874 research outputs found

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures νλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures νλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of νλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure

    Salem numbers and Pisot numbers via interlacing

    Full text link
    We present a general construction of Salem numbers via rational functions whose zeros and poles mostly lie on the unit circle and satisfy an interlacing condition. This extends and unifies earlier work. We then consider the "obvious" limit points of the set of Salem numbers produced by our theorems, and show that these are all Pisot numbers, in support of a conjecture of Boyd. We then show that all Pisot numbers arise in this way. Combining this with a theorem of Boyd, we show that all Salem numbers are produced via an interlacing construction.Comment: 21 pages, 5 figures, updated in response to reviewer comment

    The dynamical Manin-Mumford problem for plane polynomial automorphisms

    Full text link
    Let ff be a polynomial automorphism of the affine plane. In this paper we consider the possibility for it to possess infinitely many periodic points on an algebraic curve CC. We conjecture that this happens if and only if ff admits a time-reversal symmetry; in particular the Jacobian Jac(f)\mathrm{Jac}(f) must be a root of unity. As a step towards this conjecture, we prove that the Jacobian of ff and all its Galois conjugates lie on the unit circle in the complex plane. Under mild additional assumptions we are able to conclude that indeed Jac(f)\mathrm{Jac}(f) is a root of unity. We use these results to show in various cases that any two automorphisms sharing an infinite set of periodic points must have a common iterate, in the spirit of recent results by Baker-DeMarco and Yuan-Zhang.Comment: 45 pages. Theorems A and B are now extended to automorphisms defined over any field of characteristic zer

    Shift Radix Systems - A Survey

    Full text link
    Let d1d\ge 1 be an integer and r=(r0,,rd1)Rd{\bf r}=(r_0,\dots,r_{d-1}) \in \mathbf{R}^d. The {\em shift radix system} τr:ZdZd\tau_\mathbf{r}: \mathbb{Z}^d \to \mathbb{Z}^d is defined by τr(z)=(z1,,zd1,rz)t(z=(z0,,zd1)t). \tau_{{\bf r}}({\bf z})=(z_1,\dots,z_{d-1},-\lfloor {\bf r} {\bf z}\rfloor)^t \qquad ({\bf z}=(z_0,\dots,z_{d-1})^t). τr\tau_\mathbf{r} has the {\em finiteness property} if each zZd{\bf z} \in \mathbb{Z}^d is eventually mapped to 0{\bf 0} under iterations of τr\tau_\mathbf{r}. In the present survey we summarize results on these nearly linear mappings. We discuss how these mappings are related to well-known numeration systems, to rotations with round-offs, and to a conjecture on periodic expansions w.r.t.\ Salem numbers. Moreover, we review the behavior of the orbits of points under iterations of τr\tau_\mathbf{r} with special emphasis on ultimately periodic orbits and on the finiteness property. We also describe a geometric theory related to shift radix systems.Comment: 45 pages, 16 figure

    Distortion in transformation groups

    Get PDF
    We exhibit rigid rotations of spheres as distortion elements in groups of diffeomorphisms, thereby answering a question of J Franks and M Handel. We also show that every homeomorphism of a sphere is, in a suitable sense, as distorted as possible in the group Homeo(Sn), thought of as a discrete group. An appendix by Y de Cornulier shows that Homeo(Sn) has the strong boundedness property, recently introduced by G Bergman. This means that every action of the discrete group Homeo(Sn) on a metric space by isometries has bounded orbits
    corecore