2,696 research outputs found

    Messiah: An ITS drive safety application

    Get PDF
    This article describes a novel safety application based on the open source navigation software OsmAnd, which runs on the Android platform. The application offers vehicles with "smart navigation", and maintains a network of the vehicles that use our application. The process of network creation and maintenance is important as our application enables vehicles to communicate with one another to exchange useful information. The main function of the application is to inform vehicles of relevant vehicles approaching, termed as "administrative vehicles" in this article, and include ambulances, police cars and fire brigades. Based on the received information, our application notifies the driver, who can now take navigation decisions based on it. While developing the application, problems were found when attempting to create an Ad-hoc network. A solution to the problem of managing the Ad-hoc network has been proposed and is under development

    Requirement analysis for building practical accident warning systems based on vehicular ad-hoc networks

    Get PDF
    An Accident Warning System (AWS) is a safety application that provides collision avoidance notifications for next generation vehicles whilst Vehicular Ad-hoc Networks (VANETs) provide the communication functionality to exchange these notifi- cations. Despite much previous research, there is little agreement on the requirements for accident warning systems. In order to build a practical warning system, it is important to ascertain the system requirements, information to be exchanged, and protocols needed for communication between vehicles. This paper presents a practical model of an accident warning system by stipulating the requirements in a realistic manner and thoroughly reviewing previous proposals with a view to identify gaps in this area

    Social-aware Forwarding in Opportunistic Wireless Networks: Content Awareness or Obliviousness?

    Full text link
    With the current host-based Internet architecture, networking faces limitations in dynamic scenarios, due mostly to host mobility. The ICN paradigm mitigates such problems by releasing the need to have an end-to-end transport session established during the life time of the data transfer. Moreover, the ICN concept solves the mismatch between the Internet architecture and the way users would like to use it: currently a user needs to know the topological location of the hosts involved in the communication when he/she just wants to get the data, independently of its location. Most of the research efforts aim to come up with a stable ICN architecture in fixed networks, with few examples in ad-hoc and vehicular networks. However, the Internet is becoming more pervasive with powerful personal mobile devices that allow users to form dynamic networks in which content may be exchanged at all times and with low cost. Such pervasive wireless networks suffer with different levels of disruption given user mobility, physical obstacles, lack of cooperation, intermittent connectivity, among others. This paper discusses the combination of content knowledge (e.g., type and interested parties) and social awareness within opportunistic networking as to drive the deployment of ICN solutions in disruptive networking scenarios. With this goal in mind, we go over few examples of social-aware content-based opportunistic networking proposals that consider social awareness to allow content dissemination independently of the level of network disruption. To show how much content knowledge can improve social-based solutions, we illustrate by means of simulation some content-oblivious/oriented proposals in scenarios based on synthetic mobility patterns and real human traces.Comment: 7 pages, 6 figure

