
The �Test Model�checking� Approach to the Veri�cation of

Formal Memory Models of Multiprocessors �

Ratan Nalumasu� Rajnish Ghughal� Abdel Mokkedem and Ganesh Gopalakrishnan

UUCS�������

Department of Computer Science� University of Utah�

Salt Lake City� UT ����������

Contact email	 fratan� ganeshg
cs�utah�edu

This technical report combines work reported in CAV �� and SPAA ���

Abstract

We o�er a solution to the problem of verifying formal memory models of processors by com�
bining the strengths of model�checking and a formal testing procedure for parallel machines� We
characterize the formal basis for abstracting the tests into test automata and associated memory
rule safety properties whose violations pinpoint the ordering rule being violated� Our experimen�
tal results on Verilog models of a commercial split transaction bus demonstrates the ability of our
method to e�ectively debug design models during early stages of their development�

Keywords� Formal memorymodels� shared memory multiprocessors� formal testing� model�checking�

� Introduction

The fundamentally important problem �AG��� of verifying whether a given memory system model �or
	a memory system
� provides a formal memory model �or 	memory model
� appears in a number of
guises� CPU designers are interested in knowing whether some of the aggressive execution techniques
such as speculative issue of memory operations violate sequential consistency� IO bus designers are
interested in knowing the exact semantics of shared accesses provided by split IO transactions
�Cor���� even language designers of multi�threaded languages such as Java that support shared
updates �GJS��� are interested in this problem� Formal veri�cation methods are ideally suited for
this problem because� �i� the semantics of memory orderings are too subtle to be fathomed through
informal reasoning alone� �ii� ad hoc testing methods cannot provide assurance that the desired
memory model has been implemented� Unfortunately� despite the central importance of this problem
and the large body of formal methods research in this area� there is still no single formally based
method that the designer of a realistic multiprocessor system can use on hisher detailed design
model to quickly �nd violations in the design� In this paper we describe such a method called test

model�checking�
Test model�checking formally adapts to the realm of model�checking a formally based architectural

testing method called Archtest� Archtest has been successfully used on a number of commercial
multiprocessors �Col� by running a suite of test�programs on them� Archtest is an incomplete

�Supported in part by ARPA Order �B��� under SPAWAR Contract �N��������C����� �Avalanche	
 DARPA
under contract �DABT����C���� �UV	

�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


testing method in that it does not� under all circumstances� detect violations of memory orderings
�Col���� Nevertheless� its tests have been shown to be incisive in practice �Col�� Most importantly�
the formal theory of memory ordering rules developed by Collier in �Col��� forms the basis for
Archtest� which means that whenever a violation is detected by Archtest� there is a formal line
of reasoning leading back to the precise cause�

Being based on Archtest� test model�checking is also incomplete� However� none of the �pre�
sumed� complete alternatives to date have been shown to be practical for verifying large designs� For
example �PD��� involves the use of manually guided mechanical theorem proving� Even approaches
based on conventional model�checking are impossibly di�cult to use in practice� For example� the
assertions pertaining to the sequential consistency of lazy caching �Ger���� a simple memory system�
expressed in various temporal logics �by �Gra��� in �CTL� �CES��� and �LLOR��� in TLA �Lam����
are highly complex� We do not believe that descriptions of this style will scale up� On the other
hand� the test model�checking method has not only been able to comfortably handle the memory
system de�ned by the symmetric multiprocessor �SMP� bus called Runway �BCS��� GGH���� used
by Hewlett�Packard in their high�end machines� but also it discovered many subtle bugs in our early
Utah Runway Model �URM� that we created� Our URM includes a number of details such as split
transactions� out of order transaction completions� and even an element of speculative execution�
The errors we made in capturing these details could well have been made in an actual industrial
context� We believe that with growing system complexity� the role of debugging methods that are
e�ective and are formally based will only grow in signi�cance� regardless of whether the methods are
complete or not�

Test model�checking has a number of other desirable features� It involves model�checking a �xed

set of safety properties for each formal memory model� that are very nearly independent of the actual
memory system model being tested� This �xed nature greatly facilitates the use of test model�
checking within the design cycle where debugging is most e�ective� design changes are frequent�
and time�consuming alterations to the properties being veri�ed following design changes would be
frowned upon �test model�checking will not need such alterations�� Also� the formal adaptation of the
tests of Archtest made in test model�checking can be veri�ed once and for all� thanks to the �xed
set of tests used in test model�checking �we describe and argue the correctness of these abstractions
later�� Finally� in test model�checking� a memory model is viewed as a collection of simpler ordering
rules� and for each constituent ordering rule� a speci�c property is tested on the memory system� We
found that this signi�cantly helps compartmentalize errors� as opposed to producing non�intuitive
error traces that could result during conventional model�checking� which can be very di�cult to
understand for non�trivial memory systems�

Test model�checking is also a more e�ective debugger for memory models than Archtest in a
formal sense� The tests of Archtest are straight�line programs of length k� one per node� Such
programs execute on various nodes of the multiprocessor concurrently� The recommendation accom�
panying Archtest is that users run the tests for as large a k that is feasible� because then the
chances of being scheduled according to di�erent interleavings �by the underlying operating system�
memory controller arbiter� etc�� increase� In adapting the tests of Archtest� test model�checking
gives the e�ect of choosing k � �� Thus� we cover all possible schedules� The subtle bugs detected
by test model�checking on realistic examples that are reported in Section � corroborate our intuition
that test model�checking is indeed an e�ective debugging tool for memory models�

To reiterate� our speci�c contributions in this paper are� �i� the adaptation of a formal testing
method for memory models to model�checking� that can be applied during the design of modern mi�
croprocessors whose memory systems are very complex� �ii� a formal characterization �accompanied
by proofs� of how the tests of the testing method are abstracted and turned into a �xed set of safety
properties that are then model�checked� and �iii� experimental results on three examples using the
VIS model�checker� the last example being much larger than any previously reported in this context�

�



�C�	 ��a� d	 � address� datum �i � index � init �� AG�enable�readi�a� d		 �� availi�a� d		

�C�	 ��a� d	� �a� d�	 � address � datum� d �� d� �i � index �
init �� AG��availi�a� d	 �EF�enable�readi�a� d				 �� A��availi�a� d	W AG��availi�a� d		�	

�C�	 ��a� d	 � address� datum �i� k � index � init �� AG�after�writek�a� d		 �� AF�availi�a� d		�

�S�	 ��a� d	 � address� datum �i � index �
init �� AG�after�writei�a� d		 �� A��enabled�readi�a� d		W availi�a� d		�


