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Abstract

Software development is an increasingly large and complex task, as it is applied to a broader range
of domains. Moreover, as software assumes more business and safety-critical applications, its de-
velopment requires more intricate testing and quality assurance processes, and lower maintenance
and repair times. Thus, the concept of Software Development Life Cycle (SDLC) appeared as a
process to develop and maintain software. Each cycle comprises multiple stages, one of which is
software testing, a key process in avoiding software regression and detecting new faults. Fuzzing
is a software testing method proven effective at discovering security vulnerabilities by generating
malformed inputs and monitoring the faulty program.

Due to software’s increasing responsibility, faults have a more significant negative impact.
While techniques have been developed to improve and increase fault detection, debugging and
repairing faults remains a time-consuming manual process. Automated Program Repair (APR) is
a research field focused on localizing and repairing software faults automatically, using a set of
tests as program specification. While it has the potential to reduce debugging costs, most current
APR research is focused on benchmarks and synthetic experiments rather than developing and
evaluating APR tools in practical environments. Fuzzing techniques provide a source of faults and
generated test cases to feed APR. Furthermore, the introduction of continuous fuzzing workflows
increases the inflow of bug reports, providing a use case for APR integrated with the SDLC.

Since APR techniques are not evaluated in realistic environments and there is a lack of adop-
tion of APR in industrial software, there is little scientific evidence supporting that APR can
correctly patch real-life software projects. We believe APR integration with continuous fuzzing
workflows is promising, given the wealth of information fuzzing processes can provide to enhance
APR techniques and the high demand for fault repair caused by the adoption of continuous fuzzing
workflows.

However, preliminary experiments with current APR techniques suggest that they are not suit-
able for such an integration. Consequently, we develop a study on the ability of current APR
techniques to generate correct patches using coverage-guided fuzzing tools to identify faults. We
apply this process to five simple synthetic scenarios and four real-life vulnerabilities. None of the
APR techniques generated a correct patch for any of the faults, which is concerning, especially
since Angelix could not patch Heartbleed, as otherwise stated by their authors [42]. In light of
this result, we analyze the original Angelix experiments and discover that Angelix does not patch
Heartbleed by itself, compromising the credibility of APR research. Regardless, we are confident
in the potential of APR and suggest shifting research towards the development of practical tools,
listing some recommendations for developing such tools, namely ones leveraging fuzzing.

Keywords: Automated Program Repair. Software Development Process. Software Development
Life Cycle. Fuzzing. Greybox Fuzzing. Coverage-guided Fuzzing. Continuous Fuzzing.
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Resumo

O desenvolvimento de software é uma tarefa cada vez maior e mais complexa, sendo aplicada a
uma gama de domínios cada vez maior. Além disso, conforme o software assume aplicações cada
vez mais críticas para negócios e para a segurança, o seu desenvolvimento requer processos de
testagem e garantia de qualidade mais complexos e tempos de reparação e manutenção menores.
Assim, o conceito de ciclo de vida de desenvolvimento de software (SDLC) surge como um pro-
cesso para o desenvolvimento e manutenção de software. Cada ciclo é composto por múltiplas
etapas, uma delas a de testes, que consiste na deteção de novas falhas e de falhas recorrentes.
Fuzzing é um método de testes eficaz na descoberta de vulnerabilidades de segurança através da
geração automática de inputs malformados e da monitorização do programa defeituoso.

Devido à responsabilidade crescente assumida pelo software, as suas falhas têm um impacto
negativo cada vez mais significativo. Enquanto foram desenvolvidas técnicas para melhorar e
aumentar a deteção de falhas, os processos de depuração e de reparação de falhas continuam a ser
demorados e manuais. Reparação automática de programas (APR) é um campo de pesquisa focado
na deteção e localização automática de falhas, usando um conjunto de testes como especificação
do programa. Apesar de APR ter o potencial de reduzir os custos de depuração, grande parte da
pesquisa atual está focada na utilização de modelos de referência e de experiências sintetizadas do
que em desenvolver e avaliar ferramentas APR em ambientes reais. As técnicas de fuzzing servem
como uma fonte de falhas e de casos de testes gerados para alimentar ferramentas APR. Além do
mais, o aparecimento de fluxos contínuos de fuzzing causa um aumento do influxo de relatórios de
erros, tornando-se num caso de uso para APR integrado no SDLC.

Uma vez que muitas das técnicas de APR existentes não são avaliadas em ambientes reais e
existe uma falta de adoção de APR em software industrial, existe pouca evidência científica de
que APR consegue corrigir corretamente falhas em projetos reais. Nós acreditamos que existe
potencial para a integração de APR com fuzzing contínuo, dado o manancial de informação que
os processos de fuzzing disponibilizam para melhorar as técnicas de APR e a demanda alta para
reparar falhas originadas pela adoção de fluxos contínuos de fuzzing.

No entanto, as nossas experiências iniciais com técnicas de APR sugerem que elas não estão
adequadas para uma integração deste género. Consequentemente, estudamos a habilidade de es-
tas técnicas de APR corrigirem erros a partir de falhas identificadas por ferramentas de fuzzing
baseadas em cobertura. Aplicamos este processo a cinco cenários sintetizados simples e a quatro
vulnerabilidades reais. Nenhuma das técnicas de APR usadas corrigiram alguma das falhas, um
aspeto preocupante, sobretudo porque o Angelix foi incapaz de corrigir o Heartbleed, ao contrário
do que foi indicado pelos seus autores [42]. Face a estes resultados, analisamos as experiências
originais do Angelix e descobrimos que este não corrige o Heartbleed por si próprio, compro-
metendo a credibilidade da investigação sobre APR. De qualquer forma, estamos confiantes no
potencial de APR, sugerimos mudar o foco de pesquisa para o desenvolvimento de ferramentas
práticas, e listamos recomendações para o desenvolvimento de ferramentas APR, nomeadamente
baseadas em fuzzing.
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“The test of the machine is the satisfaction it gives you.
There isn’t any other test. If the machine produces tranquility it’s right.

If it disturbs you it’s wrong until either the machine or your mind is changed.”

Robert M. Pirsig

vii



viii



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Automated Program Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Fault Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Heuristic Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Constraint-based Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Learning-based Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 APR Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 State of the Art 9
3.1 Survey Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3.1 APR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Practical APR Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.3 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Problem Statement 21
4.1 Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Preliminary Work 25
5.1 Patch Suggestion through a GitHub Bot . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1.2 Initial Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



x CONTENTS

5.2 Early Experiments with Angelix . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Early Experiments with Coverage-guided Fuzzing . . . . . . . . . . . . . . . . . 30

5.3.1 Fuzzing with AFL++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3.2 Automating the Fuzzing Process . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Empirical Study 35
6.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2.1 Joint Fuzzing–APR Process . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.2 Project and Fault Selection . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2.3 APR Technique Selection . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.2.4 Fuzzing Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.5 APR Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.1 Synthetic Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.2 Real-life Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Replication of Original APR Experiments . . . . . . . . . . . . . . . . . . . . . 49
6.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.5.1 Internal Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.5.2 External Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusions 57
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A Synthetic Programs 61
A.1 CWE-121 (Stack Overflow) - Restricted Access . . . . . . . . . . . . . . . . . . 61
A.2 CWE-122 (Heap Overflow) - Brainfuck Interpreter . . . . . . . . . . . . . . . . 63
A.3 CWE-369 (Divide by Zero) - Division Operation . . . . . . . . . . . . . . . . . 67
A.4 CWE-134 (Format String) - String Customizer . . . . . . . . . . . . . . . . . . . 69
A.5 CWE-190 (Integer Overflow) - Useless Computation . . . . . . . . . . . . . . . 71

References 73



List of Figures

2.1 Overview of the different APR methods . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Architectural diagram of a fuzzing engine . . . . . . . . . . . . . . . . . . . . . 8

3.1 Evolution of Target Languages used by APR techniques . . . . . . . . . . . . . . 18

5.1 Activity diagram of a pull request workflow from the bot’s perspective . . . . . . 27
5.2 Patch diff file for the small program with a stack overflow vulnerability . . . . . 28
5.3 Diff file between the small program with a stack overflow vulnerability and its

instrumented version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Test oracle script with two positive tests and one negative test . . . . . . . . . . . 29
5.5 Example of the AFL++ status screen . . . . . . . . . . . . . . . . . . . . . . . . 30
5.6 Example of a message to start a new fuzzing session . . . . . . . . . . . . . . . . 32
5.7 Example of a message to stop an ongoing fuzzing session . . . . . . . . . . . . . 32
5.8 Class diagram of the fuzzing service . . . . . . . . . . . . . . . . . . . . . . . . 32

6.1 High-level architecture of the fuzzing–APR process . . . . . . . . . . . . . . . . 37
6.2 Official Heartbleed patch diff for the TLS implementation of OpenSSL . . . . . . 40
6.3 Angelix’s Heartbleed Patch diff for the TLS implementation of OpenSSL . . . . . 40
6.4 Example of a fuzz target in libFuzzer . . . . . . . . . . . . . . . . . . . . . . . . 42
6.5 read_line function that reads the contents and size of a file . . . . . . . . . . . . 43
6.6 Generated Heartbleed patch diff file using our process . . . . . . . . . . . . . . . 48
6.7 Dockerfile for reproducing Angelix’s original experiments . . . . . . . . . . . . . 49
6.8 OpenSSL source diff applied before running Angelix . . . . . . . . . . . . . . . 50
6.9 Standard output of a Prophet execution . . . . . . . . . . . . . . . . . . . . . . . 52

xi



xii LIST OF FIGURES



List of Tables

3.1 Categorization of APR techniques . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Categorization of practical APR solutions within the SDLC software integration step 16

6.1 List of synthetic programs based on their vulnerability types . . . . . . . . . . . 38
6.2 List of real-life vulnerabilities and respective projects . . . . . . . . . . . . . . . 38
6.3 List of selected APR techniques, and their primary attributes . . . . . . . . . . . 41
6.4 Fuzzing engine environment information . . . . . . . . . . . . . . . . . . . . . . 41
6.5 APR technique environment information . . . . . . . . . . . . . . . . . . . . . . 44
6.6 APR results with synthetic programs identified by their weakness identifier . . . 46
6.7 APR results with real-life projects identified by their vulnerability identifier . . . 47

xiii



xiv LIST OF TABLES



Abbreviations

ADT Abstract Data Type
AFL American Fuzzy Lop
ANDF Architecture-Neutral Distribution Format
API Application Programming Interface
APR Automated Program Repair
AST Abstract Syntax Tree
CAD Computer-Aided Design
CASE Computer-Aided Software Engineering
CBRS Component-Based Repair Synthesis
CORBA Common Object Request Broker Architecture
CI Continuous Integration
CIL C Intermediate Language
CVE Common Vulnerability Enumeration
CVSS Common Vulnerability Scoring System
CWE Common Weakness Enumeration
DTLS Datagram Transport Layer Security
FL Fault Localization
IR Information Retrieval
LOC Lines of Code
LTO Link Time Optimization
NVD National Vulnerability Database
RFC Request For Comments
RQ Research Question
SDLC Software Development Life Cycle
TLS Transport Layer Security
UNCOL UNiversal COmpiler-oriented Language
URL Uniform Resource Locator
WWW World Wide Web

xv





Chapter 1

Introduction

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

This chapter introduces the motivation, problem, and scope of this dissertation. Section 1.1

details the context of the software development process, fuzzing, and Automated Program Repair

(APR). Section 1.2 explains the benefits of APR and its use-cases within the Software Develop-

ment Life Cycle (SDLC). Then, Section 1.3 explains the issues with the lack of adoption of APR

in software development and with the inflow of faults from continuous fuzzing workflows. Sec-

tion 1.4 describes the objectives of this dissertation. Finally, Section 1.5 describes the structure

and contents of this document.

1.1 Context

The development of software is a complex task that is applied to an increasing number of domains.

During the history of software engineering, the concept of a software development process, also

known as the SDLC, was introduced to allow for the development and management of large-scale

software. The SDLC is currently a crucial process in the software industry and represents how

software developers develop, maintain, and integrate software.

With development, there is the appearance of bugs, errors that cause a program not to behave

as intended. They may cause crashes, security concerns, and more severe effects like the loss of

human lives [32]. To combat this, the SDLC includes debugging and testing processes to find

and resolve bugs, often aided by code analysis tools. One such testing process is fuzzing, which

monitors program behavior using automatically generated test cases to discover bugs and security

vulnerabilities.

1



2 Introduction

While testing techniques have evolved to improve and increase fault detection, debugging and

repairing faults remains a time-consuming manual process. APR is an emerging research field

aimed at automating the repair of software errors and vulnerabilities, taking as input a faulty

program and a correctness specification that the program should meet (most research techniques

use test suites). There is a variety of APR techniques that detect locations in the source code

triggering errors (a process known as Fault Localization [52]) and synthesize patches that repair

faults [26].

1.2 Motivation

Ensuring quality and debugging is a time-consuming yet necessary process in software develop-

ment. APR has the potential of reducing the cost and effort of debugging and building quality

software, allowing developers to be more productive [26], and reducing the negative impact of

bugs in production. Unfortunately, current APR research focuses primarily on experimenting with

new techniques in synthetic environments and benchmarks rather than developing APR solutions

for practical use cases. Regardless, there has been some effort in researching APR’s practical

applications lately, namely integrating APR with the SDLC. PAPRika is a Visual Studio Code

extension leveraging test-based APR to provide live feedback to the developer about issues in the

code, localizing faults and suggesting patches for it. Developers accepted and felt comfortable

using this extension, improving code quality and accelerating repair time [13]. In the software in-

tegration step of the SDLC, a few practical APR solutions have been developed, and their research

shows that developers are receptive towards being suggested patches by bots [50, 39].

Continuous fuzzing workflows, which automatically fuzz newer software builds and identify

faults, also provide use-cases for APR within the SDLC. Combining fuzzing with APR broadens

the spectrum of faults benefited by APR. Moreover, it provides a fault-triggering test case and a

set of generated test cases to enrich our test-based specification automatically.

1.3 Problem Definition

APR is not widely available and adopted in the software industry, despite the potential benefits it

has. An explanation for the lack of adoption is that APR research has been focused on expanding

and demonstrating its capabilities through benchmarks rather than exploring practical applications

and integrations with the SDLC. While some practical solutions exist, they do not attract develop-

ers enough to be applied in industrial and large-scale software. As a result, the ability of APR to

generate correct patches for faults in practical software projects is barely known.

Continuous fuzzing solutions such as OSS-Fuzz [3] increase the rate at which faults are dis-

covered by fuzzing methods. As a result, developers cannot fully keep up with generated issues,

leading to slower repair times and an increasing overload of lower priority bug reports. Aggra-

vating this issue is the concept of fuzz blockers, faults that block the fuzzing process and prevent
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further exploration until fixed, leading to a cascading effect where repairing a fault triggers more

faults.

Chapter 4 expands on this problem definition, describing research gaps based on our review of

the state of the art, and defining our research questions and scope.

1.4 Goals

The primary goal of this dissertation is to evaluate the effectiveness of APR when combined with

fuzzing and applied in practical environments. We characterize APR effectiveness as the ability

to generate correct patches for software faults. To that end, we implement a process leveraging

coverage-guided fuzzing to identify faults and generate a set of test cases (one of which triggers the

fault) that are then fed to APR techniques to generate patches. To integrate these patches with the

faulty software, we propose implementing a GitHub Bot capable of creating and managing pull

requests to suggest patches, apply code review suggestions, and interact with developers using

textual commands.

