8,504 research outputs found

    De Sitter Space and Spatial Topology

    Full text link
    Morrow-Jones and Witt have shown that generic spatial topologies admit initial data that evolve to locally de Sitter spacetimes under Einstein's equations. We simplify their arguments, make them a little more general, and solve for the global time evolution of the wormhole initial data considered by them. Finally we give explicit examples of locally de Sitter domains of development whose universal covers cannot be embedded in de Sitter space.Comment: 21 pages, 7 figure

    How the Universe got its Spots

    Get PDF
    The universe displays a three-dimensional pattern of hot and cold spots in the radiation remnant from the big bang. The global geometry of the universe can be revealed in the spatial distribution of these spots. In a topologically compact universe, distinctive patterns are especially prominent in spatial correlations of the radiation temperature. Whereas these patterns are usually washed out in statistical averages, we propose a scheme which uses the universe's spots to observe global geometry in a manner analogous to the use of multiple images of a gravitationally lensed quasar to study the geometry of the lens. To demonstrate how the geometry of space forms patterns in observations of the microwave sky, we develop a simple real-space approximation to estimate temperature correlations for any set of cosmological parameters and any global geometry. We present correlated spheres which clearly show geometric pattern formation for compact flat universes as well as for the compact negatively curved space introduced by Weeks and another discovered by Best. These examples illustrate how future satellite-based observations of the microwave background can determine the full geometry of the universe.Comment: 16 pages, 26 figure

    Weyl Card Diagrams and New S-brane Solutions of Gravity

    Full text link
    We construct a new card diagram which accurately draws Weyl spacetimes and represents their global spacetime structure, singularities, horizons and null infinity. As examples we systematically discuss properties of a variety of solutions including black holes as well as recent and new time-dependent gravity solutions which fall under the S-brane class. The new time-dependent Weyl solutions include S-dihole universes, infinite arrays and complexified multi-rod solutions. Among the interesting features of these new solutions is that they have near horizon scaling limits and describe the decay of unstable objects.Comment: 78 pages, 32 figures. v2 added referenc

    Pair of accelerated black holes in a de Sitter background: the dS C-metric

    Get PDF
    Following the work of Kinnersley and Walker for flat spacetimes, we have analyzed the anti-de Sitter C-metric in a previous paper. In the de Sitter case, Podolsky and Griffiths have established that the de Sitter C-metric (dS C-metric) found by Plebanski and Demianski describes a pair of accelerated black holes in the dS background with the acceleration being provided (in addition to the cosmological constant) by a strut that pushes away the two black holes or, alternatively, by a string that pulls them. We extend their analysis mainly in four directions. First, we draw the Carter-Penrose diagrams of the massless uncharged dS C-metric, of the massive uncharged dS C-metric and of the massive charged dS C-metric. These diagrams allow us to clearly identify the presence of two dS black holes and to conclude that they cannot interact gravitationally. Second, we revisit the embedding of the dS C-metric in the 5D Minkowski spacetime and we represent the motion of the dS C-metric origin in the dS 4-hyperboloid as well as the localization of the strut. Third, we comment on the physical properties of the strut that connects the two black holes. Finally, we find the range of parameters that correspond to non-extreme black holes, extreme black holes, and naked particles.Comment: 11 pages, 11 figures (RevTeX4). Published version: references adde

    Global properties of warped solutions in General Relativity

    Get PDF
    Assuming the four-dimensional space-time to be a general warped product of two surfaces we reduce the four-dimensional Einstein equations to a two-dimensional problem which can be solved. All global vacuum solutions are explicitly constructed and analysed. The classification of the solutions includes the Schwarzschild, the (anti-)de Sitter, and other well-known solutions but also many exact ones whose detailed global properties to our knowledge have not been discussed before. They have a natural physical interpretation describing single or several wormholes, domain walls of curvature singularities, cosmic strings, cosmic strings surrounded by domain walls, solutions with closed timelike curves, etc.Comment: 35 pages, 5 eps figures, minor change

    Spacetime Embedding Diagrams for Black Holes

    Get PDF
    We show that the 1+1 dimensional reduction (i.e., the radial plane) of the Kruskal black hole can be embedded in 2+1 Minkowski spacetime and discuss how features of this spacetime can be seen from the embedding diagram. The purpose of this work is educational: The associated embedding diagrams may be useful for explaining aspects of black holes to students who are familiar with special relativity, but not general relativity.Comment: 22 pages, 21 figures, RevTex. To be submitted to the American Journal of Physics. Experts will wish only to skim appendix A and to look at the pictures. Suggested Maple code is now compatible with MapleV4r
    • …
    corecore