node searching variant, the fugitive hides on
edges, all of which are originally contaminated, and
the searchers clear an edge if two are on its incident
vertices. In this variant, edges can be recontaminated
if they are connected to a contaminated edge by a path
without searchers, and the game ends when everything
is decontaminated.

One key issue in these games is precisely that of
monotonicity, or of determining whether in an opti-
mal strategy, edges get recontaminated. In the node
searching variant, monotonicity was established by La-
paugh [24], and the argument was simplified by Bien-
stock and Seymour [2]. One important corollary to
monotonicity for these games is that it immediately
shows the problem lies in NP, since a strategy can be
certified by the list of edges cleared.

Our homotopy problem is quite similar to these
graph parameters; sweeping a disk while keeping the
length small is intuitively quite similar to blocking in
a fugitive. While our problem does display minor
technical differences with the aforementioned variant
– most notably, our setting is naturally edge-weighted
and the cost is measured on the edges and not the
vertices – the key difference is the one of connectedness,
as node-searching games may allow for disconnected
strategies. An important variant of node searching,
called connected node searching, requires additionally
that the decontaminated space remains connected, but
makes no restriction on the uncontaminated space.

For graph searching problems, the main argument
to establish monotonicity does not maintain connec-
tivity [2], and it was proven that an optimal strat-
egy for connected node searching may indeed be non-
monotone [31]. By contrast, Theorem 3.4 establishes
monotonicity of the optimal homotopy in our setting,
and the arguments differ radically from the ones of La-
paugh and Bienstock and Seymour. As such, we identify
in this paper a new variant of graph searching which is
somewhat tractable (i.e., in NP) and introduce a new
proof technique to establish monotonicity results.

Finally, when monotonicity is established, graph
searching parameters are very intimately related to
width parameters of graphs. Minimum cut linear ar-
rangement (also known as cut-width) is closely con-
nected to the Minimum Height Linear Layout prob-
lem, which we show to be equivalent to Homotopy
Height, but the key difference is that it may break
the embedding of the graph. Thus, NP-hardness re-
ductions for this problem [27] do not imply hardness
for our problem. Connected variants of various width
parameters give rise to connected pathwidth [14] and

connected treewidth [19], but in contrast to our homo-
topies, these parameters are only connected “on one
side”, which makes them incomparable. We believe
that the “doubly-connected” aspect of homotopy height
makes it a worthwhile new graph parameter which could
offer insights to other parameters in this area.

Outline of the paper. After introducing the pre-
liminaries in Section 2, we lay the foundations of this
work by explaining the structural theorems we rely on
in Section 3. In Section 4 we establish surgery lemmas
based on the idea of retractions. Then, in Section 5 we
prove that Homotopy Height is in NP. In Section 6
we draw connections with Homotopic Fréchet Dis-
tance, and we leverage on these connections to pro-
vide an O(log n)-approximation algorithm for Homo-
topy Height.

2 Preliminaries

Homotopy and Isotopy. Let Σ be a surface,
endowed with a cellularly embedded graph G with n
vertices such as in Figure 2, and let γ0 and γ1 be two
simple cycles on G bounding an annulus.

1

1

1

1

1 10

20

30

20

1 1
1

γ0 γ1

Figure 2: Example instance G, based on an example
in [3].

A discrete homotopy h between γ0 and γ1 is a
sequence of cycles h(ti) with 0 = t0 ≤ · · · ≤ ti ≤
· · · ≤ tm = 1, with h(t0) = γ0 and h(t1) = γ1 and
any two consecutive paths h(ti) and h(ti+1) are one
move apart. The intermediate curves h(t) are called
level curves or intermediate curves. A move is
either a face-flip, an edge-spike or an edge-unspike (flip,
spike or unspike, for short). A face-flip for a face F
replaces a single subpath p of h(ti) ∩ ∂F with the
path ∂F \p in h(ti+1). An edge-spike for an edge u→ v
replaces a single occurrence of a vertex u ∈ h(ti) by the
path u → v → u consisting of two mirrored copies of
that edge in h(ti+1). Symmetrically, an edge-unspike
replaces a path u → v → u of h(ti) by the single
vertex u in h(ti+1). The length `(h(i)) of a path h(i) is
the sum of the weights of its edges (with multiplicity).
The height of a homotopy h is the length of the
longest path h(ti). An optimal homotopy is one that
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Figure 3: An optimal homotopy h of height 35 for the instance of Figure 2.

minimizes the height. The homotopy height between
γ0 and γ1 is the height of an optimal homotopy between
γ0 and γ1. Figure 3 illustrates an optimal homotopy
that uses only face-flips for the instance of Figure 2.

