2,734 research outputs found

    From Hypergraph Energy Functions to Hypergraph Neural Networks

    Full text link
    Hypergraphs are a powerful abstraction for representing higher-order interactions between entities of interest. To exploit these relationships in making downstream predictions, a variety of hypergraph neural network architectures have recently been proposed, in large part building upon precursors from the more traditional graph neural network (GNN) literature. Somewhat differently, in this paper we begin by presenting an expressive family of parameterized, hypergraph-regularized energy functions. We then demonstrate how minimizers of these energies effectively serve as node embeddings that, when paired with a parameterized classifier, can be trained end-to-end via a supervised bilevel optimization process. Later, we draw parallels between the implicit architecture of the predictive models emerging from the proposed bilevel hypergraph optimization, and existing GNN architectures in common use. Empirically, we demonstrate state-of-the-art results on various hypergraph node classification benchmarks. Code is available at https://github.com/yxzwang/PhenomNN.Comment: Accepted to ICML 202

    Positional Games

    Full text link
    Positional games are a branch of combinatorics, researching a variety of two-player games, ranging from popular recreational games such as Tic-Tac-Toe and Hex, to purely abstract games played on graphs and hypergraphs. It is closely connected to many other combinatorial disciplines such as Ramsey theory, extremal graph and set theory, probabilistic combinatorics, and to computer science. We survey the basic notions of the field, its approaches and tools, as well as numerous recent advances, standing open problems and promising research directions.Comment: Submitted to Proceedings of the ICM 201

    The role of twins in computing planar supports of hypergraphs

    Full text link
    A support or realization of a hypergraph HH is a graph GG on the same vertex as HH such that for each hyperedge of HH it holds that its vertices induce a connected subgraph of GG. The NP-hard problem of finding a planar} support has applications in hypergraph drawing and network design. Previous algorithms for the problem assume that twins}---pairs of vertices that are in precisely the same hyperedges---can safely be removed from the input hypergraph. We prove that this assumption is generally wrong, yet that the number of twins necessary for a hypergraph to have a planar support only depends on its number of hyperedges. We give an explicit upper bound on the number of twins necessary for a hypergraph with mm hyperedges to have an rr-outerplanar support, which depends only on rr and mm. Since all additional twins can be safely removed, we obtain a linear-time algorithm for computing rr-outerplanar supports for hypergraphs with mm hyperedges if mm and rr are constant; in other words, the problem is fixed-parameter linear-time solvable with respect to the parameters mm and rr

    Aligned plane drawings of the generalized Delaunay-graphs for pseudo-disks

    Full text link
    We study general Delaunay-graphs, which are natural generalizations of Delaunay triangulations to arbitrary families, in particular to pseudo-disks. We prove that for any finite pseudo-disk family and point set, there is a plane drawing of their Delaunay-graph such that every edge lies inside every pseudo-disk that contains its endpoints

    Hypergraph Ramsey numbers

    Get PDF
    The Ramsey number r_k(s,n) is the minimum N such that every red-blue coloring of the k-tuples of an N-element set contains either a red set of size s or a blue set of size n, where a set is called red (blue) if all k-tuples from this set are red (blue). In this paper we obtain new estimates for several basic hypergraph Ramsey problems. We give a new upper bound for r_k(s,n) for k \geq 3 and s fixed. In particular, we show that r_3(s,n) \leq 2^{n^{s-2}\log n}, which improves by a factor of n^{s-2}/ polylog n the exponent of the previous upper bound of Erdos and Rado from 1952. We also obtain a new lower bound for these numbers, showing that there are constants c_1,c_2>0 such that r_3(s,n) \geq 2^{c_1 sn \log (n/s)} for all 4 \leq s \leq c_2n. When s is a constant, it gives the first superexponential lower bound for r_3(s,n), answering an open question posed by Erdos and Hajnal in 1972. Next, we consider the 3-color Ramsey number r_3(n,n,n), which is the minimum N such that every 3-coloring of the triples of an N-element set contains a monochromatic set of size n. Improving another old result of Erdos and Hajnal, we show that r_3(n,n,n) \geq 2^{n^{c \log n}}. Finally, we make some progress on related hypergraph Ramsey-type problems
    • …
    corecore