�S�	 ��a� d	� �a� d�	 � address � datum� d �� d� �i� k � index �

init �� A���availi�a� d	 W �availi�a
�� d�	 � �availi�a� d		� �� ��availk�a� d	 W availk �a

�� d�	�	

Figure �� Part of the speci�cation of Sequential Consistency� from �Gra���

Related Work

In �Gra���� abstract interpretation �CC��� is employed to reduce in�nite�system veri�cation to ��
nite �CTL� model�checking� They apply this technique to verify the sequential consistency of lazy
caching with unbounded queues� They recognize that to get an exact characterization of sequential
consistency involving only the observable event names� one needs full second order logic �Gra���� To
be able to express sequential consistency in �CTL�� they give a stronger characterization of sequen�
tial consistency� For this stronger characterization� the expression of sequential consistency is very
complex� as shown in �gure � �this �gure shows only part of their sequential consistency expression��
A technique very similar to test model�checking was proposed in �McM��� under the section heading
�Sequential Consistency�� To give a historic perspective� our test model�checking idea originated in
our attempt to answer the following two questions� �i� which memory ordering rule�s� is �McM���
really verifying� �ii� is this a general technique� i�e� can other memory ordering rules be veri�ed
in the same fashion� We still have not found a satisfactory answer to the �rst question because the
test in �McM��� uses only one location which then couldn�t make it a test for sequential consistency�
it could plausibly be a test for coherence�which again does not correspond to what Collier formally
proves in �Col���� One of our contributions is that we answer these questions by elaborating on the
theoretical as well as practical aspects of test model�checking�

In �PD���� the authors use a method called aggregation on a distributed shared memory coherence
protocol used in an experimental multiprocessor� to arrive at a simpli�ed model of system behavior�
Their technique involves manual theorem proving� The work in �HMTLB��� as well as �DPN���
are aimed at verifying that synchronization routines work correctly under various memory models�
where the memory models themselves are described using �nite�state operational models� They do
not address the problem of establishing the memory models provided by detailed memory subsystem
designs� which is our contribution� In �GK��� GK���� the authors analyze the problem of deciding
whether a given set of traces are sequentially consistent� Our approach di�ers in two respects� First�
we are interested in proving that detailed models of memory systems are correct� while they obtain
traces �presumably from actual machines� and analyze them for sequential consistency� Second� our
method is more useful for CPU designers as it can give feedback during early phases of the design
pinpointing which ordering rules are violated �if any��

� Overview of Archtest

Archtest is based on the theory presented in �Col��� that formally de�nes and characterizes archi�
tectural rules obeyed by memory subsystems of multiprocessors� Although these rules are elemental�
in realistic memory systems the rules manifest in compound form� Obeying a compound rule is

�



InitiallyA � �
ProcessP� ProcessP�

L� � A �� �� X��	 �� A�
L� � A �� 
� X�
	 �� A�
L� � A �� �� X��	 �� A�

� � � � � �

Lk � A �� k X�k	 �� A�

Figure �� TestROWO� Archtest test for A�CMP�RO�WO�

tantamount to obeying all the constituent elemental rules� violating a compound rule is tantamount
to violating any of the constituent elemental rules� Each such elemental rule describes a constraint
on the order in which various read and write events can occur� For read operations there is one
read event per each read operations� However� for write operations� there is one write event per pro�
cess per write operation which captures the e�ect of a write operation becoming visible to di�erent
processors at di�erent times� Some of the elemental ordering rules are�

Rule of Computation �CMP�� This is a basic rule de�ning how the terminal value of each
operand is calculated from the initial values of the operand� Though most of the literature
on memory architectures implicitly assumes this rule� we will often keep it explicit in our
discussions�

Rule of Read Order �RO�� For any pair of read events a and b in the same process� if a comes
before b in program order then a happens before b�

Rule of Write Order �WO�� For any pair of write events a and b in the same process� if a comes
before b in program order then a happens before b�

Rule of Program Order �PO�� For any pair of events a and b in the same process� if a comes
before b in program order than a happens before b� Event a or b can be either read or write
event� So� both RO and PO are special cases of PO� This is one of the strongest ordering rules
and is essential for sequential consistency�

Rule of Write Atomicity �WA�� A write operation becomes visible to all processes instanta�
neously� More precisely� one conceptual store Si is associated with each processor node Pi�
Then� for each write operation W � one write event Wi is de�ned per store Si� Then� WA

guarantees that there is no i� j and no event e such that e is before Wi and is after Wj �

In order to check memory subsystems for a compound rule� Archtest provides a test for each
compound rule along with a set of conditions to be checked for� If any of the conditions is violated
then a violation to obey the compound rule is detected�

TestROWO� Archtest test for A�CMP�RO�WO�

The test of Archtest for the compound rule consisting of the elemental rules CMP � RO� and
WO� denoted A�CMP�RO�WO�� is shown in Figure �� Process P� executes a sequence of write
instructions �intended to check for WO�� and P� executes a sequence of read instruction �intended
to check for RO�� If the memory system correctly realizes A�CMP�RO�WO�� then Condition �
produces a positive outcome�

Condition � �Monotonic� The sequence of X values is monotonically increasing� i�e��
�i� j � � � i � j � k � X �i� � X �j� or equivalently �i � � � i � k � � � X �i� � X �i� ���

If Monotonic condition is violated then at least one of the CMP � RO and WO rules is violated�

�



InitiallyA � B � �
P� P� P� P�

L� � A �� �� LA�
� U ��� �� A� LB�

� X��� �� B� L� � B �� ��
L� � A �� �� LB�

� V ��� �� B� LA�
� Y ��� �� A� L� � B �� ��

� � � LA�
� U ��� �� A� LB�

� X��� �� B� � � �

Lk � A �� k� LB�
� V ��� �� B� LA�

� Y ��� �� A� Lk � B �� k�
� � � � � �

LAk � U �k� �� A� LBk � X�k� �� B�
LBk � V �k� �� B� LAk � Y �k� �� A�

Figure �� TestWA� Archtest test for A�CMP�RO�WO�WA�

InitiallyA � B � �

L�� � A �� �� L�� � B �� ��

L�� � Y ��� �� B� L�� � X��� �� A�

L�� � A �� �� L�� � B �� ��

L�� � Y ��� �� B� L�� � X��� �� A�

� � � � � �

Lk� � A �� k� Lk� � B �� k�

Lk� � Y �k� �� B� Lk� � X�k� �� A�

Figure �� TestPO� Archtest test for A�CMP� PO�

TestWA� Archtest test for A�CMP�RO�WO�WA�

TestWA� shown in Figure � tests for A�CMP�RO�WO�WA�� with the conditions checked being�
�i� the Monotonic condition �suitably modi�ed for arrays U� V�X� Y �� and �ii� Atomic� which is�

Condition � �Atomic� �i� j � � � i� j � k � V �i� � X �j�� Y �j� � U �i��

The Atomic condition watches for the possibility that a write operation from P� and a write oper�
ation from P� appear to have �nished in di�erent orders to P� and P��

TestPO� Archtest test for A�CMP� PO�

TestPO� shown in Figure � tests for A�CMP� PO�� with the conditions checked being� �i� the
Monotonic condition �suitably modi�ed for arrays X� Y �� and �ii� PO Cross� which is�

Condition � �PO Cross� �i� j � � � i� j � k � �X �i�� j � Y �j� � i� � �X �i� � j � Y �j� � i��

All Archtest test programs such as TestWA� TestPO etc� are meant to be run on real machines
and there can�t be any real guarantees that the particular interleavings that reveal violations �such
as for memory ordering rule WA watched by condition Atomic in TestWA� will indeed happen�
To allow for as many interleavings as possible� Archtest recommends that its tests be run for
large values of k� With test model�checking� we e�ectively run the tests for k � �� Test model�
checking achieves this by transforming each Archtest test into a test automata which exploits
non�determinism to e�ectively check for k � �� Also� the model�checking framework guarantees
that we explore all possible interleavings than a particular interleaving�

�



� Test model�checking

Test model�checking converts the tests of Archtest to corresponding memory rule test automata

�	test automata
� that drive model of the memory system being examined� In our experiments� we
use the Verilog language supported by VIS �Ver� to capture the memory system models as well as
the test automata� The Conditions corresponding to each compound memory rule being tested
are turned into corresponding memory rule safety properties that are checked by the VIS tool� The
reader may take a peek at Section ��� to know which compound rules de�ne sequential consistency
�Lam���� In the remainder of this section� we explain the assumptions under which we formally
derive test automata as well as memory rule safety properties� followed by a description of how test
automata as well as memory rule safety properties are derived for speci�c cases�

��� Assumptions about memory systems realized in hardware

Memory systems realized in hardware as well as �nite�state models thereof are assumed to be data

independent� i�e�� the control logic of the system moves data around� and does not base its control�
point settings on the data values themselves� We also assume that the system is address semi�

dependent �HB���� i�e� the control logic can at most compare two addresses for equality or inequality
and base its actions on the outcome of this test� These assumptions are standard� and form the basis
for de�ning test automata as well as memory rule safety properties�

��� Creation of test automata

As illustrated in Figure �� we obtain test automata for various memory models by �nitely abstracting
the data used in test of Archtest� using non�determinism to justify the abstraction� For example�
we abstract the speci�c activities of process P� of Figure � into that of �non�deterministically� writing
all possible ascending values over f���g� as shown in P� of Figure �� Also� since we cannot store in�nite
arrays in creating process P�� we turn P� and the corresponding memory rule safety property into an
automaton that checks that the array values read are monotonically increasing� This� in turn� can be
performed using just two consecutive array values x� and x� that are nondeterministically recorded
by P�� Hence� the memory rule safety property we model�check for is� P� in �nal state � x� � x��

We now provide a justi�cation that these abstractions preserve the memory rule safety properties�
i�e�� for the same memory system model� i�e� a violation of a condition occurs in a test of Archtest
for k �� i� the same violation will occur in model�checking the corresponding memory rule safety
property when test automata are used to drive the memory system model� To keep the presentation
simple� we formally argue how the test automata �nds every violation present in the test ofArchtest
with k � �� the opposite direction of i�� i�e� how a test of Archtest with k � � �nds violations
found by the test automata is easy to see because the test automata just appears as a 	stuttering

of the test of Archtest� For example� the actions of P� in Figure � can be viewed as repeating the
initialization and then repeating the instruction at label L� of P� of Figure �� Our proof sketches
are illustrated on the two tests presented in Section � and another test described in this section�

��� Abstracting TestROWO

We show that if the test program in TestROWO shows that Monotonic is violated� then the test
automaton also reveals the error� Since Monotonic is violated�

�i � � � i � k � X �i�� X �i� ��
	� �i� � � � � i � k � �X �i�� �� � �X �i� �� � ��
	� �i� � � � � i � k � �X �i�� �� � 
�X �i� �� � ��

�



A:=0

P1

A:=1 rd(A);

A:=1

S1

S0

P2

rd(A);

x1:=rd(A);

x2:=rd(A);

S0

S1

S2

Figure �� TestROWO test automata � Test automata for A�CMP�RO�WO�

InitiallyA � �

ProcessP� ProcessP�

L� � A �� �� X��� �� �A � �	�

L� � A �� �� X��� �� �A � �	�

L� � A �� �� X��� �� �A � �	�

� � � � � �

Lk � A �� k X�k� �� �A � �	�

�a�

InitiallyA � �� � �	

ProcessP� ProcessP�

L� � A �� �� � �	� X��� �� A�

L� � A �� �� � �	� X��� �� A�

L� � A �� �� � �	� X��� �� A�

� � � � � �

Lk � A �� �k � �	 X�k� �� A�

�b�

InitiallyA � �
ProcessP� ProcessP�

L� � A �� �� X��� �� A�
� � � � � �

L� � A �� � X��� �� A

L��� � A �� � X��� �� �� A

L��� � A �� � X��� �� �� A

� � � � � �

Lk � A �� � X�k� �� A�

�c�

Figure �� Abstraction of TestROWO

Since� the last formula compares X �i� and X �i� �� only to �� we can rewrite the test program as
shown in Figure ��a� assuming data independence� and rewrite the last formulae as

�i � � � i � k � X �i� � � �X �i� �� � �

Note that in Figure ��a� all reads of A occur in the expression A � �� Hence� we can replace every
A �� v with A �� �v � �� and X �i� �� �A � �� with X �i� �� A without a�ecting Monotonic again�
if data independence holds� to obtain Figure ��b�� Figure ��c� is obtained by simplifying Figure ��b��
each v � � evaluates to � for v � � and � otherwise� This �gure is generalized to obtain the test
automaton in Figure ��b�� Intuitively the automaton �nds the violation as follows� P� remains
in the initial state for � iterations �executing A���� and then switches to second state �executing
A����� Also� P� remains in the initial state for i � � iterations and then switches to second state
recording x� and then x� �dashed edges show when these variables are recorded�� Thus the test
automaton�s execution is identical to that in Figure ��c� except that the test automaton gives the
e�ect of taking k to�� Also notice that x� and x� get the values corresponding to X �i� and X �i����
Also� corresponding to X �i� � � � X �i� �� � �� we have x� � � � x� � �� Hence the memory rule
safety property corresponding to condition Monotonic is found violated by the test automaton
exactly when TestROWO for k �� detects a violation� Note that the nondeterminism employed in
constructing test automata enables P� and P� to guess the right value of � and i corresponding to
the violation�

��� Abstracting TestWA

Test automaton for TestWA is shown in Figure �� In this automaton P� and P� write all possible
ascending sequences of f�� �g in A and B respectively� Each processor independently and non�

deterministically decides to switch from writing � to writing �� Modi�cations similar to those in
TestROWO are applied to P� and P� also� to �nondeterministically� decide which U �i��V �i� pair and

�



A:=0
rd(A);
rd(B);

u:=rd(A);
v:=rd(B);

B:=0

B:=1

rd(B);
rd(A);

P1

x:=rd(B);
y:=rd(A);

P2 P4P3

A:=1

A:=1 rd(A);
rd(B);

B:=1rd(B);
rd(A);

s0

s1

s0 s0 s0

s1 s1 s1

Figure �� TestWA test automata � Test Automata for A�CMP�RO�WO�WA�

X �j��Y �j� pair are recorded in u� v and x� y� The memory rule safety property corresponding to con�
dition Atomic is� P� and P� in their �nal states � v � x � y � u� As was explained in Section ���
for TestROWO� our abstraction avoids having to remember the entire extent of the arrays U � V �
X � and Y � �In TestWA� one has to check for Monotonic also� this is done similarly to that in
TestROWO��

To show that the abstraction preservesAtomic� letAtomic be violated in TestWA ofArchtest�
Hence

�i� j � U �i� � Y �j� �X �j� � V �i�
	� �� i� j� �� � � Y �j� � � � U �i� � � � V �i� � � �X �j�� �

Similar to TestROWO� assuming data�independence� we have an execution of the test automaton
�Figure �� in which P�� P�� P�� P� iterates for �� i � �� j � �� � times �respectively� in their initial
states before switching to their �nal states� This test automaton execution detects violations of
Atomic exactly when TestWA for k � � would� A violation of Atomic happens exactly when
u � � � v � � � x � �� y � ��

��� Abstracting TestPO

We now discuss a test for the elemental ordering rule Program Order �PO�� which is somewhat more
complex than the previous two tests� PO requires that two events of the same process occur in the
order speci�ed by the program� Archtest provides the test for the compound rule A�CMP� PO�
shown in Figure �� Violation of A�CMP� PO� is detected if Condition � fails� We obtain the test
automaton and the memory rule safety property for TestPO of Figure � as illustrated in Figure ��
P� executes a pair of instructions� write to A followed by read from B� in�nitely often� The value
written to A is � for some iterations and is nondeterministically changed to �� P� runs similarly� P�
nondeterministically selects a pair of write followed by read instruction� It assigns the value written
to A to j and the value read from B to y� Similarly� processor � updates i and x� The dashed edges
in Figure � show when x� y� i� j are updated� The memory rule safety property corresponding to
condition PO Cross is� P� and P� in their �nal states � �x � j � y � i� � �x � j � y � i��

To show that this abstraction preserves PO Cross� let PO Cross be violated in Archtest
test TestPO�

�i� j � �Xi � j � Yj � i� � �Xi � j � Yj � i�
	� �� i� j� �� � � ��Xi � �� � �j � �� � �Yj � �� � �i � ���

���Xi � �� � �j � �� � �Yj � �� � �i � ���

Similar to the case of TestWA� if �i� j � X �i� � j � Y �j� � i� then we can get a case in the test
automata where x � � � j � � � y � � � i � �� Similarly� if �i� j � X �i� � � � Y �j� � i� then we can

�



P1

A:=0;

rd(B)

A:=1;

rd(B)

P2

A:=0;

rd(B)

A:=1;

rd(B)

A:=0;

y:=rd(B);

j:=0

A:=1;

y:=rd(B);

j:=1

A:=1;

y:=rd(B);

j:=1

A:=1;

rd(B)

A:=1;

rd(B)

B:=0;

rd(A)

B:=1;

rd(A)

B:=0;

rd(A)

B:=1;

rd(A)

B:=0;

x:=rd(A);

i:=0

B:=1;

x:=rd(A);

i:=1

B:=1;

x:=rd(A);

i:=1

B:=1;

rd(A)

B:=1;

rd(A)

s0

s1 s2

s3

s0

s1 s2

s3

Figure �� TestPO test automata� Test automata for A�CMP� PO�

Event Action or condition

Ri�d
 a	 if Mem�a� � d
Wi�d
 a	 Mem�a� �� d

Figure �� Serial memory transaction rules

get a case in the test automata where x � �� j � � � y � � � i � �� Hence� the memory rule safety
property corresponding to PO Cross will be violated in test automata if and only if PO Cross
will be violated in Archtest test TestPO for k ���

� Case Studies

To demonstrate the e�ectiveness of our approach� we veri�ed three di�erent memory systems� namely
serial memory� lazy caching� and a simpli�ed version of the Runway bus� all using VIS �Ver�� These
three memory systems are described in some detail below� along with some of the subtle bugs that
we could detect using test model�checking� Details of all our experiments can be obtained from the
Web �Mok� or by contacting the authors�

��� How do we check for sequential consistency�

A sequentially consistent memory system �Lam��� requires that there be a single self�consistent trace
t of memory operations that when projected onto the memory operations of each individual processor
Pi �Ri�a� d� andWi�a� d� for processor i� is according to program order for Pi� As suggested in �Col����
we can show that sequential consistency is A�CMP� PO�WA��

As �Col��� does not list a single compound test to check for A�CMP� PO�WA�� we can use
the following two tests that are available� TestWA which tests for A�CMP�RO�WO�WA� and
TestPO which tests for A�CMP� PO�� This combination is exactly equivalent to testing sequential
consistency because PO implies RO and WO �as formally de�ned in �Col����� For every memory
system we consider� these two tests are model�checked separately and summarized in Figure ���

�



Event Allowed if Action

Ri�d� a	 Ci�a	 � d �Outi � fg
� no ��ed entries in Ini

Wi�d� a	 Outi �� append�Outi� �d� a		

MWi�d�a	 head�Outi	 � �d� a	 Mem�a� �� d�
Outi �� tail�Outi	�
��k �� i �� Ink �� append�Ink� �d�a			�
Ini �� append�Ini� �d� a� �		