Cross Metric Surfaces. For most purposes, it is
more convenient to think of this discrete model in a
dual way, relying on the cross-metric surfaces [12] which
are becoming increasingly used in the computational
geometry and topology literature. In this dual setting,
a cross-metric surface is a surface Σ endowed with a
weighted (dual) graph G∗.

Assuming the primal surface is connected, we ob-
tain this dual graph by gluing a disk to each boundary
component, taking the dual graph, and puncturing the
vertices corresponding to the added disks, without re-
moving the adjacent edges. Such that these (dual) edges
end at the boundary of the cross-metric surface instead
of at a vertex, see Figure 4.

For a curve γ on Σ with a finite number of crossings
with G∗, its length `(γ) is the weighted sum of the
crossings γ ∩G∗. Now, a homotopy between γ0 and γ1

is a homotopy in the usual sense, that is, a continuous
map h : S1 × [0, 1] → Σ such that h(·, 0) = γ0 and
h(·, 1) = γ1, except that we require that the values
of t for which h(·, t) is not in general position with
G∗ are isolated, and each such curve has at most one
such degeneracy1 h(x, t) with G∗. As before, the height
of a homotopy is defined as the maximal length of
an intermediate non-degenerate level curve h(t). A

1Any homotopy can be made so by a small perturbation with-
out increasing the height, so we always consider this hypothesis

fulfilled in the remainder of the article.

γ0
γ1

Figure 4: Dual representation of Figure 2.

homotopy is an isotopy if all the intermediate curves
are simple.

Given a homotopy h∗ in this setting, we obtain a
discrete homotopy h on the primal graph G on Σ as
follows. Pick a curve h∗(ti) in each maximal interval of
non-degenerate curves in h∗ (all curves in such interval
have the same crossing pattern with G∗, and therefore
the same length). Let h(ti) be the curve on G whose
sequence of vertices and edges corresponds to the se-
quence of faces and edges of G∗ visited by h∗(ti). This
model is dual to the previous one, and Figure 5 illus-
trates how any move (flip, spike or unspike) connects
two intermediate curves h(ti) and h(ti+1). We say a
discrete homotopy is an isotopy if it can be obtained
from an isotopy in the dual setting.

3 Isotopies and monotonicity of optimal
homotopies

We begin by restating and explaining the two structural
results that we will rely on. Introducing the relevant
Riemannian background lies outside of the scope of this
paper, so we will simply advise the uninitiated reader
to picture a Riemannian surface as a surface embedded
into R3, where the metric on the surface is the one
induced by the usual Euclidean metric of R3. Thanks
to the Nash-Kuiper embedding theorem (see [21]), this
naive idea looses no generality. We refer to standard
textbooks on the subject for more proper background
on Riemannian geometry, for example do Carmo [16].

The first theorem shows that up to an arbitrarily
small additive factor, the homotopy of minimal height
between two simple closed curves can be assumed to be
an isotopy.

spike flip unspike

Figure 5: Three moves in the primal (left) and dual
(right) representation.
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Theorem 3.1. ([10, Theorem 1.1]) Let Σ be two-
dimensional Riemannian manifold with or without
boundary, and let γ0 and γ1 be two non-contractible sim-
ple closed curves which are homotopic through curves
bounded in length by L via a homotopy γ. Then for any
ε > 0, there is an isotopy γ̃ from γ0 to γ1 through curves
of length at most L+ ε.

Remark. The non-contractibility hypothesis is re-
quired because if M is not a sphere, contractible cy-
cles with opposite orientations are homotopic but not
isotopic. However, if we disregard the orientations, the
result holds in full generality.

This theorem has the following discrete analogue:

Theorem 3.2. Let (Σ, G∗) be a cross-metric surface,
and let γ0 and γ1 be two non-contractible simple closed
curves on (Σ, G∗) which are homotopic through curves
bounded in length by L via a homotopy γ. Then there
is an isotopy γ̃ from γ0 to γ1 through curves of length
at most L.

The proof is exactly the same as the one of Theo-
rem 3.1, except that it does not need the ε-slack: this
was required to slightly perturb the curves so that they
are simple but in the discrete setting it can be done with
no overhead.

The second theorem shows that, when the starting
and finishing curves of a homotopy are the boundaries of
the manifold, there exists an optimal homotopy that is
monotone, i.e., that never backtracks, once again up to
an arbitrarily small additive factor. Formally, if γ is an
isotopy (which we can assume the optimal homotopy to
be, by Theorem 3.1) between γ0 and γ1, for 0 ≤ t ≤ 1,
the curves γt and γ1 bound an annulus At. Then the
isotopy γ is monotone if for t < t′ < 1, γt′ is contained
in At.

Theorem 3.3. ([6]) Let M be a Riemannian annulus
with boundaries γ0 and γ1 such that there exists a
homotopy between γ0 and γ1 of height less than L. Then
there exists a monotone homotopy between γ0 and γ1 of
height less than L.

Note that the ε-slack of Theorem 3.1 is also present
here but is hidden in the open upper bound on the
height. In this theorem, as was observed by Chambers
and Rotman [11], crediting Liokumovitch, the hypothe-
sis that the manifold is entirely comprised between both
curves is necessary: see [11, Figure 5] for a counter-
example.

In the discrete setting, the corresponding result is
the following, where the definition of monotonicity is
the same:

Theorem 3.4. Let (Σ, G∗) be a cross-metric annulus
with boundaries γ0 and γ1 such that there exists a
homotopy between γ0 and γ1 of height L. Then there
exists a monotone isotopy between γ0 and γ1 of height
L.

The proof is exactly identical to the one in the
Riemannian settting and it yields a slightly stronger
result, since the cross-metric setting removes the need
for perturbations and thus the need of an ε-slack.

Remark. Let us observe that the discrete theorems
are in some way more general than the Riemannian
ones: not only do they bypass the need for some ε-
slack, but they also directly imply their Riemannian
converses by the following reduction. Starting with
a Riemannian surface, and a (non-monotone) isotopy
between two disjoint curves, one can find a triangulation
of the surface allowing, at an ε-cost, to approximate
the isotopy using only elementary moves. Then, after
making this isotopy monotone in the discrete setting,
one can translate it back into a monotone isotopy in the
Riemannian setting by interpolating between the face
and edge moves.

4 Retractions and pausing at short cycles

In this section, we establish several technical lemmas
which are necessary for our proofs in the next section.
For simple closed curves β and γ bounding an annulus,
denote that annulus by A(β, γ). Let S(β, γ) be the set
of closed curves in A(β, γ) homotopic to boundaries β
and γ, that do not intersect homotopic curves of shorter
length. Then, for any point p ∈ α ∈ S(β, γ), α
is a shortest closed path through p in its homotopy
class. Let G(β, γ) be the set of minimum length simple
closed curves homotopic to the boundaries of A(β, γ),
then G(β, γ) ⊆ S(β, γ).

We now introduce the concept of a retraction of a
homotopy, which gives a way to shortcut a homotopy
at a given curve, provided it is a curve of S(β, γ). This
idea is implicit in Chambers and Rotman [11, Proof
of Theorem 0.7], and we refer to their article for more
details. For a monotone isotopy h between boundaries
of an annulus A, and a homotopic annulus A′ ⊂ A,
define the retraction h|A′(t) of h(t) to A′ as the
same curve with each arc of h(t) \ A′ replaced by the
shortest homotopic path along the boundary of A′.
Although paths along ∂A′ (dis)appear discontinuously
as t varies, h|A′ can be obtained in the form of a
discrete homotopy by (un)spiking these paths as they
(dis)appear. The resulting homotopy h|A′ is a monotone
isotopy.

Lemma 4.1. If α ∈ S(α, γ) and A(α, γ) ⊆ A(β, γ),
and h is a monotone isotopy from β to γ of height L,
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then h|A(β,α) is a monotone isotopy from β to α with
height at most L.

Proof. The retraction h′ = h|A(β,α) is a monotone
isotopy from h′(0) = β to h′(1) = α. Let t′ be the
maximum t for which h(t) intersects A(β, α). For t ≥ t′,
we have h′(t) = α and therefore |h′(t)| = |α| ≤ |h(t′)| ≤
L. For t ≤ t′, each arc a of h(t) \ A(β, α) is replaced
in h′(t) by a homotopic path b along α with |b| ≤ |a|,
and thus |h′(t)| ≤ |h(t)| ≤ L. Hence height(h′) ≤ L.

Lemma 4.2. If α ∈ S(β, γ), and h is a monotone
isotopy from β to γ of height L, then there is a monotone
isotopy from β to γ of height at most L having α as a
level curve.

Proof. We have α ∈ S(α, β) and α ∈ S(α, γ). So by
Lemma 4.1, the monotone isotopies h|A(β,α) from β to α
and h|A(α,γ) from α to γ have height at most L and can
be composed to obtain a monotone isotopy from β to γ
of height at most L with α as a level curve.

Lemma 4.3. Let Π = {π1, . . . , πm} be a set of paths
from γ0 to γ1 without proper pairwise intersections,
where each πi is a shortest homotopic path in A(γ0, γ1)
between its endpoints. If h is a monotone isotopy
from γ0 to γ1 of height L, then there exists a monotone
isotopy of height at most L whose level curves all cross
each πi at most once (after infinitesimal perturbations).