Additionally, we intend to identify which types of faults APR is more effective at repairing,

when applied with fuzzing, and identify how APR research and the development of new APR tools

can be adapted to perform better with fuzzing and in practical applications.

1.5 Document Structure

This document is followed by six more chapters, structured as follows:

• Chapter 2, Background, introduces background information and nomenclature required for

the full understanding of this document.

• Chapter 3, State of the Art, describes the methodology and results of a literature review on

the current state of the art of open-source APR techniques and of APR solutions for practical

use-cases.

• Chapter 4, Problem Statement, identifies research gaps and presents the problem we aim

to solve, our objectives, and our planned approach to solve it.

• Chapter 5, Preliminary Work, provides an overview of our initial experiments with coverage-

guided fuzzing and APR, as well as describes our initial development of solutions automat-

ing fuzzing and patch suggestion.

• Chapter 6, Empirical Study, describes the development of a join fuzzing–APR process and

analyzes the results obtained from applying this process to a set of faulty programs with

various APR techniques.

• Chapter 7, Conclusions summarizes our developed work, concludes this dissertation, and

provides insights for future development and more thorough studies.
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Chapter 2

Background

2.1 Automated Program Repair . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 APR Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Fuzzing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

This chapter describes some fundamental concepts on APR and fuzzing, essential for the fur-

ther understanding of this dissertation. Section 2.1 introduces the definition and goals of APR

and describes current approaches to APR at a high-level. Section 2.2 mentions some examples

of benchmarks used to evaluate APR techniques and how they may be misleading in practical

use-cases. Section 2.3 introduces the concept of fuzzing, and how it has evolved.

2.1 Automated Program Repair

APR is an emerging research field in the automated generation of patches to solve faults, taking as

input a faulty program and a correctness specification that the program should meet (most research

techniques use test suites). A fault is the cause of an error, which is a condition that may lead to

a failure, a deviation of a service from its correct behavior [7]. Most APR approaches start with

a Fault Localization (2.1.1) stage and can be categorized on a high level between two high-level

methods, based on how they generate and validate patches: (i) Heuristic Repair (2.1.2), also

known as generate-and-test; and (ii) Constraint-based repair (2.1.3). Both of these methods can

be complemented with Learning-based repair (2.1.4) techniques [26].

2.1.1 Fault Localization

Fault localization (FL) is a dedicated research field on its own, focused on the identification of the

locations of faults (i.e. identifying code statements responsible for a fault). Wong et al. [52] con-

ducted a survey and classified FL techniques into eight categories: slice-based, spectrum-based,

5
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Figure 2.1: Overview of the different APR methods (Reprinted from [26])

statistics-based, program state-based, machine learning-based, data mining-based, model-based

and miscellaneous techniques. Spectrum-based FL, which is inspired by statistical and probabilis-

tic models, can be used to track program behavior and is typically used by APR techniques.

2.1.2 Heuristic Repair

Heuristic repair methods consist of creating a search space of candidate patches and iterating over

them for validation. Patches are typically generated by transforming the program’s abstract syntax

tree (AST) using mutation operators [45, 6] (mutation-based APR) or templates, also known as fix

patterns (template-based APR). Traversal over the search space can be done with meta-heuristics

such as genetic programming [25], random sampling, or guided by heuristics [26].

2.1.3 Constraint-based Repair

Constraint-based methods consist of creating a set of constraints from a test suite that a correct

patch should satisfy. A popular technique to extract properties that constitute a constraint is sym-

bolic execution to find angelic values [15]. These constraints are solved to synthesize a patch,

usually formulated as a Satisfiability Modulo Theory (SMT) problem [26].

2.1.4 Learning-based Repair

Recent advancements in machine learning, combined with the availability of a large number of

patches as training data, enable the application of learning-based repair methods to enhance the
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aforementioned APR methods [26]. Current applications include learning a model to rank a set

of candidate patches [35], and inferring AST transformation templates from successful patches

[33]. Some techniques learn models for end-to-end repair, bypassing the need for a correctness

specification to validate patches [27, 49].

2.2 APR Benchmarking

Comparing and reproducing empirical research in APR is enabled with benchmarks comprised of

datasets of faults extracted from practical programs. Such datasets include ManyBugs, IntroClass

[24], and CodeFlaws [48] for the C language, as well as Defects4J for Java [30].

While these benchmarks allow for comparing different APR techniques, they do not neces-

sarily represent the practical environment where APR tools operate. Just et al. [29] compared

user-provided tests (i.e., tests found in bug reports, pre-fix) with developer-provided tests (i.e.,

tests committed alongside the fixes, post-fix). Their analysis suggests that developer-provided

tests are more defect targeted (less code coverage) and have stronger assertions (more resilient

to mutations). They measured the effect of each type of test in FL and APR techniques. With

user-provided tests, FL techniques performed consistently worse than with developer-provided

tests. With similar results, APR techniques using user-provided tests resulted in fewer generated

patches, fewer correct patches, and increased repair times.

These results suggest that FL and APR benchmarks based on post-fix information overestimate

their performance in practical use-cases where such information is unavailable. Furthermore, in

some cases, the existing test-suite contradicts the defect-triggering test and needs fixing as well

(is testing the implementation, not the specification). APR is infeasible for these defects unless

techniques can identify invalid tests. The authors also inquired about the effect of test separation

(creating a new small defect-triggering test vs. extending an existing test). They concluded that

FL techniques performed better when triggering tests are separated.

2.3 Fuzzing

Fuzzing is a software testing technique effective at finding security vulnerabilities by monitoring

program behavior when input with automatically generated payloads. Originally, a fuzzing engine
consisted of feeding a target program with test cases created through random mutations. When the

target program crashes or reports an error, the fuzzing engine collects and analyzes these issues to

detect bugs and potential vulnerabilities [16]. This structure is presented in the blue-dashed frame

of Figure 2.2.

Fuzzing engines have since evolved, using more advanced test case generation operations and

introducing new techniques to improve fuzzing efficiency by feeding the test case generator with

static and runtime information. Such techniques include symbolic execution [12, 14, 17, 23],

coverage feedback [11, 10, 20, 2], and grammar representation [9]. The red-dashed frame of

Figure 2.2 represents the current structure of fuzzing engines [16].
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Figure 2.2: Architectural diagram of a fuzzing engine (Reprinted from [16])

Coverage-guided fuzzing tools such as AFL(American Fuzzy Lop)++ [20], and LibFuzzer

[2] are currently being used to find vulnerabilities in key software libraries handling file formats,

cryptography, and other operating system utilities. In addition, projects such as OSS-Fuzz [3]

provide continuous fuzzing services for open-source software, providing a potential use-case for

APR [26].

2.4 Summary

This chapter describes some fundamental concepts on APR and Fuzzing, essential for the further

understanding of this dissertation. Section 2.1 introduces the definition and goals of APR and

the concept of fault localization. Both the generate-and-test and constraint-based program repair

approaches are explained, as well as how machine learning is being applied to augment these

methods. Section 2.2 introduces the concept of benchmarks in APR, as well as some examples

of benchmarks used to evaluate APR techniques, and explains how they may be misleading in

practical use-cases. Finally, Section 2.3 introduces the concept of Fuzzing and mentions a potential

use-case for APR.
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This literature review aims to gather information on existing APR techniques and practical so-

lutions that integrate APR with the SDLC during the software testing and integration step. We

follow a structured methodology to ensure better integrity and results from this survey. This

methodology consists of survey research questions to focus our analysis, defined in Section 3.1,

and a procedure for the source, search, filtering and selection of publications, described in Section

3.2. In Section 3.3 we describe the results, followed by their categorization in Section 3.3.3, and

their analysis in Section 3.3.4. Finally, Section 3.4 contains a summary of the literature review

and final conclusions.

3.1 Survey Research Questions

In order to explore the current practices, research, and studies related to APR and its practical ap-

plication, and identify recurring practices and challenges, we outline the following survey research

questions (SRQs):

• SRQ1 What current, relevant open-source APR techniques exist? APR is a topic with over

a decade of research, with multiple proposals of different or enhanced techniques appear-

ing over time. We are interested in the identification of up-to-date APR techniques with

publically available source-code of the implementation.

• SRQ2 Which target languages are preferred by the techniques found in SRQ1? As the

APR implementation process is typically coupled with the language specification and com-

piler libraries, techniques can only support a subset of programming languages. Knowing

9



10 State of the Art

which languages were preferred by the techniques’ developers is crucial for deciding how

to integrate them with the SDLC.

• SRQ3 How fitting are the techniques found in SRQ1 to be applied in practical large-scale

projects? Since APR research has only recently started focusing on practical applications,

proposed APR techniques may not fit the requirements necessary to apply them in practical

projects. Integration with the SDLC has certain performance and scalability requirements

that APR techniques have to meet.

• SRQ4 What solutions exploring the application of APR in the software integration step of

the SDLC exist? To better understand how APR can be applied in practical domains and

integrated with the SDLC during software integration, we need to identify current proposed

approaches and attempts.

3.2 Procedure

1. Search for documents on the Scopus electronic database with automated, program and re-

pair in their title, abstract or keywords.

2. Filter for Articles, Reviews, Conference Papers, and Conference Reviews, with a publication

year between 2016 and 2021 inclusive.

3. Prioritize documents based on their relevance1 and descending number of citations.

4. Analyze publications that describe at least one APR technique, using the following criteria

to select relevant APR techniques:

(a) Include reimplementations of a previous APR technique for a different target language

(e.g., jGenProg [40], which is an implementation of Genprog [25] in Java).

(b) Exclude APR techniques without a corresponding implementation.

(c) Exclude APR techniques without publicly accessible source code of the implementa-

tion, or not used in a practical APR solution (e.g., BovInspector [21], a tool framework

for the automated repair of buffer overflow vulnerabilities whose implementation is not

available due to a broken link).

5. Analyze and select publications that explore the practical use of APR on the software inte-

gration step of the SDLC.

6. Use snowballing and reverse snowballing on analyzed publications to find more relevant

publications to analyze and select (Through snowballing, it is possible to include relevant

publications previous to 2016).

1Ranking based on Scopus’ relevance ranking algorithm.
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3.3 Results

Using the aforementioned methodology, we identify 14 APR techniques and 4 practical solutions

for the integration of APR with the SDLC, described in Section 3.3.1 and Section 3.3.2 respec-

tively. Section 3.3.3 categorizes our identified techniques and practical solutions so that in Section

3.3.4 we can analyze the results and present answers to the survey research questions.

3.3.1 APR Techniques

GenProg [25] uses Genetic Programming, at the statement level of the AST, to find a program

variant that does not suffer from a given defect while preserving functionality. GenProg uses

statements from the program itself to produce a patched variant to reduce the search space and is

therefore incapable of generating new code.

SemFix [44] is an automated repair method based on symbolic execution, constraint solving,

and program synthesis. It iterates each suspicious statement, in descending order, and attempts to

generate a repair candidate by creating constraints out of the input tests and generating a repair

constraint through symbolic execution.

Angelix [42] is a scalable semantics-based APR tool capable of multi-location bug fixing, using

the Jaccard [4, 5] formula for spectrum-based FL. It first extracts a specification in the form of

an Angelic Forest, a set of Angelic Paths which encode constraints for a test-case based on the

concept of Angelic Value [15]. Each Angelic Path is extracted using a custom symbolic execution

algorithm that installs symbols in suspicious expressions. A patch is then synthesized based on

this specification using Component-Based Repair Synthesis (CBRS) [28] and constraint solving.

SemFix’s [44] algorithm was incorporated into Angelix and the authors claim to have successfully

reproduced the experiments of the original SemFix.

AllRepair [47] is a mutation-based APR tool to repair C programs, using a set of assertions

as a formal bounded correctness specification rather than a set of tests. The tool ensures that

every generated patch is minimal and bounded correct. Since it is based on formal methods and

guarantees completeness, it does not use FL.

Prophet [36] is a patch generation system using a probabilistic, application-independent model

of correct code. With a set of successful human-made patches obtained from open-source projects,

Prophet learns a probabilistic model to rank and identify correct patches within a generated search

space of candidate patches.

jGenProg [40] is one of the repair methodologies in Astor [40], an APR framework, and a

Java adaptation of GenProg [25]. JGenProg uses Ochiai [4, 5] for FL, includes a single-change
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search space navigation mode (without crossover), and offer three strategies for the scope of repair

ingredients used in mutations (Application, Package, and File level).

jKali [40] is one of the repair methodologies in Astor [40] and an implementation of Kali [46]

in Java. Kali is a search-based APR technique focused on generating patches that remove func-

tionality. It performs an exhaustive search over the repair space, navigating suspicious statements

obtained from FL in descending order and applying to each the following code transformations:

(i) remove statement; (ii) replace if condition with true; (iii) replace if condition with false; and

(iv) insert return statement.

jMutRepair [40] is one of the repair methodologies in Astor [40]. It is a Java implementation

of a mutation-based APR technique presented by Debroy and Wong [18], applied on suspicious if

statements. There are three classes of mutation operators: (i) relational, with six interchangeable

equality and relational operators (i.e., replacement of an operator with one of the others); (ii)

logical, with a swap of the OR and AND operators; and (iii) unary, with the addition or removal of

the negation operator.

Genesis [34] is a patch generation system that processes human-made patches to infer patch gen-

eration transforms automatically. Subsequently, Genesis infers the candidate patch search space

generation driving the generate-and-test feedback loop based on these transforms.

NPEFix [19] is an APR technique focused on null pointer exception fault repairs based on dy-

namic analysis and meta-programming. It generates a meta-program from the faulty program, by

injecting hooks that detect null objects and apply one of nine strategies, allowing for patch search-

space exploration at run-time. The authors also created a naive template-based implementation

(exhaustive search of the patch space) with the same strategies called TemplateNPE, as a bench-

mark baseline for NPEFix. NPEFix produces more valid patches than TemplateNPE but with less

performance. The authors reflect on this naive template-based implementation, and state that it

could be a better solution than NPEFix, as it is much simpler to implement and maintain, while

being faster and still offering good results.

Nopol [53] is an APR tool for faulty conditional statements using dynamic analysis and constraint-

based patch synthesis. It processes suspicious statements (if the statement is not conditional, then

it assumes it is missing a precondition) in three stages: (i) angelic fix localization, which finds

and localizes angelic values; (ii) runtime trace collection, which collects the values and variables

available at each location during program execution; and (iii) patch synthesis, based on CBRS [28]

and constraint-solving.
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Cardumen [41] is one of the repair methodologies in Astor [40]. It is a template-based APR

technique with spectrum-based FL focused on maximizing the repair search space. After identify-

ing potential modification points in suspicious statements, it parses the AST of the program under

repair to extract templates. Once it creates a template pool, it uses probabilistic search methods to

select templates to generate patches. Cardumen generated 8935 test-suite adequate patches over

77 bugs from Defects4J [30]. According to the authors, it is the largest number of automatically

synthesized patches ever reported to this data-set, up until the publication date.