    An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks

    Full text link
    [EN] Alerting drivers about incoming emergency vehicles and their routes can greatly improve their travel times in congested cities, while reducing the risk of accidents due to distractions. This paper contributes to this goal by proposing Messiah, an Android application capable of informing regular vehicles about incoming emergency vehicles like ambulances, police cars and fire brigades. This is made possible by creating a network of vehicles capable of directly communicating between them. The user can, therefore, take driving decisions in a timely manner by considering incoming alerts. Using the support of our GRCBox hardware, the application can rely on vehicular ad-hoc network communications in the 5 GHz band, being V2V (vehicle-to-vehicle) communication provided through a combination of Android-based smartphone and our GRCBox device. The application was tested in three different scenarios with different levels of obstruction, showing that it is capable of providing alerts up to 300 meters, and notifying vehicles within less than one secondThis work was partially supported by the "Ministerio de Economia y Competividad, Programa Estatal de Investigacion, Desarollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014", Spain, under Grant Nos. TEC2014-52690-R and BES-2015-075988.Hadiwardoyo, SA.; Patra, S.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2018). An Intelligent Transportation System Application for Smartphones Based on Vehicle Position Advertising and Route Sharing in Vehicular Ad-Hoc Networks. Journal of Computer Science and Technology. 33(2):249-262. https://doi.org/10.1007/s11390-018-1817-4S249262332Papadimitratos P, De La Fortelle A, Evenssen K, Brignolo R, Cosenza S. Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 2009, 47(11): 84-95.Gerla M, Kleinrock L. Vehicular networks and the future of the mobile Internet. Computer Networks, 2011, 55(2): 457-469.Vegni A M, Loscrí V. A survey on vehicular social networks. IEEE Communications Surveys & Tutorials, 2015, 17(4): 2397-2419.Eze E C, Zhang S J, Liu E J. Vehicular ad hoc networks (VANETs): Current state, challenges, potentials and way forward. In Proc. the 20th Int. Conf. Automation and Computing, September 2014, pp.176-181.Qi L. Research on intelligent transportation system technologies and applications. In Proc. Workshop on Power Electronics and Intelligent Transportation System, August 2008, pp.529-531.Gozalvez J. First Google’s Android phone launched [Mobile Radio]. IEEE Vehicular Technology Magazine, 2008, 3(4): 3-69.Haklay M,Weber P. OpenStreetMap: User-generated street maps. IEEE Pervasive Computing, 2008, 7(4): 12-18.Hadiwardoyo S A, Patra S, Calafate C T, Cano J C, Manzoni P. An Android ITS driving safety application based on vehicle-to-vehicle (V2V) communications. In Proc. the 26th Int. Conf. Computer Communication and Networks, July 31-August 3, 2017.Eriksson J, Balakrishnan H, Madden S. Cabernet: Vehicular content delivery using WiFi. In Proc. the 14th ACM Int. Conf. Mobile Computing and Networking, September 2008, pp.199-210.Gerla M, Weng J T, Giordano E, Pau G. Vehicular testbeds-validating models and protocols before large scale deployment. In Proc. Int. Conf. Computing Networking and Communications, January 30-February 2, 2012, pp.665-669.Wahlström J, Skog I, Händel P. Smartphone-based vehicle telematics: A ten-year anniversary. IEEE Trans. Intelligent Transportation Systems, 2017, 18(10): 2802-2825.Whipple J, Arensman W, Boler M S. A public safety application of GPS-enabled smartphones and the Android operating system. In Proc. IEEE Int. Conf. Systems Man and Cybernetics, October 2009, pp.2059-2061.Meseguer J E, Calafate C T, Cano J C, Manzoni P. DrivingStyles: A smartphone application to assess driver behavior. In Proc. IEEE Symp. Computers and Communications, July 2013, pp.000535-000540.You C W, Lane N D, Chen F L, Wang R, Chen Z Y, Bao T J, Montes-De-Oca M, Cheng Y T, Lin M, Torresani L, Campbell A T. CarSafe app: Alerting drowsy and distracted drivers using dual cameras on smartphones. In Proc. the 11th Annual Int. Conf. Mobile Systems Applications and Services, June 2013, pp.461-462.Patra S, Arnanz J H, Calafate C T, Cano J C, Manzoni P. EYES: A novel overtaking assistance system for vehicular networks. In Proc. the 14th Int. Conf. Ad-Hoc Networks and Wireless, June 2015, pp.375-389.Togneri M C, Deriaz M. On-board navigation system for smartphones. In Proc. Int. Conf. Indoor Positioning and Indoor Navigation, October 2013.Dancu A, Franjcic Z, Fjeld M. Smart flashlight: Map navigation using a bike-mounted projector. In Proc. the SIGCHI Conf. Human Factors in Computing Systems, April 2014, pp.3627-3630.Yamabe T, Ikegami S, Ishizaki A, Kitagami S, Kiyohara R. Car navigation user interface based on a smartphone. In Proc. the 7th Int. Conf. Mobile Computing and Ubiquitous Networking, January 2014, pp.85-86.Matsuyama S, Yamabe T, Takahashi N, Kiyohara R. Intelligent user interface of smartphones for on-vehicle information devices. Procedia Computer Science, 2014, 35: 1635-1643.Kovacevic B, Kovacevic M, Maruna T, Papp I. A java application programming interface for in-vehicle infotainment devices. IEEE Trans. Consumer Electronics, 2017, 63(1): 68-76.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Themis: A participatory navigation system for balanced traffic routing. In Proc. IEEE Vehicular Networking Conf., December 2014, pp.159-166.Liu R L, Liu H Z, Kwak D, Xiang Y, Borcea C, Nath B, Iftode L. Balanced traffic routing: Design, implementation, and evaluation. Ad Hoc Networks, 2016, 37: 14-28.Vochin M, Zoican S, Borcoci E. Intelligent system for vehicle navigation assistance. In Proc. World Conf. Information Systems and Technologies, April 2017, pp.142-148.Sha W J, Kwak D, Nath B, Iftode L. Social vehicle navigation: Integrating shared driving experience into vehicle navigation. In Proc. the 14th Workshop on Mobile Computing Systems and Applications, February 2013, Article No. 16.Kwak D, Liu R L, Kim D, Nath B, Iftode L. Seeing is believing: Sharing real-time visual traffic information via vehicular clouds. IEEE Access, 2016, 4: 3617-3631.Djajadi A, Putra R J. Inter-cars safety communication system based on Android smartphone. In Proc. IEEE Conf. Open Systems, October 2014, pp.12-17.Dorairaj P, Mohammed A, Grbic N. Location-Aware services using Android mobile operating platform for safety, emergency and health applications. In Mobile Health, Adibi S (ed.), Springer, 2015, pp.283-298.Dorairaj P, Ramamoorthy S, Ramalingam A K. Emergency based remote collateral tracking system using Google’s Android mobile platform. In Advances in Computer Science Engineering & Applications, Wyld D C, Zizka J, Nagamalai D (eds.), Springer, 2012, pp.391-403.Zulkafi A Z, Basri S, Jung L T, Ahmad R. Android based car alert system. In Proc. the 3rd Int. Conf. Computer and Information Sciences, August 2016, pp.501-506.Tornell S M, Calafate C T, Cano J C, Manzoni P, Fogue M, Martinez F J. Evaluating the feasibility of using smartphones for ITS safety applications. In Proc. the 77th IEEE Vehicular Technology Conf., June 2013.Tornell S M, Patra S, Calafate C T, Cano J C, Manzoni P. GRCBox: Extending smartphone connectivity in vehicular networks. International Journal of Distributed Sensor Networks, 2015, 2015: Article No. 5.Mirkovic J, Dietrich S, Dittrich D, Reiher P. Internet Denial of Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and Security). Prentice Hall PTR, 2004.Chen S, Xu J, Sezer E C, Gauriar P, Iyer R K. Non-control-data attacks are realistic threats. In Proc. the 14th Conf. USENIX Security Symp., July 31-August 5, 2005.Fung C K, Lee M C. A denial-of-service resistant public-key authentication and key establishment protocol. In Proc. the 21st IEEE Int. Performance Computing and Communications Conf., April 2002, pp.171-178.Abadi M, Budiu M, Erlingsson Ú, Ligatti J. Control-flow integrity. In Proc. the 12th ACM Conf. Computer and Communications Security, November 2005, pp.340-353
    • …
    corecore