2,181 research outputs found

    Upward planar drawings with two slopes

    Get PDF
    In an upward planar 2-slope drawing of a digraph, edges are drawn as straight-line segments in the upward direction without crossings using only two different slopes. We investigate whether a given upward planar digraph admits such a drawing and, if so, how to construct it. For the fixed embedding scenario, we give a simple characterisation and a linear-time construction by adopting algorithms from orthogonal drawings. For the variable embedding scenario, we describe a linear-time algorithm for single-source digraphs, a quartic-time algorithm for series-parallel digraphs, and a fixed-parameter tractable algorithm for general digraphs. For the latter two classes, we make use of SPQR-trees and the notion of upward spirality. As an application of this drawing style, we show how to draw an upward planar phylogenetic network with two slopes such that all leaves lie on a horizontal line

    A Design Strategy for Deadlock-Free Concurrent Systems

    Get PDF
    When building concurrent systems, it would be useful to have a collection of reusable processes to perform standard tasks. However, without knowing certain details of the inner workings of these components, one can never be sure that they will not cause deadlock when connected to some particular network. Here we describe a hierarchical method for designing complex networks of communicating processeswhich are deadlock-free.We use this to define a safe and simple method for specifying the communication interface to third party software components. This work is presented using the CSP model of concurrency and the occam2.1 programming language

    The Partial Visibility Representation Extension Problem

    Full text link
    For a graph GG, a function ψ\psi is called a \emph{bar visibility representation} of GG when for each vertex vV(G)v \in V(G), ψ(v)\psi(v) is a horizontal line segment (\emph{bar}) and uvE(G)uv \in E(G) iff there is an unobstructed, vertical, ε\varepsilon-wide line of sight between ψ(u)\psi(u) and ψ(v)\psi(v). Graphs admitting such representations are well understood (via simple characterizations) and recognizable in linear time. For a directed graph GG, a bar visibility representation ψ\psi of GG, additionally, puts the bar ψ(u)\psi(u) strictly below the bar ψ(v)\psi(v) for each directed edge (u,v)(u,v) of GG. We study a generalization of the recognition problem where a function ψ\psi' defined on a subset VV' of V(G)V(G) is given and the question is whether there is a bar visibility representation ψ\psi of GG with ψ(v)=ψ(v)\psi(v) = \psi'(v) for every vVv \in V'. We show that for undirected graphs this problem together with closely related problems are \NP-complete, but for certain cases involving directed graphs it is solvable in polynomial time.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Governing a Common-Pool Resource in a Directed Network

    Get PDF
    A local public-good game played on directed networks is analyzed. The model is motivated by one-way flows of hydrological influence between cities of a river basin that may shape the level of their contribution to the conservation of wetlands. It is shown that in many (but not all) directed networks, there exists an equilibrium, sometimes socially desirable, in which some stakeholders exert maximal effort and the others free ride. It is also shown that more directed links are not always better. Finally, the model is applied to the conservation of wetlands in the Gironde estuary (France).Common-pool Resource, Digraph, Cycle, Independent Set, Empirical Example
    corecore