MRi�d�a	 Mem �a� � d Ini �� append�Ini� �d� a		

CUi�d� a	 head�Ini	 is either
�d� a	 or �d� a� �	 Ini �� tail�Ini	� Ci �� update�Ci� d� a	

CIi Ci �� restrict�Ci	

Initially� �a Mem�a� � �
� �i � � � � � n Ci �Mem � Ini � fg �Outi � fg

Fairness� no action other than CIi can be always enabled but never taken

W�write MW�memory write CU�cache update
R�read MR�memory read CI�cache invalidate

Figure ��� Gerth�s version of the lazy caching algorithm� from Figure � of �Ger����

��� Serial memory and Lazy caching

The serial memory protocol for n processors and a memory is shown in Figure �� Serial memories
are often used to de�ne SC operationally� The lazy caching protocol �Ger���� shown in Figure ���
also implements sequential consistency� and is geared towards a bus based architecture� The memory
interface still consists of reads and writes� however� caches Ci are interposed between the shared
memory Mem and the processors Pi� Each cache Ci contains a part of the memory Mem and has
two queues associated with it� an out�queue Outi in which Pi write requests are bu�ered and an
in�queue INi in which the pending cache updates are stored� These queues model the asynchronous
behavior of write events in a sequentially consistent memory� A write event Wi�a� d� doesn�t have
an immediate e�ect� Instead� a request �d� a� is placed in Outi� When the write request is taken out
of the queue� by an internal memory�write event MWi�a� d�� the memory is updated and a cache
update request �d� a� is placed in every in�queue� This cache update is eventually removed by an
internal cache update event CUj�a� d� as a result of which the cache Cj gets updated� Cache evictions
are modeled by internal caches invalidate events� CIi can arbitrarily remove locations from cache
Ci� Caches are �lled both as the delayed result of write events and through internal memory�read
events� MR�a� d�� The latter events model the e�ect of a cache�miss� in that case the read event
stalls until the location is copied from the memory� A read event Ri�a� d�� predictably� stalls until a
copy of location a is present in Ci but also until the copy contains a correct value in the following
sense� SC demands that a processor Pi reads the value at a location a that was recently written
by Pi unless some other processor updated a in the meantime� Hence� a read event Ri�a� d� cannot
occur unless all pending writes in Outi are processed as well as the cache updates requests from Ini

that corresponds to writes of Pi� For this reason� such cache updates requests are marked �with a
��� Figure �� shows the structure of the Verilog model we created for the memory model veri�cation
we shall discuss in section ����

��



a
1

a
2

a
1

a
2

a
1

a
2

.
.

.
.

.
.
.

. .

. . .

MR1

MR2

a

d

a

d

a

d

MW1

MW2

CU1

CU2

W1

W2

a

a

a

a

a

d

d

d

d

d

P
1

P
2

In
1

In
2

O
u
t1

O
u
t2

M
e
m

out1_full

out2_full

out1_empty

out2_empty

in1-*-ed

in2-*-ed

in2_full

in1_full

F
igu
re
���
V
erilo
g
a
rch
itectu
re
o
f
tw
o
p
ro
cesso
rs
L
a
zy
C
a
ch
in
g
p
a
ra
llel
m
a
ch
in
e

�
��

R
u
n
w
a
y
�P
A
�
	
	
	
M
e
m
o
ry
S
y
ste
m

F
ig
u
re
�����
sh
ow
s
a
sim
p
li�
ed
v
iew
of
�
H
P
P
A
����
C
P
U
s
an
d
a
m
em
o
ry
con
troller
�H
O
S
T
�

in
terco
n
n
ected
b
y
H
P
R
u
n
w
ay
B
u
s�B
C
S
���
C
am
���
K
an
���
��
W
e
w
ill
d
escrib
e
th
e
R
u
n
w
ay
�P
A
��
��

sy
stem
in
som
e
d
etail
to
facilitate
a
clear
d
escrip
tion
of
som
e
o
f
th
e
su
b
tle
b
u
gs
in
U
R
M
u
n
earth
ed

b
y
th
e
test
m
o
d
el�ch
eck
in
g
tech
n
iq
u
e�
R
u
n
w
ay
is
a
sy
n
ch
ro
n
ou
s�
sp
lit�tra
n
saction
b
u
s
w
h
ich
is

resp
o
n
sib
le
for
p
rov
id
in
g
a
coh
eren
t
v
iew
of
sh
ared
m
em
ory
to
th
e
p
ro
cesso
rs
�clien
ts�
w
h
ile
still

a
llow
in
g
th
e
clien
ts
to
m
ain
tain
p
rivate
cop
ies
of
m
em
ory
lin
es
in
th
eir
ca
ch
es�
C
ach
e
C
o
h
eren
cy
is

m
a
in
ta
in
ed
b
y
a
sn
o
op
y
coh
eren
cy
p
roto
col
d
escrib
ed
b
elow
�

�
��
��

S
n
o
o
p
y
C
o
h
e
re
n
c
y
P
ro
to
c
o
l

E
a
ch
cach
e
lin
e
in
a
clien
t
can
b
e
in
on
e
of
th
e
fou
r
states
��
in
valid
�
sh
a
red
�
p
rivate�clean
or
d
irty�

If
a
clien
t
su
�
ers
a
read
m
iss
in
cach
e�
it
gen
erates
a
rsp
�read
sh
ared
o
r
p
rivate�
tran
saction
�
if

it
su
�
ers
a
w
rite
m
iss�
it
gen
erates
a
rp
�read
p
rivate�
tran
sa
ctio
n
�
T
h
e
tra
n
saction
is
b
roa
d
cast

o
n
th
e
R
u
n
w
ay
w
h
en
it
w
in
s
th
e
b
u
st
m
astersh
ip
�
A
ll
clien
ts
sn
o
op
th
e
tran
sa
ctio
n
in
to
th
eir
C
C
C