DeepRepair [51] is one of the repair methodologies in Astor [40]. It is an extension of jGenProg
using machine learning to prioritize and transform fix ingredients. It is comprised of three stages:

(i) language recognition, which creates and normalizes code corpora at different levels of granu-

larity (e.g., files, classes, methods, identifiers) based on the program AST; (ii) machine learning,

which involves training a neural network language model, encoders of different granularity levels,

and clustering identifiers’ embeddings; and (iii) program repair, which consists of the jGenProg

generate-and-test repair loop, using the trained models and clustering to infer code similarities that

dictate how the patch search space is traversed according to one of five strategies for sorting and

transforming fix ingredients.

GetaFix [8] is a template-based APR tool that learns recurring fix patterns from static analy-

sis warnings to quickly generate human-like fixes (similar performance as a static analysis tool).

Given the imposed performance constraints, it only presents and validates a few configurable num-

ber of top-ranked fixes and uses a static analyzer instead of a test-suite for validation. A set of pairs

of bugs and corresponding fixes are fed to GetaFix as training data. It uses a tree differencer to

generate the change between before and after the fix and organizes fix patterns hierarchically us-

ing a hierarchical clustering algorithm. The tool then applies tree patterns to obtain a set of fix

candidates, ranked using a statistical algorithm.

3.3.2 Practical APR Solutions

Repairnator [50] is an end-to-end program repair bot. It consists of a three-stage pipeline: (i)

Continuous Integration (CI) Build Analysis, which collects a set of suitable builds to repair; (ii)

bug reproduction, which attempts to reproduce build failures locally; and (iii) patch synthesis,

which feeds information from the fault reproduction to one of three APR tools (NPEFix [19],

Nopol [53], and Astor [40]) to generate a patch. Analysts then review the produced patches man-

ually. During the first 11 months of operation, the bot analyzed 11 523 test failures from 1609

open-source projects on GitHub and produced 15 patches, all suffering from overfitting. Despite

its shortcomings, the bot has collected valuable data on the challenges of APR and its practical ap-

plication. The authors share some insights on their experience designing Repairnator and propose

actionable recommendations for future APR bots.
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iFixR [31] is a patch generation tool driven by bug reports. It disregards post-fix test-cases

and works under the practical constraint that when a bug report is submitted to the issue tracking

system, a relevant test case reproducing the bug may not be readily available. The buggy program

and bug-reports are first fed to an Information retrieval (IR)-based fault localizer. From the top

20 suspected statements, patches are generated using template-based methods, by matching fix

patterns with each suspicious statement’s AST nodes, and validated using regression testing. The

validated patches are then prioritized using heuristics so that the first patches being presented to

the developer are more likely to be plausible or correct. The results of the authors’ experiments

suggest that iFixR, with the constraint of test-case unavailability when bugs are reported, achieves

performance results comparable to state-of-the-art test-based APR techniques.

SapFix [39] is an industrial scale automated end-to-end APR tool-set, from test design to fault

reporting to developers, deployed on Facebook’s CI system. It uses Sapienz [38], an intelligent

continuous search-based software testing and test design tool, for identifying candidate crashes

and FL, which then triggers up to four patch generation strategies: (i) diff_revert, where the

whole changes are reverted; (ii) partial_diff_revert, where some of the changes are reverted,

the faulty line, in particular; (iii) template_fix, generating template-based patches from GetaFix

[8]; and (iv) mutation_fix, generating mutation-based patches. Candidate patches are verified

by attempting to reproduce the crash with Sapienz and running the CI test-suite. Patches are

selected for publishing based on heuristics such as strategy priority and information provided by

Sapienz.

Fix2Fit [22] is an integrated fuzzing and APR approach for detecting and discarding crashing

candidate patches. While candidate patches are generated and validated against existing tests, new

tests are generated to filter out overfitted patches. Following a grey-box fuzzing strategy, tests

are prioritized based on how they separate patches, behaving equivalently with the current set of

tests. The tool is integrated with OSS-Fuzz [3], which provides continuous fuzzing infrastructure

to open-source projects, and it was evaluated on real-world vulnerabilities and projects.

3.3.3 Categorization

The mentioned APR techniques are categorized in Table 3.1 according to the following charac-

teristics:

1. Date The publication date of the paper describing the APR techniques helps in analyzing

the evolution of APR research over time.

2. Language. Since the APR implementation process is typically coupled with the language

specification and compiler libraries, individual techniques only target a subset of program-

ming languages, such as C, C++ or Java.
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Table 3.1: Categorization of APR techniques

Solution Date Language Scalability Fault Localization APR Method Learning-based

GenProg [25] 2012 C Medium Spectrum-based Genetic No
SemFix [44] 2013 C Medium Spectrum-based Constraint-based No
Angelix [42] 2016 C High Spectrum-based Constraint-based No
AllRepair [47] 2016 C Unknown None Mutation No
Prophet [36] 2016 C Medium Spectrum-based Mutation Yes
jGenProg [40] 2016 Java Medium1 Spectrum-based Genetic No
jKali [40] 2016 Java Medium1 Spectrum-based Mutation No
jMutRepair [40] 2016 Java Medium1 Spectrum-based Mutation No
Genesis [34] 2017 Java Medium Dynamic Analysis2 Templates3 Yes
NPEFix [19] 2017 Java Medium Dynamic Analysis2 Templates4 No
Nopol [53] 2017 Java Medium1 Spectrum-based Constraint-based No
Cardumen [41] 2018 Java Low Spectrum-based Templates No
DeepRepair [51] 2019 Java Unknown Spectrum-based Genetic Yes
GetAFix [8] 2019 Java High Static Analysis Templates Yes

1 The paper mentions it is capable of generating patches for large-scale programs, but does not mention its performance.
2 Uses stack trace logs to localize faults
3 Uses the concept of transforms, which consist of a pair of template ASTs, before and after applying the patch
4 Uses meta-programming to apply various templates at runtime.

3. Scalability. How well the technique scales with Lines Of Code (LOC) while remaining

performant in practical use cases. The possible values are Low, Medium, and High.

4. Fault Localization. APR techniques can implement FL using different methods. Possible

values are Spectrum-based, Static Analysis, Dynamic Analysis, and None.

5. APR Method. APR research contains a variety of methods to generate patches, as explained

in Section 2.1. Possible values are Templates, Mutation, Genetic, and Constraint-based.

6. Learning-based. Defines if machine learning is used to augment the repair process. Possi-

ble values are Yes, and No.

The mentioned practical APR solutions are categorized in Table 3.2 according to the follow-

ing characteristics:

1. Fault Identification: Practical APR tools need to identify faults to trigger APR processes

continuously. This identification process requires some form of infrastructure or artifact to

integrate with the SDLC. Values include CI, and Bug Reports.

2. Fault Localization: APR techniques used by the solution can implement FL using different

methods. Possible values are IR-based, Search-based, Dynamic or Multiple, if the solution

applies multiple techniques.

3. APR Method: APR research contains a variety of methods to generate patches, as explained

in Section 2.1. Possible values are Templates, or Multiple, if the solution applies multiple

techniques.
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Table 3.2: Categorization of practical APR solutions within the SDLC software integration step

Solution
Fault

Identification1
Fault

Localization
APR

Method
Patch Verification Learning

-based
Patch

Selection6Regression Dynamic

iFixR [31] Bug Reports IR-based Templates Yes No No Heuristic
Repairnator [50] CI Multiple2 Multiple3 Yes No No Manual
SapFix [39] CI Dynamic4 Multiple5 Yes Yes Yes Heuristic
Fix2Fit [22] CF Dynamic Mutations Yes Yes No N/A

1 Continuous Integration (CI), Continuous Fuzzing (CF)
2 NPEFix [19] uses dynamic analysis, Nopol [53] and Astor [40] use spectrum-based FL.
3 NPEFix [19] and Astor [40] use heuristics-based methods, Nopol [53] uses constraint-based methods.
4 Information about FL is vague, other than that it is performed by Sapienz [38], a search-based testing tool.
5 Two heuristics-based patch generation methods: templates and mutation operators.
6 Not Applicable (N/A)

4. Regression Patch Verification: Defines if generated patches are verified using regression

testing. Regression testing verifies that positive tests keep passing after the changes (i.e.,

applying the generated patch). In addition, fault-triggering tests should pass to ensure the

fault is fixed by the patch. Possible values are Yes, and No.

5. Dynamic Patch Verification: Defines if generated patches are verified with dynamic anal-

ysis. This patch verification method includes attempting to reproduce crashes or executing

the patched program. It does not refer to using dynamic analysis to localize faults. Possible

values are Yes, and No.

6. Learning-based: Defines if machine learning is used to augment the repair process. Possi-

ble values are Yes, and No.

7. Patch Selection: Verified patches have to be reported to developers to close the program

repair cycle. A fault can result in many candidate patches, which may or may not be cor-

rect. Selecting the most plausible patches avoids spamming developers with suggestions and

avoids suggesting incorrect or less desirable patches. Values include Manual, and Heuristic.

3.3.4 Analysis

This section describes the conclusions obtained by analyzing the techniques described in Section

3.3.1 based on the categories established in 3.3.3 and the Research Questions defined in 3.1.

3.3.4.1 Categorical Analysis of APR Techniques

Date Between 2012 and 2016, APR research is focused on C, but eventually transitions to Java.

Target Language C and Java are the two dominant languages preferred by the research com-

munity when it comes to implementing APR techniques.



3.3 Results 17

Scalability The majority of techniques have acceptable (medium) scalability, being capable of

generating patches for large-scale projects. We can therefore conclude that APR techniques can

be executed in industrial-scale software.

Fault Localization Spectrum-based FL is the most predominant, being used in 10 out of 13 test-

based techniques. AllRepair [47] does not have fault localization. Two APR techniques use stack

traces (Dynamic Analysis) to localize faults, while GetAFix [8] uses results from Static Analysis.

APR Method 10 out of 13 test-based techniques use a generate-and-test method rather than

constraint-based methods. Within generate-and-test, there is no dominant traversal heuristic or

patch generation method.

Learning-based The majority of tools do not rely on machine learning during the repair process.

The tools that rely on it use it to augment specific steps in a traditional generate-and-test repair

loop, rather than perform end-to-end repair.

3.3.4.2 Categorical Analysis of practical APR solutions

Fault Identification Two of the implemented solutions use faults discovered during CI as the

entry point for APR. Fix2Fit uses faults discovered by Continuous Fuzzing, while iFixR [31]

suggests feeding bug reports to APR.

Fault Localization Repairnator [50] defers FL to the individual APR techniques it supports,

while SapFix [39] defers FL to Sapienz [38]. Fix2Fit [22] gathers runtime information, by instru-

menting the target program, to localize faults. iFixR [31] proposes information retrieval to localize

faults based on the information present in bug reports.

APR Methods Generate-and-test is the predominant method, with Nopol [53] being the only

APR technique using constraint-based methods. Within generate-and-test, there is no dominant

traversal heuristic or patch generation method.

Patch Verification All solutions rerun tests to ensure the patch does not regress the program. In

addition, Fix2Fit [22] generates new tests to filter out overfitting patches, and SapFix [31] attempts

to reproduce crashes to verify the fault is no longer present.

Learning-based SapFix [31] is the only solution that integrates learning-based methods in its

APR process.
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Figure 3.1: Evolution of Target Languages used by APR techniques

Patch Selection Repairnator [50] is the only solution which uses human analysts to filter patches

before suggesting them to developers. Fix2Fit [22] does not fully integrate the SDLC loop, with

no mention on how patches are selected and suggested to developers. The other solutions propose

fully automated patch selection, using heuristics to prioritize them.

3.3.4.3 Research Questions

The survey research questions presented in Section 3.1 guided the research of this literature review

to obtain relevant answers regarding the current state of APR and its integration with the SDLC.

We now revisit these questions and provide our findings:

• SRQ1 What current, relevant open-source APR techniques exist? We have found 14 APR

techniques, 13 of which have publicly available implementations, as described in Section

3.3.1 and presented in Table 3.1. Most tools do not rely on learning-based methods and use

a wide range of methods and heuristics to generate or infer patches.

• SRQ2 Which target languages are preferred by the techniques found in SRQ1? Table 3.1

provides an overview of the main characteristics of the found APR techniques. C and Java

are the two languages targeted by these techniques. Comparing the paper publication dates

with the target language, we notice that C was used in papers between 2012 and 2016,

while Java was used from 2016 forward. Figure 3.1 shows this, suggesting that the research

community started with C but eventually started using Java for their APR research.

• SRQ3 How fitting are the techniques found in SRQ1 to be applied in practical large-scale

projects? Table 3.1 provides an overview of the main characteristics of the APR techniques

found. Most of them claim to perform their function in large-scale projects. Among them,
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two techniques stand out: (i) Angelix, which can repair faults in multiple locations, and (ii)

GetAFix, whose authors claim to have performance equivalent to a static analysis tool. APR

techniques with these characteristics are successfully applied in practical APR solutions, as

described in Section 3.3.2. However, aside from GetAFix, which is integrated with SapFix,

these APR techniques have not been validated in practical settings, relying on benchmarks

and other controlled experiments to back their claims.

• SRQ4 What solutions exploring the application of APR in the software integration step of

the SDLC exist? We have identified four practical solutions, described in Section 3.3.2, that

explore the integration of APR with the SDLC. Three entry points are explored: CI builds,

continuous fuzzing, and Bug Reports. Two of these solutions complete the SDLC loop,

with patches being suggested to developers by proposing a limited ranked set or manually

filtering them previous to a pull request.

3.4 Summary

Section 3.1 specifies the research questions this literature review aims to answer, while Section

3.2 described the followed procedure. In Section 3.3 we describe the results, followed by their

categorization in Section 3.3.3, and their analysis in Section 3.3.4.

The results show that APR research is not focused on practical applications, with most APR

techniques being validated in controlled environments. There is little support for the practical

application of APR, with only three solutions being implemented, two of them fully integrated

into the SDLC, and one of them being proprietary. Chapter 4 goes into more detail on the research

gaps briefly introduced here.
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This chapter describes the problem tackled by this dissertation, presenting planned features,

the hypothesis we aim to validate, and research questions to guide our dissertation. Section 4.1

mentions research gaps identified in the current state-of-the-art. Section 4.2 presents our hypoth-

esis, and Section 4.3 defines the scope and objectives for the solution. Section 4.4 proposes re-

search questions to guide development towards validating the hypothesis and proposed objectives.

Finally, this chapter is summarized in section 4.5.

4.1 Research Gaps

In Chapter 3, we present a literature review where we identify 14 APR techniques. Besides

GetAFix [8], whose implementation is not publicly available, neither of these techniques were

validated in practical environments. To our knowledge, such techniques were not applied and

evaluated in practical use-cases, like integrating with the SDLC, leading to a risk of them overfit-

ting their respective benchmarks and experiments.

Supporting the claim that APR research is not focused in practical settings, is that, in the liter-

ature review, only four practical APR solutions proposing the integration of APR with the SDLC

during software integration are identified: Repairnator [50], iFixR [31], Fix2Fit [22], and SapFix

[39]. iFixR [31] is not evaluated in practical environments, and therefore lacks empirical support.

Fix2Fit [22] does not fully integrate with the SDLC, as produced patches are not suggested to

developers to complete the loop. SapFix [39] is heavily coupled with Facebook’s toolchain, and
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its implementation is not publicly available. With Repairnator [50], the following issues were

identified:

1. Effective coverage of faults: To maximize the adoption and benefits of APR, it should

cover a wide range of faults. Repairnator [50], in its first experiment, could only reproduce

30.82% of selected bugs.

2. Effective correct patch generation: Over the course of two experiments, Repairnator pro-

cessed 6173 faults and, after manual filtering, drafted 12 correct patches [43]. This result, in

our opinion, is an indicator that APR, and its practical application, is immature. Even con-

sidering the bottlenecks due to the fault identification, filtration, and reproduction processes,

it is possible that APR techniques are underperforming in this more practical environment.

3. Friendly patch suggestion: From the 12 drafted patches, which were reported to develop-

ers, only 5 of them were accepted [43]. Repairnator reports patches by creating a plain pull

request containing the patch without any further information pertaining the patch, the fault,

or the underlying context. APR solutions integrated with the SDLC should be able to com-

municate information to its peers when suggesting patches. Interaction with the developers

is a key component of the patch review and integration process.

From our analysis of the current state of APR, we are led to believe that its effectiveness

when fully integrated in the SDLC is not clear since: (i) most APR techniques are validated

in controlled environments, instead of practical ones; (ii) there are few proposals exploring the

practical application of APR; and (iii) solutions which explore a complete end-to-end integration

with the SDLC are close-sourced or have unsatisfying results.

4.2 Hypothesis

APR applied with continuous fuzzing, as a means of integration with the SDLC, shows potential

due to fuzzing being a software testing technique for finding faults that (i) generates test-cases for

the fuzzed target, which can also be fed into APR, and (ii) can be used within the APR workflow

to improve the patch filtration and validation process, as performed by Fix2Fit [22]. Taking this

into consideration, along with the gaps detected in APR research, this dissertation is built around

the following hypothesis:

"Using fuzzing as a source of faults and of test cases allows for APR techniques to be

effective when integrated with the SDLC."

We define the effectiveness of an APR technique as the ability to generate at least one correct

patch for a given fault. As a result, the effectiveness of an APR technique can be measured and

compared against other techniques, for a given set of faults, by the percentage of faults with at

least one correct patch generated.
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This effectiveness does not correspond to the effectiveness of fully integrating APR with the

SDLC as a whole, since that depends on more factors such as the effectiveness in capturing de-

tected faults into APR, and the effectiveness in suggesting a generated correct patch to maintainers.

While these aspects, necessary for APR integration, are tackled, the validation focus is on the APR

techniques themselves within this practical context, since we believe that to be one of the gaps in

APR research.

4.3 Scope

The goal of this dissertation is to implement a workflow leveraging coverage-guided fuzzing to

generate fault-triggering test cases that are fed to an APR technique to generate a patch. Gener-

ated patches are then suggested to developers using pull requests managed by a GitHub Bot that

interacts with developers using textual commands. The following aspects are not a part of this

dissertation’s scope:

1. Exploring other fuzzing methods such as blackbox and structure-aware fuzzing are not

within the scope. However, using different coverage-guided fuzzing engines such as AFL++

[20] and LibFuzzer [2] are considered within the scope.

2. Implementing a new APR technique is out of the scope of this thesis. Since there is a

decent range of APR techniques publicly available, for instance Fix2Fit [22] which was

developed with fuzzing in mind and has been used in faults discovered by fuzzing, there is

little motivation to implement a new APR technique. By using an existing technique, effort

can be dedicated in the fuzzing and SDLC integration.

4.4 Research Questions

To guide the development of this dissertation towards the validation of the proposed hypothesis,

we present the following research questions (RQs):

• RQ1 Are the selected APR techniques capable of generating correct patches when applied

in faults discovered by fuzzing? The effectiveness of APR techniques is determined by their

ability to generate correct patches. If APR techniques cannot generate correct patches, then

they are not effective.

• RQ2 What types of faults, in the context of fuzzing, are selected APR techniques more ca-

pable of generating correct patches? Typically, the faults discovered by coverage-guided

fuzzing are security vulnerabilties, in particular, memory corruption faults (e.g., buffer over-

flows, use after free, double free). Identifying the faults where APR techniques appear to

more effectively repair may enable further research and discussion about why it is more

effective, and how APR techniques can be adapted to better fit other fault types.
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• RQ3 What are the main challenges in applying APR to projects within the context of fuzzing?

Coverage-guided fuzzing is typically leveraged by low-level libraries handling file formats,

cryptography, and operating system utilities (e.g., OpenSSL1, Libxml22, coreutils3). These

projects are more environment-dependent, and it may be troublesome to integrate them with

APR techniques. Such challenges directly affect the viability of APR and, as a result, its

effectiveness.

4.5 Summary

Section 4.1 mentions some research gaps present in the current state-of-the-art of APR, particu-

larly in its practical application. Section 4.2 presents our hypothesis, and how we measure APR

effectiveness. Section 4.3 defines the scope and main goal, while Section 4.4 proposes research

questions to guide development towards meeting the goal and validating the proposed hypothesis.

1OpenSSL: https://www.openssl.org/
2The XML C parser and toolkit of Gnome: http://xmlsoft.org/
3Coreutils - GNU core utilities: https://www.gnu.org/software/coreutils/

https://www.openssl.org/
http://xmlsoft.org/
https://www.gnu.org/software/coreutils/
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With the goal of validating our hypothesis, defined in Section 4.2, we need first to investigate

its feasibility. To this purpose, we divide the problem into a sequence of steps so that we can start

our investigation by tackling each sub-problem independently. In order to do a full integration of

APR with the SDLC, in particular with fuzzing, we identify the following steps:

1. Continuous Fault Identification: The first step in achieving full integration with the SDLC

is to identify occurring faults and feed them to APR continuously. We want to leverage

coverage-guided fuzzing to identify faults and collect generated test cases for the APR step,

which requires experimenting with fuzzing engines, automating the fuzzing process, kick-

starting the fuzzing process when a new software build is available (e.g., CI build), and

collecting the data generated by fuzzing sessions to feed into the next step.

2. Automated Program Repair: This is the typical APR process of generating patches for a

software fault, given the faulty project source and a set of tests as specification. While we

will be using one or more existing APR techniques for this purpose, we need to experiment

with selected techniques and automate the process of adapting and configuring each APR

tool for the desired target project and set of test cases.

3. Patch Suggestion: When a patch is generated, it has to be proposed to developers so that

it can be integrated with the corresponding project. Depending on the quality of patches

produced by APR, we may need an intermediate step that filters patches unfit for integra-

tion. As we mention in Section 4.1, patch suggestion has to be interactive and facilitate the

integration process. Implementing this step requires thinking about the suggestion process

and about what functionality the developer needs to support it.
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We start by exploring, in Section 5.1, the patch suggestion problem by describing the con-

cept and initial development of a GitHub bot that automates the creation and management of pull

requests with generated patches. Then, in Section 5.2, we describe some experiments we made

using simple synthetic programs to get familiar with the usage of APR techniques. Next, in Sec-

tion 5.3, we present our initial experimentation with fuzzing and start developing a solution to

automatically fuzz projects. Finally, we present an overview of our findings in Section 5.4, which

motivates us to halt further development and develop a study instead.

5.1 Patch Suggestion through a GitHub Bot

We start by tackling the issue of suggesting patches generated by APR to developers and integrat-

ing them in their respective projects. Typically, in the current state of the SDLC, software changes

are integrated using pull requests. To this end, we decide to conceptualize and develop a bot capa-

ble of creating and maintaining pull requests in a version-control repository hosting service. We

choose GitHub since (i) Git is one of the more popular version control systems, (ii) GitHub has

a large open-source community, and (iii) GitHub allows for the creation of apps to integrate with

GitHub1.

In Section 5.1.1 we specify requirements that the GitHub bot needs to support to provide

developer-friendly patch suggestion and integration services using pull requests. Then, in Sec-

tion 5.1.2, we present our initial implementation of the bot before canceling further development,

reasons for which are explained in Section 5.4.

5.1.1 Objectives

In order to suggest and facilitate the integration of patches to project maintainers using pull re-

quests, the GitHub bot should be able to:

• Conform to existing protocols for suggesting patches such as following a pull request

template and project-specific validation checklists before suggesting;

• Assume responsibility for the suggested changes, which corresponds to being capable of

keeping a pull request updated with the merging branch without breaking its changes, and

merging the pull request on demand;

• Interact with peer developers to discuss and integrate suggestions, which is the ability

to request or bump reviewers, recognize and integrate external code review suggestions, and

giving/requesting feedback to/from developers.

The requirements specified above can be represented as an activity diagram capturing the flow

of a pull request from the bot’s perspective, as depicted in Figure 5.1.

1About GitHub Apps: https://docs.github.com/en/developers/apps/getting-started-with-apps/
about-apps

https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
https://docs.github.com/en/developers/apps/getting-started-with-apps/about-apps
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Figure 5.1: Activity diagram of a pull request workflow from the bot’s perspective

5.1.2 Initial Implementation

We start implementing the bot in TypeScript using Probot2, a framework for building GitHub

Apps using Node.js3. Using Probot, we can easily interact with GitHub’s API to manage Pull

Requests. During an initial state of the implementation, the bot is capable of creating pull requests,

processing pull request comments, and making a comment requesting feedback when a created

pull request is closed.

While we were implementing the ability to rebase the pull request, which required keeping

track of git repositories and interacting with git programatically (for this purpose, we used Node-

Git4, which provides Node.js bindings for libgit25), developments in other sub-problems under

exploration leads us to cancel further development, as explained in Section 5.4.

5.2 Early Experiments with Angelix

In order to gain experience on how to use APR techniques and evaluate their ability of being

applied in projects to generate patches, we develop a set of simple programs in C (coverage-

2Probot - GitHub Apps to automate and improve your workflow: https://probot.github.io/
3Node.js - JavaScript runtime built on V8 engine: https://nodejs.org/en/
4NodeGit - Asynchronous native Node bindings for libgit2: https://www.nodegit.org/
5libgit2: https://libgit2.org/

https://probot.github.io/
https://nodejs.org/en/
https://www.nodegit.org/
https://libgit2.org/
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1 @@ -73,4 -73,4 @@ main(int argc, char const *argv[])
2 printf("Prove you are admin.\n");
3 - fgets(input, 64, stdin);
4 + fgets(input, 20, stdin);
5

6 if (strcmp(input, check) == 0)

Figure 5.2: Patch diff file for the small program with a stack overflow vulnerability (see Appendix
A.1)

guided fuzzing is mostly used in C/C++ projects) to try out an APR technique. We choose to

experiment with Angelix [42], as it is the most recent APR technique and appears to have a more

robust implementation from the set of APR techniques listed in Section 3.3.1 targetting C.

We start experimenting with Angelix on a synthetic program that can be exploited using stack-

based buffer overflow (see Appendix A.1). This program contains the function doAdminStuff

that should only be accessed with a credential. However, due to a fault in the fgets function

call, this program is vulnerable to a controlled overwrite of the stack by at most 43 bytes. This

vulnerability can be exploited to execute doAdminStuff without knowing the credential in two

different ways:

1. Override the check buffer to represent the exact string as input, thus passing the string

comparison in line 17. This exploit can be achieved using the payload generated by the

following command as standard input: python -c 'print "\x00" * 40'.

2. Override the return address of main with the address of doAdminStuff. This requires first

getting the address of the target function and the offset between the return address and the

input buffer (stack pointer).

The fix for this fault is simple, it consists of changing the second argument of fgets from 64

to 20 (the size of input), as presented in Figure 5.2. Other partial fixes include adding boundary

checks or using strncmp, but these fixes only prevent the first exploit from being successful, not

the second one, as the overflow still occurs.

We attempt to run Angelix to fix this fault automatically for us. To this end, we first instrument

the program by injecting macros specifying the output of the program, and its code reachability.

Figure 5.3 presents a diff between the program and a instrumented version of it for Angelix. We

decide that specifying reachability is sufficient for the purposes of our program, since the under-

lying fault relates to which parts of the code are reached, rather than what output is produced.

Second, we need to setup a test oracle script (see Figure 5.4), for executing three tests to be fed

into Angelix: (i) two positive tests representing the expected behavior when the right and wrong

credential is input, and (ii) a negative test exploiting the stack buffer overflow vulnerability. Fi-

nally, we need to specify the correct reachability of the negative test, so Angelix knows the correct
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1 @@ -2,9 +2,15 @@
2 #include <string.h>
3

4 +#ifndef ANGELIX_OUTPUT
5 +#define ANGELIX_OUTPUT(type, expr, label) expr
6 +#define ANGELIX_REACHABLE(label)
7 +#endif
8 +
9 void doAdminStuff()

10 {
11 printf("Here's the special cookie for admins only.\n");
12 + ANGELIX_REACHABLE("admin");
13 }
14

15 int main(int argc, char const *argv[])
16 @@ -18,6 +24,7 @@ main(int argc, char const *argv[])
17 doAdminStuff();
18 } else {
19 printf("Not admin, go away.\n");
20 + ANGELIX_REACHABLE("notadmin");
21 }
22

23 return 0;

Figure 5.3: Diff file between the small program with a stack overflow vulnerability (see Appendix
A.1) and its instrumented version

1 #!/bin/bash
2

3 case "$1" in
4 admin)
5 echo "trustmeimadmin" | $ANGELIX_RUN ./vuln1 \
6 | grep "Here's the special cookie for admins only." &>/dev/null
7 ;;
8 notadmin)
9 echo "notadmin" | $ANGELIX_RUN ./vuln1 \

10 | grep "Not admin, go away." &>/dev/null
11 ;;
12 shouldnotbeadmin)
13 python -c 'print "\x00" * 40' | $ANGELIX_RUN ./vuln1 \
14 | grep "Not admin, go away." &>/dev/null
15 ;;
16 esac

Figure 5.4: Test oracle script with two positive tests and one negative test
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Figure 5.5: Example of the AFL++ status screen (Reprinted from [1])

behavior. Running Angelix with this configuration results in no patch being generated, with FL

not locating any suspicious statements. We tuned the program and Angelix command line options

to try to obtain a better result, however we were never able to produce a correct patch.

Angelix’s inability to generate a patch for this scenario led us to start doubting of current

APR techniques being able to be applied in practice, which eventually motivated us to cancel the

development of a practical APR workflow integrated with the SDLC, as mentioned in Section 5.4.

5.3 Early Experiments with Coverage-guided Fuzzing

To become familiar with coverage-guided fuzzing and the process of identifying faults through

fuzzing, one of the identified steps in integrating APR with the SDLC, we decide first to select

a popular coverage-guided fuzzing engine and, in Section 5.3.1, experiment it with small syn-

thetic programs. Then, in Section 5.3.2, we describe our initial planning and development of an

automated fuzzing solution.

5.3.1 Fuzzing with AFL++

AFL++ [1] is an improved fork of AFL [54] providing better performance, more mutators, and

better instrumentation. We chose this fuzzing engine due to its effectiveness and ease of use.

AFL++ presents a user interface providing information about the status of the ongoing fuzzing

session (Figure 5.5), and fuzzing sessions can be paused and resumed freely. We start by selecting

a set of three target programs (see Appendix A), each suffering from a specific security weakness,

to experiment with AFL++ and generate a test case triggering the fault for each target:
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• Stack Buffer Overflow: Program suffering from a stack-based buffer overflow vulnerabil-

ity (described in Section 5.2).

• Divide by Zero: Program that calculates the float division of two numbers. Division by

zero leads to undefined behavior.

• Format String: Program that prints a user-controlled format string, which can be exploited

to read or overwrite arbitrary memory6.

Each program (i.e., fuzz target) is then instrumented for fuzzing, including a sanitizer that

crashes the program when a fault is detected (e.g., an AddressSanitizer7 detects memory errors).

Then, the fuzz target is executed with a command-line utility (afl-fuzz) to start a fuzzing session.

This configuration process is better described in Section 6.2.4, as part of a description of the

planning and development of a combined fuzzing–APR process.

For all three programs, we are able to initiate a fuzzing session and generate a fault-triggering

input after a short time. As expected, these payloads expose the fault but do not exploit it. For

example, in the program with a stack buffer overflow weakness (Appendix A.1), the generated

payload does overwrite the buffer but it does not bypass the credential check, which means that

fuzzing can be used to generate a negative test to feed into APR, but the oracle has to be based

on whether the fault is triggered or not (i.e., the sanitizer detects the fault), rather than program

behavior/output.

5.3.2 Automating the Fuzzing Process

Following our success in fuzzing programs manually, we start planning and developing an au-

tomated workflow for triggering a fuzzing process and capturing fault-triggering test cases. We

focus on automating fuzzing with AFL++ but design the system to be extensible and support

multiple fuzzing engines and target languages. Additionally, the fuzzing process will have to be

integrated with APR and the GitHub bot described in Section 5.1 eventually. With these require-

ments in mind, we develop an independent service responsible for the fuzzing process, listening

for messages from a broker to start and stop fuzzing sessions.

As displayed in Figure 5.6, to start a fuzzing session, we provide the fuzzing service with the

fuzz target’s root source folder and executable paths, and with the language and build system it

uses. There can only be a single active fuzzing session for a given project (root source folder),

so a message with this field can be used to identify which fuzzing session to stop (see Figure

5.7). Figure 5.8 shows a class diagram of the fuzzing service. The fuzzing configuration and

execution process is deferred to the Engine class, which is selected based on the target language

by the EngineFactory class (we only support AFL++ at the moment). Additionally, there is

a CrashMonitor responsible for monitoring the file system for new fault-triggering test cases

generated during the fuzzing session.

6Exploiting Format String Vulnerabilities: https://cs155.stanford.edu/papers/formatstring-1.2.pdf
7AddressSanitizer Documentation: https://clang.llvm.org/docs/AddressSanitizer.html

https://cs155.stanford.edu/papers/formatstring-1.2.pdf
https://clang.llvm.org/docs/AddressSanitizer.html
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{
"fuzz_target": "project-folder/",
"fuzz_binary": "fuzzer",
"language": "C/C++",
"build_system": "makefile"

}

Figure 5.6: Example of a message to start a new fuzzing session

{
"fuzz_target": "project-folder/"

}

Figure 5.7: Example of a message to stop an ongoing fuzzing session

CrashMonitor

Fuzzer

fuzz_target

language

build_system

fuzz_binary

engine: Engine

crash_monitor: CrashMonitor

start()    

stop()

on_crash()

EngineFactory

by_language()

Engine

instrument_target()

prepare_corpora()

run()

stop()

AFLPlusPlusEngine

Figure 5.8: Class diagram of the fuzzing service
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During this stage of the implementation, we are able to start a fuzzing session and monitor

generated fault-triggering test cases. We repeat the experiments described in Section 5.2, but

this time using the tests generated by fuzzing instead of manual tests. The results are similarly

unsatisfactory, motivating us to stop development as mentioned in Section 5.4.

5.4 Overview

In Section 5.1 we describe the development of a GitHub bot for suggesting patches. Meanwhile,

we perform APR experiments using Angelix, described in Section 5.2. Finally, in Section 5.3, we

describe our initial experiments with AFL++ and the automation of the fuzzing process. Unfortu-

nately, the results of our APR experiments indicate that current APR techniques are not suitable

to be applied with fuzzing in practical use cases, meaning we would have to develop our own

APR technique to perform the intended APR integration with fuzzing and the SDLC. Since this

development is a bit out of scope and, more importantly, in our opinion, cannot be achieved within

the timeframe of this dissertation, we opt for stopping current development and start an empirical

study, described in Chapter 6, to better evaluate the current effectiveness of APR techniques when

integrated with fuzzing and applied in more practical scenarios.
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In Chapter 5 we present our initial planning and development of an integrated fuzzing and

APR solution, as well as our initial experimentation with coverage-guided fuzzing and APR tech-

niques. From the results of our experiments with APR, we realize that these APR techniques are

not currently viable enough to be applied in practical use-cases, so we decide to, instead of imple-

menting a solution, make an empirical study about APR effectiveness when applied with fuzzing.

In Section 6.1 we present our motivation and goals with the empirical study, followed by Section

6.2 which describes how this study is planned out and the experimentation process. The results

of our experiments are presented in Section 6.3, and in Section 6.4 we present the results of our

replication of Angelix’s original experiments [42]. Section 6.5 presents a list of identified threats

towards the validity of our results. Finally, Section 6.6 discusses and analyzes the results in the

context of validating/invalidating our hypothesis and answering the research questions proposed

in Chapter 4.

6.1 Objectives

The initial experimentation of APR techniques on synthesized targets, described in Section 5.2,

revealed a lack of effectiveness when applied to simple, synthesized scenarios. This observation

brought up some cynicism on the capabilities of APR techniques, motivating more thorough ex-

perimentation to assess APR effectiveness when applied to faults discovered by fuzzing. Towards
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this end, we conceptualize a fuzzing-powered APR process, where projects are fuzzed to repro-

duce a fault, and an APR technique is then run to generate a patch. A key rationale behind this

process is that it can be then applied in practice, so that experiments based on it capture the ef-

fectiveness of APR techniques as if they were integrated with the SDLC. Adapting the process for

a full SDLC integration would be achievable, for example, by kickstarting the process with new

integration builds and suggesting generated patches to developers via pull requests; or by leverag-

ing existing continuous fuzzing jobs to replace the fuzzing step, and link generated patches to the

corresponding fuzz issue mentioning the identified fault.

With the goal of evaluating the effectiveness of APR techniques, we apply this process to

a matrix of programs and APR techniques. This process is applied twice, one where generated

test cases are fed to APR, and another one where generated test cases and the project’s tests are

fed to APR. The set of programs each reproduce a security fault and are further categorized as

synthetic or real. Synthetic programs (see Appendix A) are simple, custom-made fuzz targets with

the purpose of expressing and capturing a common security weakness (e.g., stack-based buffer

overflow, externally-controlled format string, divide by zero). Real programs are source-code

of specific releases of software libraries, coupled with a fuzz target, that together allows for the

reproduction of a known security vulnerability (e.g., Heartbleed1). The set of APR techniques are

selected from the APR techniques and solutions identified in Section 3.3. Applying this process

to each unique program–APR technique pair in the matrix allows for evaluating and comparing

different techniques over different types of faults, helpful to test our hypothesis and answer the

research questions defined in Chapter 4.

6.2 Planning

Creating a process combining fuzzing and APR similar to a practical environment requires careful

planning to ensure the results are unbiased and best represent the capabilities of APR techniques

when integrated with the SDLC. Section 6.2.1 presents an high-level overview of this process,

explaining both its components and the software modules in each. Section 6.2.2 goes into detail

on the security vulnerabilities selected for the study, while Section 6.2.3 specifies the selection

process of APR techniques for the study. Section 6.2.4 explains how the fuzzing engines are

configured, and Section 6.2.5 explains how the APR techniques are setup and configured for the

purposes of this experimentation.

6.2.1 Joint Fuzzing–APR Process

For each vulnerability and APR technique, we produce patches following a process comprising

two components in a pipeline with a fuzzing step followed by an APR step. The fuzzing step lasts

until a fault-triggering test case is generated. This test case, along with all the test cases generated

in the fuzzing step, are then fed to an APR technique. Figure 6.1 presents an high-level overview

1The Heartbleed Bug: https://heartbleed.com/

https://heartbleed.com/
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Figure 6.1: High-level architecture of the fuzzing–APR process

of this process. The fuzzing step of the process is the same and only performed once for each

set of projects/faults. The APR step of the process is done once for each APR technique, using

the gathered fuzzing information of the respective project/fault. Arrow lines represent data flows

(inputs and outputs) between a software module and an artifact, while dashed lines represent the

linking of software modules. Each software module is described as follows:

Fuzz Target and Faulty Program: The fuzz target serves as an entry point for the faulty pro-

gram. The fuzz target may be the program under test itself, but, since most programs are software

libraries, it usually contains a series of function calls to test certain behavior. As a result, it is

common for a project to maintain multiple fuzz targets. For our study, we use a single fuzz target,

the one that reproduces the desired fault.

Sanitizers: Sanitizers are compiler instrumentation modules that allow for the detection of faults

during runtime. For fuzzing purposes, popular sanitizers are the AddressSanitizer2, capable of

detecting memory and addressing issues such as out-of-bounds access to the heap or stack, and

the UndefinedBehaviorSanitizer3 for detecting null pointer, integer overflow, and type conversion

issues.

Fuzzing Engine: The fuzzing engine is responsible for handling the fuzzing feedback loop. The

fuzz target and faulty program are first instrumented with fuzzer instrumentation and sanitizers to

2AddressSanitizer: https://clang.llvm.org/docs/AddressSanitizer.html
3UndefinedBehaviorSanitizer: https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html


38 Empirical Study

Table 6.1: List of synthetic programs based on their vulnerability types

Program Description Vulnerability Type CWE-ID Exploitation Impact

Restricted Access Stack Overflow CWE-121 Unauthorized access to resource
Brainfuck Interpreter Heap Overflow CWE-122 Read out-of-bounds memory
Division Operation Divide by Zero CWE-369 Unexpected output
String Customizer Format String CWE-134 Read out-of-bounds memory

Useless Computation Integer Overflow CWE-190 Infinite Loop

allow the fuzzing engine to control and monitor its execution. An initial corpus (set of test cases)

is initially fed to the fuzzing engine, and, during execution, generated test cases that cover new

paths are added to the corpus. When an execution crashes, typically due to a fault detected by a

sanitizer, the fuzzing engine reports back the fault-triggering test case.

APR Technique: The APR technique generates patches based on an oracle and a set of test

cases. In regards to the oracle, we typically use the exit code of the executable (i.e., the test passes

if the exit code is zero). In some synthetic programs, we match the standard output against an

expected substring.

6.2.2 Project and Fault Selection

As mentioned in Section 6.1, there are two types of projects/faults: (i) synthetic programs with se-

curity weaknesses and (ii) real-life projects with known vulnerabilities. Including both these kinds

of projects allows us to evaluate the effectiveness of APR in both simple and complex industrial

programs. For the synthetic programs, we use the programs described in Appendix A. The list of

synthetic programs is presented in Table 6.1. Each program instantiates a unique security weak-

ness, as defined in the Common Weakness Enumeration (CWE) list4. The program description and

vulnerability exploitation impact description provide some context on the synthesized programs.

Some vulnerabilities have a direct security impact, while others facilitate further exploits.

Table 6.2: List of real-life vulnerabilities and respective projects

Vulnerability Type Project CVE-ID NVD CVSS v3 Base Score1

Heartbleed OpenSSL 1.0.1f CVE-2014-0160 7.5 (High)
Stack Overflow GnuTLS 3.5.7 CVE-2017-5336 9.8 (Critical)
Use After Free LibPNG 1.6.36 CVE-2019-7317 5.3 (Medium)
Heap Overflow FFmpeg 4.2.2 CVE-2020-12284 9.8 (Critical)

1 National Vulnerability Database (NVD) Common Vulnerability Scoring System (CVSS) Version 3: https:
//nvd.nist.gov/vuln-metrics/cvss

4CWE List Version 4.4: https://cwe.mitre.org/data/

https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://cwe.mitre.org/data/
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For the real-life projects, one of the vulnerabilities we include is the Heartbleed bug5 as it

is reported to have been automatically repaired by Angelix [42]. Heartbleed is a vulnerability

present in early versions of OpenSSL 1.0.1. The fault is present in OpenSSL’s implementation

of the Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) heartbeat

extension (Request For Comments [RFC] 65206). It can be exploited to leak memory contents

from the server to the client or from the client to the server, is classified as a buffer over-read of

the heap, and can be patched by adding a bounds check. Figure 6.2 shows a diff of the patch made

by the maintainers of OpenSSL for TLS7. Figure 6.3 shows the patch generated by Angelix, as

claimed by the authors [42]. Both patches are semantically equivalent, and the Angelix patch is

an example of a patch that would be considered correct for the objectives of this study. We select

more known vulnerabilities from a list of all fixed issues in OSS-Fuzz8. By using faults discovered

in OSS-Fuzz, we can find the faulty project version, the fuzz target and configuration (more details

in Section 6.2.4), and the patch produced by developers. The full list, presented in Table 6.2, is a

result of a selection of OSS-Fuzz issues matching the following criteria:

1. The project’s source code is publicly available and written in the C language.

2. The issue has been assigned a record in the Common Vulnerability Enumeration (CVE)9.

3. The instantiation of the vulnerability identified in the issue has to be repairable in a sin-
gle code location. The vulnerability itself may be instantiated in multiple locations (e.g.,

Heartbleed is instantiated both in TLS and in DTLS), but the instantiation identified by the

fuzzing job described in the issue cannot require multi-location repair.

6.2.3 APR Technique Selection

In Section 3.3.1 we identify APR techniques with publicly available source code of the implemen-

tation, allowing them to be experimented with and, potentially, applied in practical applications.

We select the test-based tools targeting projects in C from this set of techniques, resulting in the

list of APR techniques presented in Table 6.3.

Fix2Fit [22], which integrates fuzzing in the APR process and is built on top of OSS-Fuzz [3],

was one of the prime candidates for our study. However, we were unable to configure and run the

tool properly. Initially, we had issues going around old and deprecated OSS-Fuzz infrastructure

to build the tool, which we overcame (the infrastructure was updated by the authors eventually,

too). However, due to incorrect instructions for running the tool, we do not know how to run it.

As a result, we do not know if errors brought up during execution attempts are due to a fault in

the tool, improper build/configuration, or because the executed script is not the right entry point.

5The Heartbleed Bug: https://heartbleed.com/
6RFC6520: https://datatracker.ietf.org/doc/html/rfc6520
7OpenSSL commit diff with the Heartbleed patch: https://git.openssl.org/gitweb/?p=openssl.git;a=

commitdiff;h=96db9023b881d7cd9f379b0c154650d6c108e9a3;
8List of verified (closed) issues in OSS-Fuzz: https://bugs.chromium.org/p/oss-fuzz/issues/list?q=

status%3AVerified&can=1
9CVE List: https://cve.mitre.org/cve/

https://heartbleed.com/
https://datatracker.ietf.org/doc/html/rfc6520
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db9023b881d7cd9f379b0c154650d6c108e9a3;
https://git.openssl.org/gitweb/?p=openssl.git;a=commitdiff;h=96db9023b881d7cd9f379b0c154650d6c108e9a3;
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=status%3AVerified&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=status%3AVerified&can=1
https://cve.mitre.org/cve/
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1 --- a/ssl/t1_lib.c
2 +++ b/ssl/t1_lib.c
3 @@ -2588,16 +2588,20 @@ tls1_process_heartbeat(SSL *s)
4 unsigned int payload;
5 unsigned int padding = 16; /* Use minimum padding */
6

7 - /* Read type and payload length first */
8 - hbtype = *p++;
9 - n2s(p, payload);

10 - pl = p;
11 -
12 if (s->msg_callback)
13 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
14 &s->s3->rrec.data[0], s->s3->rrec.length,
15 s, s->msg_callback_arg);
16

17 + /* Read type and payload length first */
18 + if (1 + 2 + 16 > s->s3->rrec.length)
19 + return 0; /* silently discard */
20 + hbtype = *p++;
21 + n2s(p, payload);
22 + if (1 + 2 + payload + 16 > s->s3->rrec.length)
23 + return 0; /* silently discard per RFC 6520 sec. 4 */
24 + pl = p;
25 +
26 if (hbtype == TLS1_HB_REQUEST)
27 {
28 unsigned char *buffer, *bp;

Figure 6.2: Official Heartbleed patch diff for the TLS implementation of OpenSSL

1 --- a/ssl/t1_lib.c
2 +++ b/ssl/t1_lib.c
3 @@ -2596,7 +2596,7 @@ tls1_process_heartbeat(SSL *s)
4 if (s->msg_callback)
5 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
6 &s->s3->rrec.data[0], s->s3->rrec.length,
7 s, s->msg_callback_arg);
8 - if (hbtype == TLS1_HB_REQUEST)
9 - {

10 + if (hbtype == TLS1_HB_REQUEST
11 + && payload + 18 < s->s3->rrec.length) {
12 unsigned char *buffer, *bp;

Figure 6.3: Angelix’s Heartbleed Patch diff for the TLS implementation of OpenSSL
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Table 6.3: List of selected APR techniques, and their primary attributes

Solution Target Language Fault Localization APR Method Learning Based

GenProg [25] C Spectrum-based Genetic
SemFix [44] C Spectrum-based Constraint-based
Angelix [42] C Spectrum-based Constraint-based
Prophet [36] C Spectrum-based Mutation Patch Ranking

We opened an issue10 to explain our situation to the authors, but we were unable to include this

technique in our study.

6.2.4 Fuzzing Configuration

The fuzzing step of the process is done once for each vulnerability, until a triggering test case is

found. We use two coverage-guided fuzzing engines, AFL++ [20] and Libfuzzer [2]. Despite the

differences in both implementations, their configuration comprises of three steps: (i) environment

setup, (ii) program instrumentation, and (iii) the fuzzing process.

Environment Setup Some projects have specific dependencies that have to be installed first

(e.g., GnuTLS depends on Nettle, a cryptographic library). In most cases, these dependencies can

be installed using the operating system’s native package manager, but when an older version is

required, they have to be built and installed from the source. As for the fuzzing engines, Libfuzzer

is included in Clang version 6.0 and above[2] and there is a docker image available for AFL++11.

Table 6.4 provides some information on the environment of each fuzzing engine.

Program Instrumentation In libFuzzer, a fuzz target is a C function with a reserved name that

typically receives bytes as input (test case) and does something in the library under test with it, as

shown in Figure 6.4. Compiling and linking the target with clang using the -fsanitize=fuzzer

flag will do the necessary instrumentation and link it with the libFuzzer library. The target can

also be built with sanitizers by adding them to the -fsanitize flag (e.g., "clang -g -O1

-fsanitize=fuzzer,address fuzz_target.cc" builds the fuzz target with AddressSanitizer)

[2].

Table 6.4: Fuzzing engine environment information

Environment Operating System Clang Version

LibFuzzer Kali Linux 2020.2 - WSL2 11.0.1-2
AFL++ Ubuntu 20.04.2 LTS 12.0.11

1 Version of afl-clang-fast and afl-clang-fast++.

10Fix2Fit issue: https://github.com/gaoxiang9430/Fix2Fit/issues/3
11AFL++ docker image: https://hub.docker.com/r/aflplusplus/aflplusplus

https://github.com/gaoxiang9430/Fix2Fit/issues/3
https://hub.docker.com/r/aflplusplus/aflplusplus
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1 // fuzz_target.cc
2 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data, size_t Size) {
3 DoSomethingInterestingWithMyAPI(Data, Size);
4 return 0;
5 }

Figure 6.4: Example of a fuzz target in libFuzzer (Extracted from [2])

AFL++ [20] supports libFuzzer’s fuzz target format, but it also supports a regular program

with a main function as the entry point. The target is instrumented using one of the available

AFL++ compilers. The most recommended compiler is with LLVM Link Time Optimization

(LTO) (afl-clang-lto/afl-clang-lto++), claimed to be faster and providing the best cover-

age for AFL++. However, this compiler requires clang version 11 or above, which was released

in 2020 and may not be available in all of the APR techniques’ environments. To avoid not be-

ing able to reproduce the identified fault in the APR environment due to using an older compiler

version, and consequently an older sanitizer version, we decide to use their second most recom-

mended compiler (afl-clang-fast/afl-clang-fast++). Sanitizers can be enabled by setting

environment variables when compiling the target (e.g., AFL_USE_ASAN=1will enable the Address-

Sanitizer) [1].

Some of the selected faults require the corresponding sanitizer to be configured with specific

options. In both fuzzing engines, this can be configured by setting the ASAN_OPTIONS environment

variable when running the corresponding fuzzer. Since the APR techniques do not support C++,

and most fuzz targets used by selected projects are in C++, we have to convert these fuzz targets

to C.

For each individual program, we use a specific fuzzing engine and a single sanitizer that detects

the corresponding fault:

• AFL++ with AddressSanitizer: CWE-121 (Stack Buffer Overflow), CWE-122 (Heap

Buffer Overflow), CWE-134 (Format String), CVE-2014-0160 (Heartbleed), and CVE-

2017-5336

• AFL++ with UndefinedBehaviorSanitizer: CWE-369 (Divide by Zero), and CWE-190

(Integer Overflow)

• LibFuzzer with AddressSanitizer: CVE-2019-7317, and CVE-2020-12284

The Fuzzing Process The fuzzing process requires first creating a corpus directory with several

test cases, each in its own file. Libfuzzer allows for an empty corpus directory, but this behavior

can be loosely replicated in AFL++ by creating a corpus directory with a single one-byte-sized

file.

Running the fuzzer with libFuzzer is done by running the compiled executable and passing

the initial corpus directory as a command-line argument. During execution, libFuzzer will add
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1 void read_file(char *filename, uint8_t **Data, size_t *Size) {
2 FILE *file = fopen(filename, "rb");
3 if (file == NULL) {
4 printf("Cannot open %s\n", filename);
5 exit(1);
6 }
7

8 fseek(file, 0, SEEK_END);
9 int program_size = ftell(file);

10 rewind(file);
11

12 *Size = program_size;
13 *Data = (uint8_t *) malloc(sizeof(uint8_t) * *Size);
14 fread(*Data, sizeof(uint8_t), program_size, file);
15 fclose(file);
16 }

Figure 6.5: read_line function that reads the contents and size of a file

generated test cases covering new paths through the code under test to this corpus directory. The

fuzzing process lasts indefinitely until a crashing test case is discovered [2].

AFL++ includes the command-line utility afl-fuzz to initiate the fuzzing process. It can be

started by specifying the input corpus directory, the output directory (which will hold the fuzzing

process state, including generated corpus and crashing test cases), the fuzz target binary, and the

input format (which specifies if test cases are fed into the fuzz target as, for example, standard input

or a command-line argument with the test case file path). The fuzzing process can be monitored

through the status screen, as shown in Figure 5.5 (see Section 5.3.1). Since AFL++ persists the

fuzzing process state in the output directory, it can be freely halted and resumed later. Unlike

libFuzzer, the fuzzing process has to be manually halted by the user in AFL++. On the top-right

corner of the status screen, the cycle counter (each cycle is a full pass of the test cases in the

queue) is conveniently color-coded to indicate if further execution is worth it or not. It is magenta

during the first cycle, becomes yellow if new finds are still being made in subsequent rounds, then

blue when that ends. When the fuzzing process continues lacking progress for some more time, it

finally becomes green. For our purposes, we terminate the fuzzing process when the cycle counter

turns green on synthetic cases. On real-life projects, we terminate the fuzzing process when a

crashing test case for the desired fault is discovered.

6.2.5 APR Configuration

The APR step of the process is done once for each APR technique and each faulty project. As

stated in Section 6.2.3, we use four APR techniques for each project: (i) Angelix [42], (ii) SemFix

[44], (iii) GenProg [25] and (iv) Prophet [36]. A common step for all four of these projects is
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Table 6.5: APR technique environment information

Environment Operating System GCC Version

Angelix
Ubuntu 14.04.6 LTS 9.4.0

SemFix
GenProg Ubuntu 18.04.5 LTS 10.3.0
Prophet Ubuntu 16.04.7 LTS 9.4.0

to adapt the fuzz target to serve as an entry point for the test cases generated in the fuzzing step.

Most of the real-life project fuzz targets are, as described in Section 6.2.4, a function receiving the

test case contents and size as parameters. We adapt these fuzz targets by replacing this function

with a main function that wraps the same functionality, but first receives the test case path as a

command-line argument and calls a function (Figure 6.5) that reads the contents and size from

that file. Since the contents are allocated on the heap, they have to be freed before returning.

Otherwise, if the AddressSanitizer is being used, then it will trigger on every execution.

The oracle/test execution script for each APR technique consists of executing the modified

fuzz target for generated test cases (including the fault-triggering test case) and executing project-

specific tests. For project-specific tests, the projects we use support the execution of each test

individually, but this execution and verifying if the test passes or not depends on the project. Since

the inclusion of these tests cannot be generalized without developer input, we separate the results

with and without project-specific tests in Section 6.3.

The four techniques are executed in three different environments (Angelix and SemFix share

the same environment, as Angelix contains an implementation of SemFix’s algorithm). Details

about these environments are presented in Table 6.5 and detailed as follows:

Angelix/SemFix: For Angelix/Semfix, we need to manually instrument the target project with

output values (ANGELIX_OUTPUT(type,expr,label)), and coverage labels (ANGELIX_

REACHABLE(label)). This instrumentation allows Angelix/Semfix to know the actual values and

reachability of negative tests, to compare against the expected values and coverage, as such infor-

mation has to be provided to Angelix/Semfix when executing it. We do not know if this instrumen-

tation serves other purposes in the APR process. In our situation, following the rationale of the

process being integrable in practical use-cases, meaning this instrumentation has to be automat-

able, our instrumentation consists of a single reachability label at the end of every normal exit

path (exit code 0). Reaching this label means that the program did not crash (i.e., the fault was not

triggered).

In all projects, we use the following command-line arguments: (i) --klee-ignore-errors

which silences KLEE errors, as they are irrelevant and obfuscate the logs (KLEE is a sym-

bolic execution engine built on top of the LLVM compiler infrastructure and used by Angelix);

(ii) --klee-timeout 300, (iii) --synthesis-timeout 180000, and (iv) --generate-all so

that Angelix doesn’t halt execution after generating one patch (i.e., generates all patches). In some
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cases, Angelix runs indefinitely (up until the machine runs out of available memory) without the

two timeout flags. The values used for timeout correspond to the values used by Angelix authors

to patch Heartbleed [42]. For each individual program, we use specific command-line arguments

to indicate which defect classes to consider and which repair components to use in synthesis, as

described in their manual12:

• CWE-121 (Stack Buffer Overflow), CWE-134 (Format String): --defect guards
if-conditions --synthesis-levels alternatives integer-constants

extended-arithmetic extended-logic extended-inequalities

--synthesis-used-vars

• CWE-122 (Heap Buffer Overflow): --defect if-conditions
--synthesis-levels alternatives integer-constants

extended-arithmetic extended-logic extended-inequalities

--synthesis-used-vars

• CWE-369 (Divide by Zero): --defect guards
--synthesis-levels alternatives integer-constants

extended-arithmetic extended-logic extended-inequalities

--synthesis-used-vars

• CWE-190 (Integer Overflow): --defect assignments loop-conditions
--synthesis-levels alternatives integer-constants

extended-arithmetic extended-logic extended-inequalities

--synthesis-used-vars

• CVE-2014-0160 (Heartbleed): --synthesis-levels extended-arithmetic
--synthesis-used-vars

• CVE-2019-7317: --defect guards if-conditions
--synthesis-levels alternatives integer-constants

extended-arithmetic extended-logic extended-inequalities

• CVE-2017-5336, CVE-2020-12284: --defect guards
--synthesis-levels extended-arithmetic --synthesis-used-vars

GenProg: Besides requiring a set of tests and build instructions for the target program, GenProg

also requires the preprocessed source code of the program. In order to meet this requirement in

real-life projects, we add the --save-temps flag (makes it so that temporary intermediate files

such as preprocessed and, potentially, object files are saved), to CFLAGS when configuring the

target project. While this solution is crude, it does not require changing the target project build

script, and can be applied to any project with a build system.

12Angelix manual: https://github.com/mechtaev/angelix/blob/master/doc/Manual.md

https://github.com/mechtaev/angelix/blob/master/doc/Manual.md
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Table 6.6: APR results with synthetic programs identified by their weakness identifier

CWE-ID T+
sample T+ T− Angelix1 SemFix1 GenProg1 Prophet1

CWE-121 2 2 1 0/0 0/0 0/0 0/0
CWE-122 3 89 8 0/0 0/0 0/0 0/0
CWE-369 1 1 1 0/0 0/0 CR CR
CWE-134 1 1 1 0/0 0/0 0/0 0/0
CWE-190 1 7 4 0/0 0/0 PE 0/0

1 x correct patches out of y generated patches (x/y), Cannot Reproduce fault (CR), Parsing
Error (PE)

Prophet: In order to maximize the patch search-space, we use the following command-line argu-

ment flags with Prophet: -blowup -full-synthesis -full-explore -first-n-loc 200

-consider-all. Prophet comes with a set of pre-trained models for ranking candidate patches.

We use the para-all.out feature parameters for the model, as they appear to be the most suitable

for our situation since they are not targeted towards a specific project.

6.3 Results

In this section, we present the results of applying the joint fuzzing-APR process, described in

Section 6.2, and a brief analysis of the results for each fault and APR technique. We start by

presenting our results with the synthetic programs in Section 6.3.1. Then, in Section 6.3.2, we

present our results for real-life programs with and without the project’s tests being fed to APR.

Finally, we analyze the results in Section 6.3.3.

6.3.1 Synthetic Programs

For each synthetic program, identified by the CWE-ID of their corresponding vulnerability type,

as listed in Table 6.1, we start the fuzzing process with an initial sample of T+
sample valid tests cases.

Then, we feed each APR technique with T+ positive test cases (sample + generated test cases), and

T− generated fault-triggering test cases. The results, presented in Table 6.6, show the number of

patches generated by each technique, as well as the number of generated patches that are correct.

In terms of test case generation, we notice three of the five programs have few generated test

cases before finding a fault-triggering test case, which is expected as the programs were developed

to be simple and the sample test cases are meant to cover the whole program. The exception to

this is CWE-122 since the program is an interpreter. AFL++ generated test cases for CWE-190,

likely due to how it handles path coverage in loops or compiler-level optimizations.

Regarding the effectiveness of the APR techniques, when applied to these synthetic programs,

none of the techniques generate at least one patch. In CWE-369 (Divide by Zero), we are unable

to reproduce the fault in GenProg’s or Prophet’s environment. The sanitizer does not reliably
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Table 6.7: APR results with real-life projects identified by their vulnerability identifier

CVE-ID T+
project T+ T− Angelix1 SemFix1 GenProg1 Prophet1

CVE-2014-0160
0 47 2 0/1 IE PE 0/0
38 85 2 0/0 IE PE 0/0

CVE-2017-5336 0 116 1 RIE RIE PE 0/0

CVE-2019-7317
0 0 1 0/0 0/0 PE 0/0
8 8 1 0/0 0/0 PE 0/0

CVE-2020-12284 0 383 1 CR CR CR CR
1 x correct patches out of y generated patches (x/y), Inference Error (IE), Parsing Error (PE), Repairable

Instrumentation Error (RIE), Cannot Reproduce fault (CR)

trigger in these environments for reasons we could not ascertain. Running GenProg with CWE-

190 (Integer Overflow) results in a parsing error when preprocessing the program. This issue is

described in more detail in Section 6.3.3.

6.3.2 Real-life Projects

Unlike the synthetic programs, for each real-life project, identified by the CVE-ID of the corre-

sponding vulnerability, as listed in Table 6.2, we start the fuzzing process with an empty corpus

(i.e., without an initial set of test cases). For every project, we feed each APR technique with T+

positive generated test cases, and T− generated fault-triggering test cases. For projects with inspir-

ing results (i.e., at least one APR technique did not crash or gave up early), we fed an additional

T+
project positive tests, extracted from the project’s tests, to the T+ total number of positive tests.

The results, presented in Table 6.7, show the number of patches generated by each technique, as

well as the number of generated patches that are correct, both with and without project tests in

designated projects.

When applied to real-life projects, only Angelix was capable of producing a patch, in this case

for Heartbleed, as shown in Figure 6.6). However, this patch is not correct, as it simply avoids

the feature (i.e., is overfitting the provided tests). By adding OpenSSL’s tests to the set of tests,

this patch is no longer generated. SemFix crashes during the inference step when attempting to

patch Heartbleed. In CVE-2017-5336, Angelix/Semfix crash when attempting to instrument the re-

pairable source file. Furthermore, we cannot reproduce CVE-2020-12284 in the APR techniques’

environments, and GenProg always results in a parsing error when preprocessing the source code.

These issues are described in more detail in Section 6.3.3.

6.3.3 Analysis

Throughout the nine selected projects, only a single patch is generated (Heartbleed patch by An-

gelix). Furthermore, this patch is not correct, and the fault corresponds to one with which Angelix

was validated and that the authors claim to be fixable with Angelix [42]. This result motivates a
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1 --- a/openssl-1.0.1f/ssl/t1_lib.c
2 +++ b/openssl-1.0.1f/ssl/t1_lib.c
3 @@ -2568,7 +2568,7 @@
4 &s->s3->rrec.data[0], s->s3->rrec.length,
5 s, s->msg_callback_arg);
6

7 - if (hbtype == TLS1_HB_REQUEST)
8 + if ((hbtype == s->msg_callback_arg))
9 {

10 unsigned char *buffer, *bp;
11 int r;

Figure 6.6: Generated Heartbleed patch diff file using our process

replication of the original experiments, described in Section 6.4. Adding project tests to the set

of tests fed into APR appears not to affect FL or increase the search space of candidate patches.

However, it contributes towards filtering overfitted patches, so they are a positive addition if avail-

able. In the following paragraphs, we describe identified issues for each APR technique, and in

reproducing some faults:

Angelix/Semfix: SemFix crashed when attempting to repair CVE-2014-0160 (Heartbleed). The

execution goes along similarly with Angelix’s, but during one of the inference steps, SemFix throws

an error ("Inconsistent Variables"). In CVE-2017-5336, Angelix/SemFix cannot successfully in-

strument the source file containing the fault. We plan on creating issues in Angelix’s repository

relating to these issues once our experiments become public.

GenProg: GenProg uses C Intermediate Language (CIL)13 to parse the source code and manip-

ulate ASTs (in contrast to the other techniques which use LLVM). CIL is the source of GenProg’s

parsing errors, which appear to be caused by unknown symbols present in preprocessed source

code. For example, when applied to OpenSSL, it fails to parse mathematical functions from the C

standard library due to CIL not supporting 128bit floats (we identified an open issue related to this

problem in another project dependent on CIL14). Unfortunately, we could not find a workaround

for this issue. Issues related to CIL have been created for GenProg, such as (i) issue #1015, opened

on 18th March 2018, which was closed by the maintainers stating it is an issue with CIL, not

13C Intermediate Language (CIL): https://github.com/cil-project/cil
14Obliv-C issue #48 - Fails to compile when including <math.h> of recent glibc: https://github.com/samee/

obliv-c/issues/48
15GenProg issue #10 - Error parsing pthread_mutex_t: https://github.com/squaresLab/genprog-code/

issues/10

https://github.com/cil-project/cil
https://github.com/samee/obliv-c/issues/48
https://github.com/samee/obliv-c/issues/48
https://github.com/squaresLab/genprog-code/issues/10
https://github.com/squaresLab/genprog-code/issues/10
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1 FROM mechtaev/angelix:1.1
2 WORKDIR /src/
3

4 RUN apt-get install -y libffi-dev gtk-doc-tools libgtk2.0-dev libpcap-dev
5

6 COPY angelix-experiments/ .
7 RUN chmod +x ./repair ./repair-* ./fetch ./get-options

Figure 6.7: Dockerfile for reproducing Angelix’s original experiments

GenProg (although they have indicated a potential reason for that specific instance of the error);

and (ii) issue #3716, opened on 17th May 2021.

Fault Reproduction: In both CWE-134 and CVW-2020-12284, we have issues reproducing the

fault in some APR environments due to the underlying sanitizer not triggering when executing

the fault-triggering test case generated in the fuzzing environment. Even after updating GCC for

the four APR techniques to the versions specified in Section 6.2.5, we could not reliably trig-

ger the UndefinedBehaviorSanitizer on a division by zero (CWE-369) with GenProg or Prophet.

Furthermore, we could not reproduce CVE-2020-12284 in any of the APR techniques.

6.4 Replication of Original APR Experiments

Due to the results obtained in Section 6.3, we decide to replicate Angelix’s original experiments.

We set up a docker container based on the Angelix official image, with the experimental data17 in

it and dependencies installed. The Dockerfile for this container is shown in Figure 6.7. We could

not generate any of the original patches. The experimental scripts are dependent on an unavailable

Uniform Resource Locator (URL) to generate all patches except for Heartbleed. We can run the

original experiment for Heartbleed, but no patch is generated. We have an issue open in Angelix’s

repository18, but we did not obtain an answer before the publication date.

We do a more thorough analysis of the Heartbleed patch reproduction script to ensure it is

being properly executed. We notice that, before running Angelix, OpenSSL’s source code is man-

ually modified (see Figure 6.8) in the same location as the Heartbleed patch presented by Angelix’s

authors (see Figure 6.3) [42]. We assume the authors apply this change because Angelix cannot

extend if-statements with more conditions. Hence, they denormalize the code manually so that

16GenProg issue #37 - Error when running on Coreutils: https://github.com/squaresLab/genprog-code/
issues/37

17Angelix experimental data: http://www.comp.nus.edu.sg/~release/angelix/angelix-experiments.
tar.gz

18Angelix Issue #27 - Can’t reproduce experimental results with docker image: https://github.com/mechtaev/
angelix/issues/27

https://github.com/squaresLab/genprog-code/issues/37
https://github.com/squaresLab/genprog-code/issues/37
http://www.comp.nus.edu.sg/~release/angelix/angelix-experiments.tar.gz
http://www.comp.nus.edu.sg/~release/angelix/angelix-experiments.tar.gz
https://github.com/mechtaev/angelix/issues/27
https://github.com/mechtaev/angelix/issues/27
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1 --- a/ssl/t1_lib.c
2 +++ b/ssl/t1_lib.c
3 @@ -2596,7 +2596,7 @@ tls1_process_heartbeat(SSL *s)
4 if (s->msg_callback)
5 s->msg_callback(0, s->version, TLS1_RT_HEARTBEAT,
6 &s->s3->rrec.data[0], s->s3->rrec.length,
7 s, s->msg_callback_arg);
8 - if (hbtype == TLS1_HB_REQUEST)
9 + if (hbtype == TLS1_HB_REQUEST && 0 < 1)

10 {
11 unsigned char *buffer, *bp;

Figure 6.8: OpenSSL source diff applied before running Angelix

Angelix can patch Heartbleed. In light of this discovery, it appears that Angelix is actually not

capable of patching Heartbleed by itself.

6.5 Threats to Validity

In this section we identify and discuss a number of threats to the validity of this empirical study,

namely threats to internal validity (Section 6.5.1), and to external validity (Section 6.5.2).

6.5.1 Internal Validity

Internal validity represents how valid the cause-and-effect relationships are between the indepen-

dent variables and observed effects in dependent variables. We identify and describe the following

threats to the internal validity of this empirical study:

Fuzz-generated Test Cases The fuzzing step of the process is crucial not only to identify faults

(we were able to reproduce all sample faults and generate a fault-triggering test case for each) but

to generate a set of test cases to feed APR with to help filtering overfitted candidate patches. We

have not measured the actual impact of feeding these generated test cases to APR. While we expect

that these test cases create a better specification of the desired behavior, it is possible that these test

cases have the opposite effect (i.e., create an overfitted specification) and guide the APR process

away from a correct patch. Judging from Angelix execution logs, only the one fault-triggering test

case was relevant for FL, so we believe adding other generated test cases does not affect FL.

Another aspect to consider is how the fuzzing process is configured to generate test cases.

Specific strategies are more or less relevant, from a fuzzing perspective, depending on the target

project (e.g., deterministic fuzzing strategies like bit flipping are not well suited for programs

dealing with structured data, such as LibXML2). The strategies used in the fuzzing process likely

affect which relevant test cases are generated. AFL++ has a crash exploration mode, which takes
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crashing test cases as input and tries to cover all the paths that can be reached while continuing in

the crashing state [1]. This mode can be used to encounter further faults caused by the initial fault

and can perhaps be used to generate more fault-targeted test cases.

APR Technique Configuration Due to our lack of knowledge about each APR technique’s im-

plementation details and internals, we cannot guarantee that the lack of effectiveness of the tech-

niques is not due to improper setup or configuration. We have read the available documentation

and used provided Docker images when available to minimize this threat. Regardless, we identify

the following concerns:

• Angelix Timeouts Configuration: As mentioned in Section 6.2.5, the timeout flags for

KLEE and patch synthesis in Angelix correspond to the values used by Angelix authors

to patch Heartbleed. As a result, Angelix’s results may be overfitted for Heartbleed, and

patches may not be being generated because of early timeouts. Unfortunately, there is not

much we can do about this other than pinpointing the timeout values for each case, which is

not a feasible solution in a practical use case. We believe that an APR tool should suggest

whether further exploration is relevant or not dynamically (similarly to AFL++ color-coded

cycle counter) instead of relying on "magic values" for each particular case.

• Angelix Program Instrumentation: In Section 6.2.5 we describe the Angelix manual in-

strumentation process. This process is only applied to the adapted fuzz target. Therefore

project-specific tests are not instrumented. We believe the sole purpose of this instrumenta-

tion is for Angelix to know the actual output values and coverage of negative tests. Under

this assumption, since the project-specific tests are positive, instrumenting these tests would

not affect Angelix’s effectiveness. However, we do not know how Angelix leverages this

instrumentation since the usefulness of this instrumentation is not documented.

• Suspicious Prophet Execution: We slightly suspect that Prophet is not set up correctly

because all of its executions are almost instantaneous and produce the same result as shown

in Figure 6.9. The lack of feedback provided by Prophet, such as the fact that no error is

reported, leads to a confusing interpretation of the results and an inability to act on the issue.

Cross-Environment Process As described in Section 6.2, we perform the fuzzing and APR

steps in different environments. A side-effect of this is that a test case triggering the fault in the

fuzzing environment may not trigger the fault in the APR environment. When this happens, we

mark the result as that the fault cannot be reproduced. As shown in Section 6.3, CWE-369 and

CVE-2020-12284 have results with this mark. In CVE-2020-12284, we believe the issue is due to

using an older version of AddressSanitizer (The CVE is more recent than the others, so we assume

it was discovered with a more recent version of AddressSanitizer). We had a similar issue initially

in CVE-2019-7317 that we solved by upgrading GCC in the APR environments to the version

specified in Table 6.5. Upgrading GCC to even more recent versions could potentially solve this
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Initialize the program!
Verify Test Cases
All passed!
Done Verification
Generating repair candidates!
Total 0 different repair schemas!!!!
Total 0 different repair candidate templates for scoring!!!
Total 0 different partial repair candidate templates!!
Trying different candidates!
BasicTester pointer: 0x1d1dcc0
StringConstTester pointer: 0x1d1db50
CondTester pointer: 0x1d1d9c0
The total number of synthesis runs: 0
The total number of concrete conds: 0
The total number of explored concrete patches: 0
Repair process ends without working fix!!
Total 0 different repair schemas!!!!
Total 0 different repair candidate templates for scoring!!!
Total number of compiles: 0
Total number of test eval: 0

Figure 6.9: Standard output of a Prophet execution

reproduction issue in CVE-2020-12284. Another option would be to use the same compiler in

both types of environments (instead of Clang in the fuzzing step and GCC in the APR step). Using

the same version of Clang for each APR technique, as the version of Clang used in the fuzzing

step would most likely solve the fault reproduction issue in CVE-2020-12284 (assuming that the

APR techniques support Clang, which we have not checked). As for CWE-369, we are unsure

if using the same compiler would solve the fault reproduction issues in the GenProg and Prophet

environments.

6.5.2 External Validity

External validity represents how valid it is to apply the conclusions outside this study. We identify

and describe the following threats to the external validity of this empirical study:

Sample Size In this empirical study, we apply the process described in Section 6.2 to 5 vulner-

able synthetic programs and 4 real-life vulnerabilities. We are well aware that the sample size of

real-life vulnerabilities is too low to make any reliable conclusions on the overall effectiveness of

APR when applied to fuzz-identified vulnerabilities (for reference, there are over 26000 issues in

OSS-Fuzz marked as fixed and verified19. Regardless, the findings of our study reveal issues in

19List of OSS-Fuzz issues marked as fixed and verified (Last accessed in 20-06-2021): https://bugs.chromium.
org/p/oss-fuzz/issues/list?q=status%3AVerified&can=1

https://bugs.chromium.org/p/oss-fuzz/issues/list?q=status%3AVerified&can=1
https://bugs.chromium.org/p/oss-fuzz/issues/list?q=status%3AVerified&can=1
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the current state of APR techniques and motivate a more thorough study of APR applicability in

continuous fuzzing and other practical use cases.

Sample Charateristics When developing the synthetic programs, we ensured each program

represented a unique type of vulnerability. However, the selection of which weaknesses to include

was ad hoc. A better criterion for selecting which weaknesses to include would be to analyze

the type of faults being reported in OSS Fuzz and select the most predominant ones. In hindsight,

some weaknesses like Divide by Zero do not bring much value to the study. Regarding the real-life

vulnerabilities, we filter for OSS-Fuzz vulnerabilities that have a CVE assigned to them, with the

goal of selecting vulnerabilities with a higher impact. However, this filtering may also be a source

of bias.

APR Technique Selection This study only evaluates APR techniques targeting C as fuzzing

engines and projects leveraging coverage-guided fuzzing are in C/C++. Furthermore, we are only

able to use APR techniques that are publicly available. During our research of the state of the art,

we found some APR techniques focusing on security vulnerabilities [21, 37]. However, we could

not include them due to the lack of a publicly available implementation.