Proof. Denote by c(a, b) the number of proper intersec-
tions of curves a and b, and by cΠ(a) =

∑
π∈Π c(a, π)

the total number of intersections of a with Π. Let Ch =
maxt cΠ(h(t)) be the maximum total number of inter-
sections over all t, and let Ih be the set of maximal
intervals (τ0, τ1) with cΠ(h(t)) = Ch if t ∈ (τ0, τ1) ∈ Ih.
If Ch = m, each level curve of h crosses each πi exactly
once and we are done, thus we assume in the following
that cΠ(h(0)) = cΠ(h(1)) = m < Ch.

If Ch > m, we obtain a homotopy h′ from h
with Ch′ < Ch by, for each interval (τ0, τ1) ∈ Ih,
replacing subhomotopy h|(τ0,τ1) of h by some h∗ =
h′|(τ0,τ1) with Ch∗ < Ch.

Consider a single interval (τ0, τ1) ∈ Ih and let A =
A(h(τ0), h(τ1)). Then Π ∩ A consists of Ch subarcs
of Π, each connecting the two boundaries of A. For t ∈
(τ0, τ1), h(t) intersects each such arc exactly once, and
each h(t) intersects these arcs in the same order. Among
the components of A\Π, there is a disk D0 bounded by
one arc of h(τ0) and two arcs of πi ∩ A, and a disk D1

bounded by one arc of h(τ1) and one arc of πj , such that
these disks contain no other arcs of Π.

We can find α ∈ G(h(τ0), h(τ1)) that intersects
any arc of A ∩ Π at most once (in the same order

π1

π2

π3

γ0

γ1

h(τ0)

h(τ1)

α

D0

D1

Figure 6: Choosing α such that Ch∗ < Ch.

as h(t)), and does not intersect the interiors of D0

and D1 (because the two arcs of Π on their bound-
ary form a shortest path). Then cΠ(α) < Ch and the
retraction h0 = h|A(h(τ0),α) has Ch0 < Ch, since any
arc h0(t) has fewer intersections than h(t) has with Π
(in particular with the boundary of D1). Symmetrically,
for h1 = h|A(α,h(τ1)) we have Ch1

< Ch. Since the com-
position h∗ = h0h1 is a homotopy from h(τ0) to h(τ1)
with Ch∗ < Ch and height at most L (by Lemma 4.2),
we can use this as a replacement for h|(τ0,τ1) in h′. By
induction, we obtain a homotopy of height at most L
whose level curves all cross each πi at most once.

5 Computing homotopy height in NP

In this section, we show that in the discrete setting,
there is an optimal homotopy with a polynomial number
of moves. First, we show that there is a homotopy that
flips each face exactly once.

Lemma 5.1. For an annulus (Σ, G) bounded by γ0

and γ1, there is a homotopy of minimum height between
γ0 and γ1 that flips each face of G exactly once.

Proof. By Theorem 3.4, some homotopy h of minimum
height is a monotone isotopy. For two consecutive level
curves h(t) and h(t′) in a monotone isotopy, the move
between h(t) and h(t′) flips face F if and only if F
lies in A(h(t′), γ1) or A(h(t), γ1) but not both. Be-
cause A(h(0), γ1) contains all faces, and A(h(1), γ1) con-
tains none, each face is flipped at least once. By mono-
tonicity, we have for 0 ≤ t′ < t ≤ 1, that A(h(t′), γ1) ⊇
A(h(t), γ1). So, if face F does not lie in A(h(t), γ1), it
will not be flipped again in h|(t,1]. Hence each face is
flipped exactly once.

It remains to show that each edge is involved in
a polynomial number of (un)spike moves; note that
this does not directly follow from monotonicity, since
a second spike of the same edge does not violate
monotonicity (as can easily be seen in the dual setting).
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Figure 7: Delaying spikes (a). Canceling spikes with unspikes (b) or faces (c). Part of a reduced isotopy (d).

Postponing spikes. Before we bound the number
of spike moves, we transform an optimal monotone
isotopy h into one where each spike move is delayed
as much as possible, and each unspike move happens as
soon as possible. We explain this transformation in the
dual setting.

Suppose a spike move occurs for edge e be-
tween h(ti) and h(ti+1), then denote by s the (unique)
arc of A(h(ti), h(ti+1))∩G∗ both of whose endpoints lie
on h(ti+1). This arc is a subarc of the dual edge e∗. Con-
sider the maximum j > i, for which the component sj
of e∗ ∩ A(γ0, h(tj)) containing s has both endpoints
on h(tj), and for all ti < t ≤ tj , curve h(t) has exactly
two crossings with sj (so the only action performed on
arc sj was the spike between h(ti) and h(ti+1)). Then sj
and h(tj) enclose a disk Dj . If the interior of Dj con-
tains no edges of G∗, we can delay the spike of e at
least until just before tj , as illustrated in Figure 7 (a),
where Dj is shaded.

Depending on what happens in the move be-
tween h(tj) and h(tj+1), we may transform the isotopy
further. This move is either (1) an unspike attached
to sj , or (2) a face-flip connected to one endpoint or
(3) both endpoints2 of sj , or (4) a face-flip or spike in-
side Dj+1. In cases (1) and (2), we cancel the spike
against the unspike or flip, as illustrated in Figure 7
(b) and (c). We do not postpone the spike in cases (3)
and (4). Symmetrically, unspike moves can be made to
happen earlier. Observe that these operations cannot
increase the height of a homotopy since each level curve
in the resulting homotopy crosses a subset of the edges
of some curve in the original homotopy.

Call a homotopy reduced if it is the result of
applying the above rules to h until no spike can be
canceled or postponed until after a flip or unspike,
and no unspike can be canceled or be made to happen
before any prior flip or spike. Starting from an optimal
monotone isotopy, the reduced isotopy is also an optimal
monotone isotopy. Lemma 5.2 captures a structural
property of reduced homotopies.

2This happens only if the primal edge is adjacent to only one
face of G.

Lemma 5.2. Between any two consecutive face-flips in
a reduced isotopy lies a single (possibly empty) path of
unspike moves followed by a (possibly empty) path of
spiked moves.

Proof. In a reduced homotopy, no unspike follows a
spike move, and any spikes that remain ‘surround’ the
next face-flip (if any), see Figure 7 (d). Symmetrically,
all unspikes between two consecutive face-flips surround
the previous face-flip (if any). From the primal perspec-
tive, these unspike moves form a path from the previ-
ously flipped face and spike moves form a path towards
the next flipped face.

Any reduced homotopy starts with zero or more
unspikes from γ0, after which a possibly empty path
of spikes to the first face-flip occurs, then that face
is flipped, and a possibly empty path of unspikes
enabled by this flip occurs. Subsequently, a spiked path,
face-flip, and unspiked path occur for the remaining
faces. Finally, a sequence of spikes towards γ1 may
occur. We may assume that on γ0 and γ1, any two
consecutive edges are different, such that no immediate
unspike moves are possible from γ0, and no immediate
spike moves are possible to γ1. Otherwise we may by
Lemma 4.1 perform those moves immediately without
increasing the homotopy height.

Bounding spike moves. We are now ready to
bound the number of spike and unspike moves in an
optimal homotopy. Call a homotopy h good if it is a
minimum-height reduced monotone isotopy and it has a
minimum number of moves. By Theorems 3.2 and 3.4,
the height of h is the homotopy height between γ0

and γ1.
Define an edge-spike of an edge e to be between

existing copies of e, if the portion of the dual edge e∗

crossed by the (dual) level curve, lies between two
existing crossings of the level curve with e∗, such as in
Figure 8. We show that such spikes never appear in h.

Lemma 5.3. If homotopy h is good, there are no spikes
between existing copies of any edge e.
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u ve

Figure 8: Development of a spike between existing copies of e. Part of the graph in red (dual) and blue (primal)
and the level curve in gray dashed (dual) and black (primal, perturbed).
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Figure 9: Top: the neighborhood of e∗ throughout h. Bottom: the reconnected homotopy, reducing crossings
with e∗. From left to right: the homotopy just before τ0, just after τ0, between τ0 and τ1, just before τ1, and just
after τ1.

Proof. Suppose the move from h(ti) to h(ti+1) is the
last move between existing copies of the same edge, and
assume this move is a spike of edge e = (u, v) from u
to v. In the dual setting, consider the component π
of e∗ ∩ A(h(ti), γ1) that is crossed by the spike move
(highlighted in Figure 8). Let c(t) be the number of
crossings of h(t) with π, then for some τ0 between ti
and ti+1, c(τ0) = 3, and for some unique τ1 > τ0, c(τ1) =
3 again, and for τ0 < t < τ1, we have c(t) = 4 (because
we assumed this was the last spike between existing
copies of any edge).

For τ0 < t < τ1, label the four crossings of h(t)
with π by p1(t), p2(t), p3(t), and p4(t), in order along e∗,
so the spike move at τ0 creates p2 and p3. Consider the
three components C1(t), C2(t) and C3(t) of A(h(t), γ1)\
π, such that C1 touches p1 and p2 from the dual face
of u, and C2 touches p3 and p4 from the dual face of u,
and C3 touches e∗ in two segments from the dual face
of v. Because C3 lies between C1 and C2, h will first
contract either component C1 or C2, namely at h(τ1).
Assume without loss of generality that C2 contracts
first.

We modify h|[τ0,τ1] such that any level curve
crosses π at most twice by reconnecting the neighbor-

hood of π, whose local structure evolves exactly as de-
picted in the top row of Figure 9. We essentially re-
move crossings p2 and p3, and reconnect ∂C1(t) ∩ h(t)
with ∂C2(t)∩h(t) using a (zero-length) segment along π
in face u∗. On the other side, consider the arc of ∂C3(t)∩
h(t)∩ v∗ with p4(t) as endpoint. We cut this arc in two
subarcs a and b, where a has p4(t) as endpoint, and
connect the other endpoint to the arc of ∂C3(t) ∩ h(t)
at the endpoint at p2(t) using a segment along π in v∗.
Similarly, we connect the endpoint of that at p3(t) to
the loose end of b. These reconnections are depicted in
the bottom row of Figure 9. A more global view (cor-
responding to Figure 8) is illustrated in Figure 10.

Observe that the reconnected curves can be made
to appear continuously in such a way that they form a
monotone isotopy. Because level curves only changed in
the neighborhood of π, where they were shortened by
avoiding the crossings with π, we have an isotopy whose
height is at most that of h, and in which at least one
spike is removed. So, because h was optimal, we have
constructed an optimal monotone isotopy with fewer
moves. Therefore, the corresponding reduced isotopy
also has fewer moves, contradicting that h was good.
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Figure 10: Figure 8 after a local surgery that avoids the spike between copies of e.
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Figure 11: A local surgery to avoid five spikes of the same edge on a single spiked path.

Our final step towards bounding the number of
edge spikes is to derive a contradiction if for some
interval [τ0, τ1] without face-flips, an edge e is spiked
(or unspiked) 5 times in h|[τ0,τ1]. The proof is similar to
that of Lemma 5.3.

Lemma 5.4. For a good homotopy h, any subhomo-
topy h|[τ0,τ1] contains either a face-flip, or at most 4
spike (and at most 4 unspike) moves of the same edge.

Proof. Suppose h|[τ0,τ1] contains no face-flip, then be-
cause h is reduced, the spike moves in h|[τ0,τ1] form a
path σ of spike moves in G. Assume for a contradiction
that some edge e = (u, v) lies on σ at least 5 times. We
say two spikes s1 and s2 are consecutive on e∗ if no spike
occurs on the arc of e∗ between the first crossing of s1

with e∗ and the first crossing of s2 with e∗.
Because by Lemma 5.3, h does not contain spikes

between existing copies of edges, we can find three
spikes s1, s2 and s3 of e on σ where s1 and s2 as well
as s2 and s3 are consecutive on e∗, and s1 happens be-
fore s2 and s2 happens before s3. Let σ0, σ1, σ2 and σ3

be the subpaths of σ such that σ = σ0s1σ1s2σ2s3σ3,
also labeled in Figure 11.

To get rid of spike s2, we connect σ0s1σ1 to σ2s3σ3

in an alternative way. Figure 12 illustrates all possible
ways s1, s2 and s3 (in the dotted area) can be connected
by σ, and how our method will reconnect σ without s2.
Formally, to decide where this reconnection takes place,
we consider the components of A(h(τ1), γ1)\π, where π
is the arc of e∗ between its intersections with s1 and s3.
There are three components, component C1 touching π
and σ1, component C2 touching π and σ2, and compo-
nent C3 touching σ entirely, and touching π in two arcs.
The component that h contracts first is either C1 or C2

(since C3 lies between the other two).
First consider the case where C1 is contracted first,

then the path σ2s3σ3 starts in the dual face of the
endpoint of s2. Note that there is a (zero-length) path
between the start or endpoint of s1 and the endpoint
of s2 because s1 and s2 are adjacent along e∗. Use this
zero-length path to connect σ2s3σ3 to σ0s1σ1 at the
start or endpoint of s1 and call the resulting tree λ.
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Figure 12: Cases for shortcutting spiked paths visiting the same edge often. The neighborhood of the repeated
edge is dotted and the component contracted first is shaded.

We claim we obtain an optimal monotone isotopy h′

from h by replacing the spiked path σ by the spiked
tree λ, and removing the unspike move of e∗ following
the contraction of C1. Up until the creation of λ, the
move sequence is the same as in h. Since λ contains a
subset (all spikes except s2) of the spikes of σ, the spiked
tree can be created without surpassing the height of h.
After the creation of σ in h and λ in h′, locally, the level
curves of h and h′ differ only in a small neighborhood
of π, so that all moves of h except those crossing π can
still be performed in h′. Because s2 is the only spike
along e∗ that lies between s1 and s3, the next move
that crosses π is the unspike move, call it z, following
the contraction of C1. The level curve of h′ just before z
is identical to the level curve of h just after z, so it
is safe to omit move z in h′. All subsequent level
curves of h and h′ are identical, so we conclude that h′

is an optimal monotone isotopy (with fewer moves).
Therefore, the reduced monotone isotopy of h′ has fewer
moves, contradicting that h was good.