�ca
ch
e
coh
eren
cy
ch
eck
�
q
u
eu
es
an
d
p
ro
cess
th
e
en
tries
in
C
C
C
q
u
eu
e
a
t
th
eir
ow
n
sp
eed
�
W
h
en
a

tra
n
sa
ction
gets
to
th
e
h
ead
of
C
C
C
of
clien
t
C
i �
it
sen
d
s
a
cc
r
�ca
ch
e
coh
eren
cy
resp
on
se�
to
H
O
S
T

a
cco
rd
in
g
to
F
igu
re
���
an
d
also
ch
an
ges
its
state
to
re�
ect
th
e
tra
n
saction
�
fo
r
ex
a
m
p
le�
if
th
e

tra
n
sa
ction
is
rp
gen
erated
b
y
C
i �
it
w
ou
ld
assu
m
e
	in
valid
 p
riva
te�clea
n


tran
sien
t
sta
te�
If
a
clien
t

g
en
era
tes
a
co
h
co
p
y
o
u
t
as
cc
r�
it
w
ou
ld
later
issu
e
a
c�
cw
�cach
e
to
ca
ch
e
w
rite�
to
su
p
p
ly
th
e
d
ata�

H
O
S
T
en
ters
th
e
cc
r�s
in
to
its
C
C
R
q
u
eu
e�
an
d
after
all
clien
ts
h
ave
resp
o
n
d
ed
to
a
tran
sa
ction
�
th
e

H
O
S
T
d
eterm
in
es
if
th
e
d
ata
w
ou
ld
b
e
su
p
p
lied
b
y
an
oth
er
clien
t�
If
n
o
clien
t
is
g
oin
g
to
su
p
p
ly

th
e
d
a
ta�
th
e
H
O
S
T
w
ou
ld
gen
erate
a
h
d
r
�h
ost
d
ata
retu
rn
�
tran
sa
ctio
n
o
n
th
e
R
u
n
w
ay
to
su
p
p
ly

th
e
d
a
ta
to
th
e
req
u
ester�
It
w
ou
ld
also
d
rive
C
lien
t
op
lin
es
to
in
d
icate
w
h
eth
er
th
e
d
ata
m
u
st
b
e

sh
a
red
�i�e��
at
least
on
e
of
th
e
ccrs
is
co
h
sh
a
red
��
W
h
en
a
clien
t
n
o
tices
a
d
a
ta
retu
rn
�a
h
d
r
or

c�
cw
�
targeted
tow
ard
s
it�
it
en
ters
th
e
in
form
ation
in
to
d
ata
retu
rn
�D
R
�
q
u
eu
e�
N
o
te
th
at
a
clien
t

m
ig
h
t
receive
a
d
ata
retu
rn
b
efore
it
gen
erates
th
e
corresp
on
d
in
g
ccr�
In
th
is
case�
th
e
clien
t
keep
s

�W
e
h
av
e
p
u
rp
osefu
lly
avoid
ed
arb
itration
lin
es
an
d
oth
er
d
etails
for
th
e
sake
of
clarity
T
h
e
actu
al
R
u
n
w
ay
allow
s

u
p
to
fou
r
C
P
U
s
an
d
on
e
I�O
p
ro
cessor
an
d
also
m
an
y
m
ore
tran
saction
s
in
clu
d
in
g
coh
eren
t

n
on
�coh
eren
t
an
d
I�O

tran
saction
s
th
an
w
e
d
escrib
e
h
ere
W
e
p
rov
id
e
a
sim
p
li�
ed
v
iew
of
its
op
eration
w
h
ich
cap
tu
res
th
e
essen
tial
com
p
lex
ity

of
its
b
eh
av
ior

�T
h
ere
are
also
tran
sien
t
states
th
at
th
e
cach
e
lin
e
m
ay
assu
m
e
w
h
en
it
is
ch
an
gin
g
from
on
e
of
th
ese
clean
states

to
an
oth
er

�
�



(mem ctrl and 

main mem)
Runway

Client_op

CCR2 CCR1

Cache Coherency Responses

HOST

(PA 8000)
Client 1

(PA 8000)
Client 2

CCC1 DR1 CCC2 DR2

Figure ��� Simpli�ed View of Runway�PA���� Memory System

Transaction Generated by State ccr

� self � coh ok

� other invalid coh ok

rsp other private�clean coh shared

rsp other shared coh shared

rp other shared coh ok

rp other private�clean coh ok

� other dirty coh copyout

Figure ��� ccr generated when a transaction gets to the head of CCC queue

the data in data return queue until the ccr is sent out�

����� Delay in ccr generation

If a client has a c�cw transaction for a line yet to go on Runway� then it delays generating any more
ccr�s for that line� To see why this is necessary� consider the following� Suppose a client C� has a
dirty line� Client C� requests this line by issuing rsp transaction on bus� C� will generate coh copyout

in response to C��s request� invalidate its own line� and create a c�cw transaction for C�� Note that
the most recent data for this line is with C� and not HOST� Now� a client C� requests the same
line by issuing rsp� C� and C� generates respectively coh shared and coh ok ccrs in response to C��s
request� C��s ccr will be coh ok in response to C��s request� If C� sends coh ok to HOST before its
c�cw goes on the bus then HOST can provide a stale data to C� by its hdr transaction� To avoid
this� C� delays generating ccr until the c�cw goes on the bus�

����� Arbitration

Runway follows a complex pipelined arbitration algorithm to determine the bus master� Here� we
only present an approximation of the algorithm� Every bus user �client or HOST� must become the
bus master before it can drive the bus� Bus mastership at cycle N�� is acquired by initiating the
arbitration in cycle N by driving the request through dedicated arbitration lines �not shown in the
�gure�� During cycle N��� every potential bus user evaluates the others� drives and� in conjunction
with round�robin pointers for arbitration priorities� determines who wins bus�mastership for cycle
N��� Those who do not win bus mastership keep�o� the bus� Bus arbitration proceeds in a pipelined
manner concurrently with transaction processing�

��



����� PA�			 Runway interface

In addition to the Runway speci�cs described above� PA���� Runway interface �PARI� also adheres
to the following constraints in order to ensure Program Order and Write Atomicity� PARI allows a
client to initiate Runway transactions for various cache misses� it is possible that these transactions
complete out of order� However� all instructions strictly complete in program order� PARI guarantees
that the client will stall the coherency response for any cache line which it has an outstanding miss
for �i�e�� it has initiated a Runway transaction� has assumed the ownership but is still waiting for the
data�� The coherency response will be generated only after the client has received the data and has
used it to make forward progress at least one instruction� PARI guarantees that if a client receives
data for its Runway transaction before it assumed the ownership then it will not modify or use the
data until it processes its own transaction �and thus assumes ownership�� PARI guarantees that if a
client has c�cw transaction then it gets the highest priority to go to the Runway�

��� The Runway�PA�			 in VIS Verilog

We constructed a Verilog model of the Runway�PA���� system� Utah Runway Model �URM�� and
the two abstractions of TestPO and TestWA to verify that its memory model is sequential consistent�
The complexity of the system stems from a number of sources� �a� multiple outstanding transactions
for each processor� �b� out�of�order completion of the Runway transactions� but in�order comple�
tion of instructions� �c� eager assumption of ownership without receiving the corresponding data�
�d� 	equivalent
 states introduced by decoupled execution due to coherency queues� �e� speculative
execution features of the processor to ensure performance in spite of in�order completion of the in�
structions� �f� an involved distributed pipelined arbitration algorithm� We did not try to model each
of these features in their full glory� but we did include a modicum of these aggressive features into
our URM� which in fact occupies more than ����� lines of VIS Verilog code �see �Mok��� For instance
all essential features of �a�� �b�� �c�� and �e� are included� �f� is abstracted by using nondeterminism�
�d� is abstracted as explained below�

Abstraction of Queues Additional abstraction e�ort was necessary to make our URM digestible
by VIS� This essentially consists in getting rid of the CCC� CCR� and DR queues which are the main
cause of state explosion� but retain HDR queue in the HOST and C�CW queues in the HOST and
clients�

In Runway� most of the con�icts are detected and resolved by the HOST� There is one situation
where a client detects con�ict� the client has a pending c�cw transaction� The client resolves this
by delaying its coherency response� the net result of this delay is that the HOST would not generate
hdr transactions until the c�cw goes on the Runway� Since we abstracted away the CCR queues�
in our URM the clients send the coherency response for a coherent transaction immediately after
its occurrence on the bus� Hence� in our URM the clients can�t resolves con�icts by delaying the
coherency response� instead the HOST computes if the coherency response needed to be delayed� and
if so� delays the hdrs appropriately� This is achieved as follows� A counter is associated with each
HDR queue entry� If the counter is non�zero� then it is waiting for some c�cw transactions for that
line from the clients� hence the hdr needs to be delayed� After all the pending c�cw transactions for
that line go on the bus� the counter becomes zero� and hence the hdr transaction can go on the bus�
In our URM� we used a two�bit counter� which allows up to four processors�

In Runway� all clients save the data returns �hdr and c�cw transactions� in DR queue until
the corresponding request appears at the head of its CCC queue� This is necessary to enforce in�
order completion of instructions� We abstract away the CCC queues and the data return queues by
associating a one�bit information with each cache line in each client� This bit is set for an address

��



A�CMP
PO	 �states �bdd nodes conditions veri�ed runtime �mn�sec	

serial memory ���� ���� Vacuity �����
PO Cond �����

lazy caching ������e��� ������ Vacuity �����
PO Cond �����

URM ������ ������� Vacuity �����
PO Cond ��h�����

A�CMP
WO
RO
WA	 �states �bdd nodes conditions veri�ed runtime �mn�sec	

serial memory ����� ����� Vacuity �����
Cond� � Cond� �����

lazy caching ������e��� ������ Vacuity �����
Cond� � Cond� �����

URM ������ ������� Vacuity �����
Cond� � Cond� ��h�����

Figure ��� Veri�cation results using VIS on a SPARC ULTRA�� with ��� MB Memory

a whenever a data return happens for a� but a preceding instruction is not yet completed� After all
preceding instructions are completed� the data is used� and the bit is reset indicating the completion
of the instruction�

��� Veri
cation results

The tables in �gure �� show execution time for model�checking our Serial memory� Lazy caching and
URM models for tests of A�CMP� PO� and A�CMP�RO�WO�WA� �recall that A�CMP� PO� WA�
implies SC�� The three models running separately the two tests TestWA and TestPO are model�
checked for the following conditions� �Figure � does not show some of these states�

TestWA� Monotonic� � �P��inS�	 �� �P��U� 	 P��U�	
� �P��inS�	 �� �P��V� 	 P��V�	
� �P��inS�	 �� �P��X� 	 P��X�	
� �P��inS�	 �� �P��Y� 	 P��Y�	

Atomic� �P��inS� � P��inS�	 �� �P��V 
 P��X � P��Y 
 P��U	

TestPO� PO Cross� �P��inS� � P��inS�	 �� �P��Y 
 P��I � P��X 
 P��J	 � �P��Y 	 P��I � P��X 	 P��J	

As can be seen� all these conditions are safety properties� and independent of the model itself� which
is a distinct advantage over other methods�

The size of the state space and number of nodes in BDDs are also reported� Note that lazy caching
has more states than Runway due to the queues present in the model� However� the complexity of
the Runway protocol is much higher� which results in large BDD size and higher run time� However�
in all our experiments� whenever there was any memory ordering rule violation in our model� test
model�checking detected it quickly �in the order of minutes�� A very desirable feature one can provide
in a tool based on test model�checking is amenu of previously generated test automata for the various
compound rules in �Col���� using which designers can probe their model�

Our Verilog models captures quite faithfully the cache coherence protocol and the ordering rules
of the three memory systems�

After an extensive debugging using test model�checking driven by TestPO and TestWA� we
have a high con�dence that the memory model provided by Lazy caching and Runway�PA���� is
sequentially consistent� The veri�cation of serial memory was straightforward�

��



Description of a Bug found in preliminary model of lazy caching� The following bug in
our model of Lazy Caching was caught by a violation of PO Cross in TestPO� The bug was in the
queues used by Lazy Caching� which were implemented as shift registers� We forgot to shift the ��bit
in Ini when the processor Pi receives a cache�update from Ini queue� With this bug it is possible that
Ini queue is not ��ed when it should be� and consequently reads in Pi may bypass writes� This results
in a violation of PO� This is a di�cult bug to catch because its detection involves understanding the
complex feedback from all components of the protocol to each other �queues� memory� and caches��
Moreover� this bug is interesting because it violates PO but doesn�t violate WA� This is so because
only write�read �WR� order is a�ected by this bug� Our technique e�ectively caught this bug�
the PO Cross condition does not pass when we model�checked the model for TestPO� However�
TestWA �note that it doesn�t involve PO� passes� This shows the futility of ad hoc testing methods�
one could apply subjective criteria to consider a test similar to TestWA to be su�ciently incisive�
when in fact it fails to account for a crucial ordering relation such as PO�

Description of a Bug found in preliminary URM� Similarly� another corner�case bug was
caught by test model�checking in our URM by a violation of PO Cross condition using TestPO�
This bug generated a long counter�example trace� due to the depth of the sequential logic of the
model� The trace revealed the following situation�

��� clienti has removed its own read transaction from the bus� then

��� clienti sends coh ok in response to a subsequent coherent transaction for the same line before
getting the data for its transaction �by hdr or c�cw��

This problem was �xed using the counter in the HOST�s HDR entries to record the pending c�cws
and the one�bit information in the client�s cache lines to record whether the data is supplied� as
explained in paragraph ���� After �xing the bug the PO condition passed�

� Conclusion and Future Plans

We presented a new approach to verify multi�processors for formal memory models� which combines
two existing powerful techniques� model�checking� and the testing method of Archtest� From our
results� we conclude that test model�checking can be of great value in detecting bugs during early
stages of the design cycle of modern microprocessors whose memory subsystems are complex� Our
results on our URM of the HP PARunway bus attest to this�

So far we have identi�ed the rules and corresponding tests for sequential consistency� We are cur�
rently working on identifying similar rules and tests for other well�known formal memory models such
as TSO� PSO� and RMO �AG��� that are described in the SPARC V� architecture manual �WG����
This work may involve de�ning new rules as well as new tests corresponding to them�

We are currently working to formulate some reasonable assumptions about the memory system
model under which the tests administered by our test automata can be rendered complete� Also�
for a limited class of models� model�checking the test for some small value of k might actually be
su�cient� Our initial attempts in this direction are encouraging�

Acknowledgments We would like to thank Dr� Collier for his help in explaining his work� his
very informative emails and providing Archtest� We would like to thank Dr� Narendran for many
fruitful discussions� We would like to thank Dr� Al Davis and his Avalanche team foro o�ering us
the unique opportunity to work on state�of�the�art processors and busses�

��



References

�AG��� Sarita V� Adve and Kourosh Gharachorloo� Shared memory consistency models� A
tutorial� Computer� ��������� ��� December �����

�BCS��� William R� Bryg� Kenneth K� Chan� and Nicholas S�Fiduccia� A high�performance�
low�cost multiprocessor bus for workstations and midrange servers� Hewlett�Packard

Journal� pages �� ��� February �����

�Cam��� Albert Camilleri� A hybrid approach to verifying liveness in a symmetric multi�
processor� In Theorem Proving in Higher Order Logics� ��th International Conference�

TPHOLs	
�� Murray Hill� NJ� pages �� ��� August ����� Springer�Verlag LNCS �����

�CC��� P� Cousot and R� Cousot� Abstract intepretation� a uni�ed lattice model for static
analysis of programs by construction or approximation of �xpoints� In Proceedings of

�th POPL� pages ��� ���� Los Angeles� CA� ACM Press� �����

�CES��� E� M� Clarke� E� A� Emerson� and A� P� Sistla� Automatic veri�cation of �nite�state
concurrent systems using temporal logic speci�cations� ACM TOPLAS� �������� ����
�����

�Col� W�W� Collier� Multiprocessor diagnostics� http�www�infomall�orgdiagnosticsarchtest�html�

�Col��� W� W� Collier� Reasoning About Parallel Architectures� Prentice�Hall� Englewood Cli�s�
NJ� �����

�Cor��� Francisco Corella� April ����� Invited talk at Computer Hardware Description Lan�
guages ����� Toledo� Spain� on Verifying IO Systems�

�DPN��� David L� Dill� Seungjoon Park� and Andreas Nowatzyk� Formal speci�cation of abstract
memory models� In Gaetano Borriello and Carl Ebeling� editors� Research on Integrated

Systems� pages �� ��� MIT Press� �����

�Ger��� Rob Gerth� Introduction to sequential consistency and the lazy caching
algorithm� Distributed Computing� ����� Also can be found in
http�www�research�digital�comSRCtlapapers�html!Lazy�

�GGH���� G� Gopalakrishnan� R� Ghughal� R� Hosabettu� A� Mokkedem� and R� Nalumasu� For�
mal modeling and validation applied to a commercial coherent bus� A case study� In
Hon F� Li and David K� Probst� editors� CHARME� Montreal� Canada� �����

�GJS��� James Gosling� Bill Joy� and Guy Steele� The JavaTM Language Speci�cation� Sun
Microsystems� ��� edition� August ����� appeared also as book with same title in
Addison�Wesleys �The Java Series��

�GK��� Phillip B� Gibbons and Ephraim Korach� On testing cache�coherent shared memories�
In Proceedings of the th Annual Symposium on Parallel Algorithms and Architectures�
pages ��� ���� New York� NY� USA� June ����� ACM Press�

�GK��� Phillip B� Gibbons and Ephraim Korach� Testing shared memories� SIAM Journal on

Computing� ���������� ����� August �����

�Gra��� S� Graf� Veri�cation of a distributed cache memory by using abstractions� Lecture

Notes in Computer Science� ������� ��� �����

��



�HB��� R� Hojati and R� Brayton� Automatic datapath abstraction of hardware systems� In
Conference on Computer�Aided Veri�cation� �����

�HMTLB��� R� Hojati� R� Mueller�Thuns� P� Loewenstein� and R� Brayton� Automatic veri�cation
of memory systems which service their requests out of order� In CHDL� pages ��� ����
�����

�Kan��� Gerry Kane� PA�RISC ��� Architecture� Prentice Hall� ����� ISBN ��������������

�Lam��� Leslie Lamport� How to make a multiprocessor computer that correctly executes mul�
tiprocess programs� IEEE Transactions on Computers� ��������� ���� �����

�Lam��� Leslie Lamport� How to make a correct multiprocess program execute correctly on a
multiprocessor� Technical report� Digital Equipment Corporation� Systems Research
Center� February �����

�Lam��� Leslie Lamport� The temporal logic of actions� ACM Transactions on Programming

Languages and Systems� ��������� ���� May ����� Also appeared as SRC Research
Report ���

�LLOR��� P� Ladkin� L� Lamport� B� Olivier� and D� Roegel� Lazy caching in tla� Distributed

Computing� �����

�McM��� Kenneth L� McMillan� Symbolic Model Checking� Kluwer Academic Press� �����

�Mok� A� Mokkedem� Veri�cation of three memory systems using test model�checking�
http�www�cs�utah�edu�mokkedemvisvis�html�

�PD��� Seungjoon Park and David L� Dill� Veri�cation of FLASH cache coherence protocol by
aggregation of distributed transactions� In SPAA� pages ��� ���� Padua� Italy� June
�� ��� �����

�Ver� Vis���� release� http�www�cad�eecs�berkeley�eduRespepResearchvisindex�html�

�WG��� David L� Weaver and Tom Germond� The SPARC Architecture Manual � Version 
� P
T R Prentice�Hall� Englewood Cli�s� NJ ������ USA� �����

��


