464 research outputs found

    Deterministic Consistency: A Programming Model for Shared Memory Parallelism

    Full text link
    The difficulty of developing reliable parallel software is generating interest in deterministic environments, where a given program and input can yield only one possible result. Languages or type systems can enforce determinism in new code, and runtime systems can impose synthetic schedules on legacy parallel code. To parallelize existing serial code, however, we would like a programming model that is naturally deterministic without language restrictions or artificial scheduling. We propose "deterministic consistency", a parallel programming model as easy to understand as the "parallel assignment" construct in sequential languages such as Perl and JavaScript, where concurrent threads always read their inputs before writing shared outputs. DC supports common data- and task-parallel synchronization abstractions such as fork/join and barriers, as well as non-hierarchical structures such as producer/consumer pipelines and futures. A preliminary prototype suggests that software-only implementations of DC can run applications written for popular parallel environments such as OpenMP with low (<10%) overhead for some applications.Comment: 7 pages, 3 figure

    How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor

    Get PDF
    Abstract A multiprocess program executing on a modern multiprocessor must issue explicit commands to synchronize memory accesses. A method is proposed for deriving the necessary commands from a correctness proof of the underlying algorithm in a formalism based on temporal relations among operation executions

    An ACL2 Mechanization of an Axiomatic Framework for Weak Memory

    Full text link
    Proving the correctness of programs written for multiple processors is a challenging problem, due in no small part to the weaker memory guarantees afforded by most modern architectures. In particular, the existence of store buffers means that the programmer can no longer assume that writes to different locations become visible to all processors in the same order. However, all practical architectures do provide a collection of weaker guarantees about memory consistency across processors, which enable the programmer to write provably correct programs in spite of a lack of full sequential consistency. In this work, we present a mechanization in the ACL2 theorem prover of an axiomatic weak memory model (introduced by Alglave et al.). In the process, we provide a new proof of an established theorem involving these axioms.Comment: In Proceedings ACL2 2014, arXiv:1406.123

    The 'test model-checking' approach to the verification of formal memory models of multiprocessors

    Get PDF
    technical reportWe offer a solution to the problem of verifying formal memory models of processors by com bining the strengths of model checking and a formal testing procedure for parallel machines We characterize the formal basis for abstracting the tests into test automata and associated memory rule safety properties whose violations pinpoint the ordering rule being violated Our experimen tal results on Verilog models of a commercial split transaction bus demonstrates the ability of our method to e??ectively debug design models during early stages of their developmen

    A simple modern correctness condition for a space-based high-performance multiprocessor

    Get PDF
    A number of U.S. national programs, including space-based detection of ballistic missile launches, envisage putting significant computing power into space. Given sufficient progress in low-power VLSI, multichip-module packaging and liquid-cooling technologies, we will see design of high-performance multiprocessors for individual satellites. In very high speed implementations, performance depends critically on tolerating large latencies in interprocessor communication; without latency tolerance, performance is limited by the vastly differing time scales in processor and data-memory modules, including interconnect times. The modern approach to tolerating remote-communication cost in scalable, shared-memory multiprocessors is to use a multithreaded architecture, and alter the semantics of shared memory slightly, at the price of forcing the programmer either to reason about program correctness in a relaxed consistency model or to agree to program in a constrained style. The literature on multiprocessor correctness conditions has become increasingly complex, and sometimes confusing, which may hinder its practical application. We propose a simple modern correctness condition for a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and a high-performance, shared-memory multiprocessor; the correctness condition is based on a simple interface between the multiprocessor architecture and the parallel programming system
    corecore