6.6 Discussion

The planning and development of this experimentation were done to evaluate the validity of the

following hypothesis, as first introduced in Section 4.2:

"Using fuzzing as a source of faults and of test cases allows for APR techniques to be

effective when integrated with the SDLC."

The results of this study appear to invalidate this hypothesis, as suspected by our initial explo-

ration of APR techniques in Section 5.2. In Section 6.5 we present some threats to the validity of

this study, which may compromise our ability to evaluate the hypothesis reliably. Regardless, we

believe our study is a strong indicator of our hypothesis’s invalidity, supported by the failure to

reproduce Angelix’s original experiments, described in Section 6.4. To help guide the evaluation

of the validity (or lack thereof) of our hypothesis, we present answers to our research questions,

as defined in Section 4.4, based on the findings of this empirical study:

Research Question 1 Are the selected APR techniques capable of generating correct patches

when applied in faults discovered by fuzzing?

For this study, we created a joint fuzzing–APR process, described in Section 6.2.1, to evaluate

APR’s ability to generate patches from faults identified through fuzzing. As we present in Section

6.3, in the scope of our study, the selected APR techniques are not capable of generating correct

patches, producing only a single overfitted patch. Despite the short sample size, taking into ac-

count that we include five small synthetic programs and that one of the selected APR techniques
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had reportedly successfully patched one of the chosen vulnerabilities (Angelix and Heartbleed,

respectively), we are confident that this lack of effectiveness is not just due to an unlucky choice

of sample faults, and probably applies to a majority of faults.

Research Question 2 What types of faults, in the context of fuzzing, are selected APR techniques

more capable of generating correct patches?

This Research Question was created to help identify which types of faults are better suited for

APR so that practical solutions can focus more on these types of faults, and potentially establish

a correlation between APR strategies and the types of faults suiting them best. However, as we

present in Section 6.3, none of the fault types included in the study appear to be suitable for APR

as no correct patches are generated.

Research Question 3 What are the main challenges in applying APR to projects within the

context of fuzzing?

The development of the fuzzing–APR process and the analysis of the results helped us identify

multiple challenges in integrating APR with fuzzing and identify issues in how APR techniques

are designed. The key challenges that we identify that bring down APR’s ability to be effective

and applicable in practical use cases are the following:

• Techniques can quickly become outdated and unusable if they do not keep up with language

standards and the software ecosystem on which both the technique and its target projects

depend. As with most practical software, it needs active maintainers to maintain its func-

tionality.

• A lack of user-friendliness from techniques and feedback from their executions reduces

their potential of being adopted and successfully integrated with the SDLC. Techniques

should be well documented and as straightforward to set up and configure as possible. More

importantly, setting up and configuring an APR tool should be project-driven and never

fault/patch-driven (e.g., require the user to specify timeout values and which repair elements

to use explicitly). In our opinion, a developer should only have to specify a single time how

to set up and configure a project for usage with APR. A developer should never have the

configure an APR tool based on the characteristics of a specific fault or on how it can be

repaired, as that defeats the purpose of APR.

• The lack of adoption of APR techniques means that they are barely used, and, as a result,

there are greater chances of their functionality not being correct due to a lack of community

feedback. On the other hand, APR techniques may not be being adopted because their

functionality is not correct. To break this cycle, we suggest that APR tools are developed

with the primary goal of being applied in practice, rather than for research purposes, starting

with a subset of faults we know APR can be effective at, then expanding in functionality as

community adoption and support evolves.
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6.7 Summary

We start this chapter by explaining the objectives of this empirical study in Section 6.1. In Section

6.2 we detail the planning of our study, namely the development of a joint fuzzing–APR process,

and the selection and configuration of fuzzing engines and APR techniques. We present and

analyze the results of our study in Section 6.3, followed by our attempt at replicating Angelix’s

experiments in Section 6.4. We then analyze some identified threats to the validity of this study in

Section 6.5 and, finally, present a critical discussion of the results based on the proposed hypothesis

and research questions in Section 6.6.



56 Empirical Study



Chapter 7

Conclusions

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1 Summary

Software development is an increasingly complex task, as software is applied to an expanding

scope of applications requiring faster, more efficient, and more secure software. As a result,

software faults become more common and have a greater negative impact. To combat this trend,

software researchers are exploring the development of automated program repair solutions capable

of generating patches for a given fault, using a set of tests as specification. Most of current APR

research is done in an academic environment, lacking tools developed for practical use-cases. We

identify several issues, described in Section 4.1, in the practical APR tools we find that apply APR

during software integration. With the addition of more layers of abstraction, software in the lower

layers such as operating system utilities, file format libraries, and cryptography and networking

libraries become more critical since a fault in them impacts a broader range of software products

and devices. Coverage-guided fuzzing is a software testing technique well suited to these types

of software. Fuzzing allows for the identification of faults through the automated generation of

test cases. APR has the potential of being integrated with fuzzing as a continuation of the fuzzing

process that attempts to repair the identified fault, using the generated test cases as part of the

test-suite being used as specification.

We propose to apply APR techniques after fuzzing sessions, using coverage-guided fuzzing

engines, and integrate with the SDLC (i.e., be able to fuzz a project continuously and suggest

generated patches of identified faults to developers for eventual review and integration). Through

this development, we aim to evaluate the effectiveness of APR techniques (i.e., their ability to

generate correct patches) on practical environments, using coverage-guided fuzzing as a source of

57
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information (c.f. Section 4.2). Our initial development, described in Chapter 5, shows potential in

using a GitHub bot to suggest patches and facilitate interaction with developers, and in automating

the fuzzing process using a coverage-guided engine. However, we could not make current APR

techniques generate patches, even in simple synthesized scenarios with straightforward fixes.

As a result, we pivoted our development towards an empirical study (see Chapter 6) aimed

at validating/invalidating our hypothesis and at answering our research questions enumerated in

Section 4.4. In a matrix of nine faulty programs (five synthetic programs + four real-life projects)

and four APR techniques, we cannot generate a single correct patch. An overfitted patch is gener-

ated for Heartbleed when we do not include the project’s tests. Another concerning aspect is that

Angelix, one of the APR techniques selected for the study, is reported to be capable of correctly

patching Heartbleed by its authors [42]. We analyzed their experiments reproduction package

and discovered that Angelix is, in fact, incapable of patching Heartbleed by itself, requiring first

a manual change to OpenSSL’s source code. This discovery compromises the credibility of APR

research and further supports APR’s lack of effectiveness in practical use cases.

We hope that our work motivates more thorough studies on APR’s capabilities when applied

in realistic scenarios and APR tools to be developed for practical applications, rather than satis-

fy/overfit existing benchmarks and other synthetic scenarios.

7.2 Contributions

Despite the negative results and consequential invalidation of our hypothesis, we believe that our

dissertation work produced valuable contributions to automated program repair research, such as:

• Literature Review on APR techniques and practical APR solutions: In Chapter 3, we

analyzed the state of the art on fourteen of the latest open-source APR techniques and on

three solutions integrating APR with the SDLC in the integration step.

• Empirical Study on APR applied with fuzzing: In Chapter 6 we conceptualize a joint

fuzzing–APR process to evaluate APR effectiveness when fed with fuzzing information.

We apply this process to each of four APR techniques to generate patches to nine faults

(five from simple synthesized programs, and four real-life vulnerabilities from open-source

projects).

7.3 Future Work

Our empirical study revealed a lack of effectiveness from current APR techniques when applied

with coverage-guided fuzzing methods, motivating a more thorough investigation and experimen-

tation, both with fuzzing and in other scenarios with practical use-cases. Additionally, the plan-

ning and development of this study gave us some insights and thoughts about the future direction

of APR and how to develop APR tools better suited for practical scenarios. In this section, we
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present some suggestions and improvements for future development in the research field of APR

and its practical application.

More thorough Empirical Study: Our empirical study covered few real-life projects (four real-

life vulnerabilities). OSS-Fuzz [3] is a good source of vulnerabilities discovered by fuzzing and

has over 26000 vulnerabilities that have been fixed in the past. Section 6.5 presents other improve-

ments that could be applied in a future study, such as:

• Avoid the fault reproduction issue caused by differing fuzzing and APR environments;

• Study the impact of enriching the test suite with all generated test cases versus just feeding

the fault-triggering test case;

• Attempt to include more APR techniques, such as Fix2Fit [22], in the study.

Experiment other other practical applications of APR: There are other potential use cases

for APR than continuous fuzzing, namely integrated with the SDLC. For example, pAPRika [13]

is a Visual Studio Code extension that suggests fixes while the programmer is writing code. Live

Programming is another form of SDLC integration focused on the implementation step. Given that

APR research is not focused on practical use, studying its effectiveness in practical environments

such as these helps identify critical shortcomings in APR and help pivot its research towards the

development of tools useful for software developers.

Develop an APR technique targeting fuzzed projects: There is potential in developing an

APR technique tailored for faults identified through fuzzing, as in aware of Sanitizers and how

they affect fault localization and code coverage. Typically the fault can be localized from one of

many source locations in the crashing call stack, meaning that the typical spectrum-based fault

localization used by current APR techniques may not be the best solution.

During the development of our study, we notice that it is common for a fault to be instanti-

ated multiple times in a project. For example, Heartbleed is instantiated both in TLS and DTLS

implementations of OpenSSL. When a patch for a fault is made, it typically patches all instances

of the fault, however detecting these instances is not trivial, and, in our opinion, is worth its own

dedicated research. Identifying closely related faults could be a method of detecting instantiations

of the same fault. Memory related faults is another scenario where multiple instantiations can

occur (e.g., add bounds check before reading a buffer in every location the buffer is being read).

In these situations, a combination of static and dynamic analysis may allow for the detection of

every fault instance (e.g., location the buffer is being read).
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Appendix A

Synthetic Programs

A.1 CWE-121 (Stack Overflow) - Restricted Access

1 #include <stdio.h>

2 #include <string.h>

3

4 void doAdminStuff()

5 {

6 printf("Here's the special cookie for admins only.\n");

7 }

8

9 int main(int argc, char const *argv[])

10 {

11 char check[] = "trustmeimadmin\n";

12 char input[20];

13

14 printf("Prove you are admin.\n");

15 fgets(input, 64, stdin);

16

17 if (strcmp(input, check) == 0)

18 doAdminStuff();

19 else {

20 printf("Not admin, go away.\n");

21 }

22

23 return 0;

24 }

61
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A.2 CWE-122 (Heap Overflow) - Brainfuck Interpreter

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <stdint.h>

4 #include <string.h>

5

6 char *read_program(const char *filename) {

7 FILE *file = fopen(filename, "r");

8 if (file == NULL) {

9 printf("Cannot open %s\n", filename);

10 exit(1);

11 }

12

13 fseek(file, 0, SEEK_END);

14 long program_size = ftell(file);

15 rewind(file);

16

17 char *program = malloc(program_size + 1);

18 fread(program, 1, program_size, file);

19 fclose(file);

20

21 program[program_size] = 0;

22 return program;

23 }

24

25 void interpret(char *program) {

26 int n = strlen(program);

27 int scope = 0;

28

29 uint8_t *tape = calloc(2048, sizeof(uint8_t));

30 int pointer = 1024;

31

32 for (int pc = 0; pc < n; pc++) {

33 char instr = program[pc];

34 // printf("%p %d %p %d %c\n", tape, pointer, &tape[pointer], tape[pointer], instr);

35

36 switch (instr)

37 {

38 case '+': // Increment
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39 tape[pointer] = tape[pointer] < UINT8_MAX ? tape[pointer] + 1 : 0;

40 break;

41 case '-': // Decrement

42 tape[pointer] = tape[pointer] > 0 ? tape[pointer] - 1 : UINT8_MAX;

43 break;

44 case '<': // Move Left

45 if (--pointer < 0) {

46 pointer = 2047;

47 if (tape[pointer] != 0) {

48 puts(" [X] Tape Memory Underflow detected - Aborting\n");

49 exit(1);

50 }

51 }

52 break;

53 case '>': // Move Right

54 if (++pointer > 2048) { // BUG: Off-by-one error

55 pointer = 0;

56 if (tape[pointer] != 0) {

57 puts(" [X] Tape Memory Overflow detected - Aborting\n");

58 exit(1);

59 }

60 }

61 break;

62 case '.': // Write

63 putchar(tape[pointer]);

64 // printf("%d|", tape[pointer]);

65 break;

66 case ',': // Read - Unsupported Instruction

67 break;

68

69 // Dumb implementation of Jump Scopes

70 // to avoid implementing necessary data structures

71 case '[': // Jump If Zero

72 if (tape[pointer] != 0)

73 break;

74

75 for (int i = pc; i < n; i++) {

76 char c = program[i];

77

78 if (c == '[') {
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79 scope++;

80 }

81 else if (c == ']' && --scope == 0) {

82 pc = i;

83 break;

84 }

85 }

86

87 if (program[pc] != ']') {

88 printf(" [X] No ] matching the [ at position %d - Aborting\n", pc);

89 exit(1);

90 }

91 break;

92 case ']': // Jump Unless Zero

93 if (tape[pointer] == 0)

94 break;

95

96 for (int i = pc; i >= 0; i--) {

97 char c = program[i];

98

99 if (c == ']') {

100 scope++;

101 }

102 else if (c == '[' && --scope == 0) {

103 pc = i;

104 break;

105 }

106 }

107 if (program[pc] != '[') {

108 printf(" [X] No ] matching the [ at position %d - Aborting\n", pc);

109 exit(1);

110 }

111 break;

112 default:

113 break;

114 }

115 }

116 free(tape);

117 }

118
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119 /*

120 Subset of Brainfuck (Does not support input)

121 */

122

123 int main(int argc, char const *argv[])

124 {

125 char *program = read_program(argv[1]);

126 interpret(program);

127 free(program);

128 return 0;

129 }
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A.3 CWE-369 (Divide by Zero) - Division Operation

1 #include <stdio.h>

2 #include <string.h>

3

4 float quotient(float a, float b) {

5 return a / b;

6 }

7

8 int main(int argc, char const *argv[])

9 {

10 float a, b;

11

12 scanf("%f %f", &a, &b);

13 printf("%f\n", quotient(a,b));

14 return 0;

15 }
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A.4 CWE-134 (Format String) - String Customizer

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(int argc, char const *argv[])

5 {

6 char cookie[20];

7

8 printf("Want a personalized cookie? Give us your name!\n");

9 fgets(cookie, 20, stdin);

10

11 printf("Here's your cookie: ");

12 printf("C - ");

13 printf(cookie);

14

15 return 0;

16 }
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A.5 CWE-190 (Integer Overflow) - Useless Computation

1 #include <stdio.h>

2 #include <string.h>

3

4 int main(int argc, char const *argv[])

5 {

6 int cookie_count;

7 printf("I am cookie monster. How many cookies will you give me?\n");

8 scanf("%d", &cookie_count);

9

10 int actual_cookie_count = cookie_count + cookie_count;

11 printf("Just %d cookies? I will eat %d cookies.\n",

12 cookie_count, actual_cookie_count);

13

14 for (unsigned long i = 1; i <= actual_cookie_count; i++) {

15 int four = 2 + 2;

16 int three = four - 1;

17 }

18

19 return 0;

20 }
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