33 research outputs found

    How to Design a Program Repair Bot? Insights from the Repairnator Project

    Get PDF
    update for oadoi on Nov 02 2018International audienceProgram repair research has made tremendous progress over the last few years, and software development bots are now being invented to help developers gain productivity. In this paper, we investigate the concept of a " program repair bot " and present Repairnator. The Repairnator bot is an autonomous agent that constantly monitors test failures, reproduces bugs, and runs program repair tools against each reproduced bug. If a patch is found, Repairnator bot reports it to the developers. At the time of writing, Repairnator uses three different program repair systems and has been operating since February 2017. In total, it has studied 11 317 test failures over 1 609 open-source software projects hosted on GitHub, and has generated patches for 17 different bugs. Over months, we hit a number of hard technical challenges and had to make various design and engineering decisions. This gives us a unique experience in this area. In this paper, we reflect upon Repairnator in order to share this knowledge with the automatic program repair community

    Explainable Software Bot Contributions: Case Study of Automated Bug Fixes

    Full text link
    In a software project, esp. in open-source, a contribution is a valuable piece of work made to the project: writing code, reporting bugs, translating, improving documentation, creating graphics, etc. We are now at the beginning of an exciting era where software bots will make contributions that are of similar nature than those by humans. Dry contributions, with no explanation, are often ignored or rejected, because the contribution is not understandable per se, because they are not put into a larger context, because they are not grounded on idioms shared by the core community of developers. We have been operating a program repair bot called Repairnator for 2 years and noticed the problem of "dry patches": a patch that does not say which bug it fixes, or that does not explain the effects of the patch on the system. We envision program repair systems that produce an "explainable bug fix": an integrated package of at least 1) a patch, 2) its explanation in natural or controlled language, and 3) a highlight of the behavioral difference with examples. In this paper, we generalize and suggest that software bot contributions must explainable, that they must be put into the context of the global software development conversation

    Repairnator patches programs automatically

    Full text link
    Repairnator is a bot. It constantly monitors software bugs discovered during continuous integration of open-source software and tries to fix them automatically. If it succeeds in synthesizing a valid patch, Repairnator proposes the patch to the human developers, disguised under a fake human identity. To date, Repairnator has been able to producepatches that were accepted by the human developers and permanently merged into the code base. This is a milestone for human-competitiveness in software engineering research on automatic program repair.Comment: arXiv admin note: substantial text overlap with arXiv:1810.0580

    A Comprehensive Study of Code-removal Patches in Automated Program Repair

    Full text link
    Automatic Program Repair (APR) techniques can promisingly help reducing the cost of debugging. Many relevant APR techniques follow the generate-and-validate approach, that is, the faulty program is iteratively modified with different change operators and then validated with a test suite until a plausible patch is generated. In particular, Kali is a generate-and-validate technique developed to investigate the possibility of generating plausible patches by only removing code. Former studies show that indeed Kali successfully addressed several faults. This paper addresses the case of code-removal patches in automated program repair investigating the reasons and the scenarios that make their creation possible, and the relationship with patches implemented by developers. Our study reveals that code-removal patches are often insufficient to fix bugs, and proposes a comprehensive taxonomy of code-removal patches that provides evidence of the problems that may affect test suites, opening new opportunities for researchers in the field of automatic program repair.Comment: New version of the manuscrip

    SapFix: Automated End-To-End Repair at Scale

    Get PDF
    We report our experience with SapFix: the first deployment of automated end-to-end fault fixing, from test case design through to deployed repairs in production code. We have used SapFix at Facebook to repair 6 production systems, each consisting of tens of millions of lines of code, and which are collectively used by hundreds of millions of people worldwide
    corecore