The proof for the case where C2 contracts first, is
symmetrical, except that the spiked tree λ is created
differently. In this case, we define λ to be σ0s1σ1, whose
endpoint is connected to σ2s3σ3 at the start or endpoint
of s3. When spiking this tree, the direction of the spikes
on σ2 (and sometimes σ3) is reversed, but this does not
affect the proof.

Hence, in a good homotopy, no spiked path spikes

the same edge 5 times.

Theorem 5.1. For γ0 and γ1 bounding an annulus with
n faces and m edges, there is a homotopy of minimum
height that has at most O(mn) moves. Therefore, de-
ciding whether their Homotopy Height is at most L
is in NP.

Proof. Let n be the number of faces, and m the number
of edges in G. As a direct consequence of Lemmas 5.1
and 5.4, there is a good homotopy that spikes each
edge at most 4(n + 1) times and unspikes each edge
at most 4(n + 1) times. So there is a homotopy of
minimum height that has at most 8m(n + 1) + n =
O(mn) moves. Testing whether this homotopy indeed
has height at most L can be done by computing the
maximum length over its (polynomially many) level
curves, each containing a polynomial number of edges,
and comparing this maximum with L. Given a good
homotopy, all of this can be done in polynomial time
assuming addition and comparisons of numbers takes
polynomial time.

We note that the Homotopy Height problem can
also be defined in slightly different settings, for example

• γ0 and γ1 are two paths with common endpoints s
and t, such that γ0 ∪ γ1 is the boundary of a com-
binatorial disk. Then γ0 is homotopic to γ1 with
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fixed endpoints, and we are interested in comput-
ing the optimal height of this homotopy. This is
the Homotopy Height problem considered by E.
Chambers and Letscher [9].

• There is a single curve γ forming the boundary of a
combinatorial disk. This curve is contractible, and
we are interested in computing the optimal height
of such a contraction. This is one of the settings
considered in [6].

In both these cases, the Theorems 3.2 and 3.4 have
analogues establishing that some optimal homotopy is
an isotopy and is monotone. The rest of our proof tech-
niques then readily apply, and prove that the Homo-
topy Height problem in these cases is also in NP.
The next section investigates more distant variants.

6 Variants and approximation algorithms

6.1 Homotopic Fréchet distance
There is a strong connection between the problem of
Homotopy Height and the problem of Homotopic
Fréchet distance, which we now recall. As in [22],
our setting is the one of a disk D with four points p0, q0,
q1 and p1 on the boundary, connected by four disjoint
boundary arcs γ0, γ1, P and Q, with γ0 from p0 to q0; γ1

from p1 to q1; P from p0 to p1; and Q from q0 to q1,
see Figure 13, left. A homotopy between γ0 and γ1

is a series of elementary moves connecting curves of D
with one endpoint on P and the other on Q, where the
collection of curves starts at γ0 and ends at γ1. The
Homotopic Fréchet distance between P and Q is
the height of a homotopy between γ0 and γ1 of minimal
height. The common intuition for this distance is that
it is the minimal length of a leash needed for a man on
P to walk his dog along Q, where the leash may stretch
but cannot be lifted out of the underlying space.

We note that this is slightly different than the
original setting for homotopic Fréchet distance in the
original work [8], where an exact algorithm is presented
for the plane minus a set of polygonal obstacles. In the
original work, the start and end leashes are not fixed,
and in fact the bulk of the work is in determining an
optimal relative homotopy class in order to find the best
homotopy.

Proposition 6.1. The Homotopic Fréchet dis-
tance problem is in NP.

Proof. We reduce Homotopic Fréchet Distance to
Homotopy Height using the following construction.
We add a vertex v and edges of weight K between this
vertex and all the vertices of the paths P and Q, where
K is a constant greater than the sum of the weights

of the edges of the disk, as well as all the intermediate
triangles, see Figure 13, right. This results in a pinched
annulus A, with two boundaries γ′0 and γ′1 obtained
from the paths γ0 and γ1, both completed into closed
curves using the additional vertex v. We claim that an
optimal homotopy between γ0 and γ1 translates into an
optimal homotopy in A between γ′0 and γ′1, and vice-
versa. Indeed, by Lemma 4.3, there exists an optimal
homotopy in A such that any intermediate curve crosses
the shortest path between γ′0 and γ′1 exactly once, and
in our case the shortest path is the zero length path
starting and ending at the vertex v. Furthermore, if the
weight K is big enough, the level curves of an optimal
homotopy between γ′0 and γ′1 will always use exactly
two of the edges of weight K, since two are needed but
any more would be too expensive. Thus, an optimal
homotopy between γ′0 and γ′1 translates directly into an
optimal homotopy between γ0 and γ1 after cutting on
v and removing the edges linked to v and vice-versa.
The homotopy height is increased by exactly 2K in this
translation.

Har-Peled, Nayyeri, Salvatipour and Sidiropoulos [22]
provide an algorithm to compute in O(n log n) time a
homotopy of height O(d log n), where d is a lower bound
on the height of an optimal homotopy, and n is the
complexity of Σ. In particular, one can set d to be the
maximum of ‖γ0‖, ‖γ1‖, the diameter of Σ, and half of
the total weight of the boundary of any face. This yields
an O(log n) approximation for Homotopic Fréchet
distance3. We show here that their algorithm can
be adapted to yield an O(log n) approximation for
Homotopy Height.

Proposition 6.2. One can compute in O(n log n) time
an O(log n)-approximation of Homotopy Height.

Proof. Starting with an annulus and two boundary
curves γ0 and γ1, we first compute a shortest path P
between the boundary curves γ0 and γ1 and cut along
P to obtain a disk D. This brings us to the setting of
Homotopic Fréchet Distance, and we can apply
the aforementioned algorithm and obtain a homotopy
h. In order to recover a homotopy between γ0 and γ1,
we glue back the disk along P into an annulus, and the
level curves of h are completed into closed curves by
using subpaths of P, this gives us a homotopy h′. It
remains to show that this is an O(log n) approximation
of the optimal homotopy. By Lemma 4.3, some optimal
homotopy between γ0 and γ1 has level curves cutting

3This algorithm assumes triangular faces, but using our defi-

nition of d, one can extend the algorithm of [22] to also work with
polygonal faces.
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Figure 13: The setting of homotopic Fréchet distance.

P exactly once. Thus, the height L of an optimal
homotopy in the disk D is a lower bound for the height
of an optimal homotopy in the annulus A. Furthermore,
each level curve γt of h′ consist of two subpaths, one
being a level curve h(t) of h and the other being a
subpath P ′t of P. Since P is a shortest path, P ′t is
also a shortest path between its endpoints, so it is
shorter than h(t) since they have the same endpoints.
By construction, the length of h(t) is O(L log n), and
thus the length of γt is O(2L log n) = O(L log n). This
concludes the proof.

6.2 Minimum height linear layouts
We also show that a seemingly unrelated graph draw-
ing problem is directly equivalent to the Homotopy
Height problem. A linear layout is an embedding of a
planar graph where the edges have isolated tangencies
with the vertical line, and all the vertices have distinct x
coordinates. The Minimum Height Linear Layout
problem is the following one: Given a planar embedding
of an edge-weighted graph G, find a homeomorphic lin-
ear layout of G in R2 such that the maximal weight of
the vertical lines is minimized. Here, the weight of a
vertical line is the sum of the weights of the edges that
it crosses, and (similarly to the cross-metric setting),
vertical lines crossing tangent to the edges or crossing
vertices are not counted.

Theorem 6.1. The Minimum Height Linear Lay-
out problem is equivalent to the Homotopy Height
problem.

Proof. Indeed, a linear layout of a planar graph G
naturally induces a discrete homotopy sweeping its dual
graph G∗. More formally, we drill a small hole around
the vertex dual to the outer face of G, and we view
its complement as a disk D which is a cross-metric
surface for the graph G. Since the hole was drilled
in the middle of the face of G, its boundary has zero

length. We pick two arbitrary vertices s and t on it,
which cuts the boundary into two paths L and R. Then
we claim that a minimum height linear layout of G is
equivalent to a homotopy of minimum height between
L and R (where the endpoints are fixed)4. Indeed,
whenever the sweep of R2 induced by the vertical
lines crosses an edge or passes a vertex, by the dual
interpretation of homotopies with cross-metric surfaces
outlined in the preliminaries, it amounts to doing a face
or an edge move, and thus the whole vertical sweep
defines a homotopy between the two paths L and R.
Furthermore, this homotopy is an isotopy, since the
vertical lines are simple, and a monotone one since they
only go in a single direction. Conversely, a discrete
homotopy of optimal height between L and R can be
“straightened” into a linear layout: by Theorem 3.4, one
can assume such a homotopy h to be an isotopy and to
be monotone, and therefore the succession of dual moves
of h with respect to G are homeomorphic to a sweep of
G by vertical lines, as pictured in Figure 14. An optimal
homotopy amounts, via this homeomorphism, to finding
a linear layout of minimal weight.

In particular, the Minimum Height Linear Lay-
out problem is in NP and admits an O(log n)-
approximation algorithm.

4The somewhat artificial construction with L and R forces the

homotopy to go through the outer face of G at all times.

3 35 24 24 5 1230

20 20
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Figure 14: Dual representation of Figure 2 (left) and
Figure 3 (right).
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