12,172 research outputs found

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    A Temporally Coherent Neural Algorithm for Artistic Style Transfer

    Get PDF
    Within the fields of visual effects and animation, humans have historically spent countless painstaking hours mastering the skill of drawing frame-by-frame animations. One such animation technique that has been widely used in the animation and visual effects industry is called rotoscoping and has allowed uniquely stylized animations to capture the motion of real life action sequences, however it is a very complex and time consuming process. Automating this arduous technique would free animators from performing frame by frame stylization and allow them to concentrate on their own artistic contributions. This thesis introduces a new artificial system based on an existing neural style transfer method which creates artistically stylized animations that simultaneously reproduce both the motion of the original videos that they are derived from and the unique style of a given artistic work. This system utilizes a convolutional neural network framework to extract a hierarchy of image features used for generating images that appear visually similar to a given artistic style while at the same time faithfully preserving temporal content. The use of optical flow allows the combination of style and content to be integrated directly with the apparent motion over frames of a video to produce smooth and visually appealing transitions. The implementation described in this thesis demonstrates how biologically-inspired systems such as convolutional neural networks are rapidly approaching human-level behavior in tasks that were once thought impossible for computers. Such a complex task elucidates the current and future technical and artistic capabilities of such biologically-inspired neural systems as their horizons expand exponentially. Further, this research provides unique insights into the way that humans perceive and utilize temporal information in everyday tasks. A secondary implementation that is explored in this thesis seeks to improve existing convolutional neural networks using a biological approach to the way these models adapt to their inputs. This implementation shows how these pattern recognition systems can be greatly improved by integrating recent neuroscience research into already biologically inspired systems. Such a novel hybrid activation function model replicates recent findings in the field of neuroscience and shows significant advantages over existing static activation functions

    Coordination dynamics in the sensorimotor loop

    Get PDF
    The last two decades have witnessed radical changes of perspective about the nature of intelligence and cognition, leaving behind some of the assumptions of computational functionalism. From the myriad of approaches seeking to substitute the old rule-based symbolic perception of mind, we are especially interested in two of them. The first is Embodied and Situated Cognition, where the advances in modeling complex adaptive systems through computer simulations have reconfigured the way in which mechanistic, embodied and interactive explanations can conceptualize the mind. We are particularly interested in the concept of sensorimotor loop, which brings a new perspective about what is needed for a meaningful interaction with the environment, emphasizing the role of the coordination of effector and sensor activities while performing a concrete task. The second one is the framework of Coordination Dynamics, which has been developed as a result of the increasing focus of neuroscience on self-organized oscillatory brain dynamics. It provides formal tools to study the mechanisms through which complex biological systems stabilize coordination states under conditions in which they would otherwise become unstable. We will merge both approaches and define coordination in the sensorimotor loop as the main phenomena behind the emergence of cognitive behavior. At the same time, we will provide methodological tools and concepts to address this hypothesis. Finally, we will present two case studies based on the proposed approach: 1. We will study the phenomenon known as “intermittent behavior”, which is observed in organisms at different levels (from microorganisms to higher animals). We will propose a model that understands intermittent behavior as a general strategy of biologica organization when an organism has to adapt to complex changing environments, and would allow to establish effective sensorimotor loops even in situations of instable engagement with the world. 2. We will perform a simulation of a phonotaxis task performed by an agent with an oscillator network as neural controller. The objective will be to characterize robust adaptive coupling between perceptive activity and the environmental dynamics just through phase information processing. We will observe how the robustness of the coupling crucially depends of how the sensorimotor loop structures and constrains both the emergent neural and behavioral patterns. We will hypothesize that this structuration of the sensorimotor space, in which only meaningful behavioral patterns can be stabilized, is a key ingredient for the emergence of higher cognitive abilities

    The Ouroboros Model

    Get PDF
    At the core of the Ouroboros Model lies a self-referential recursive process with alternating phases of data acquisition and evaluation. Memory entries are organized in schemata. Activation at a time of part of a schema biases the whole structure and, in particular, missing features, thus triggering expectations. An iterative recursive monitor process termed ‘consumption analysis’ is then checking how well such expectations fit with successive activations. A measure for the goodness of fit, “emotion”, provides feedback as (self-) monitoring signal. Contradictions between anticipations based on previous experience and actual current data are highlighted as well as minor gaps and deficits. The basic algorithm can be applied to goal directed movements as well as to abstract rational reasoning when weighing evidence for and against some remote theories. A sketch is provided how the Ouroboros Model can shed light on rather different characteristics of human behavior including learning and meta-learning. Partial implementations proved effective in dedicated safety systems

    Survey on Evaluation Methods for Dialogue Systems

    Get PDF
    In this paper we survey the methods and concepts developed for the evaluation of dialogue systems. Evaluation is a crucial part during the development process. Often, dialogue systems are evaluated by means of human evaluations and questionnaires. However, this tends to be very cost and time intensive. Thus, much work has been put into finding methods, which allow to reduce the involvement of human labour. In this survey, we present the main concepts and methods. For this, we differentiate between the various classes of dialogue systems (task-oriented dialogue systems, conversational dialogue systems, and question-answering dialogue systems). We cover each class by introducing the main technologies developed for the dialogue systems and then by presenting the evaluation methods regarding this class
    corecore