155,936 research outputs found

    Pilots’ visual scan pattern and attention distribution during the pursuit of a dynamic target

    Get PDF
    Introduction: The current research is investigating pilots’ visual scan patterns in order to assess attention distribution during air-to-air manoeuvers. Method: A total of thirty qualified mission-ready fighter pilots participated in this research. Eye movement data were collected by a portable head-mounted eye-tracking device, combined with a jet fighter simulator. To complete the task, pilots have to search for, pursue, and lock-on a moving target whilst performing air-to-air tasks. Results: There were significant differences in pilots’ saccade duration (msec) in three operating phases including searching (M=241, SD=332), pursuing (M=311, SD=392), and lock-on (M=191, SD=226). Also, there were significant differences in pilots’ pupil sizes (pixel2) of which lock-on phase was the largest (M=27237, SD=6457), followed by pursuing (M=26232, SD=6070), then searching (M=25858, SD=6137). Furthermore, there were significant differences between expert and novice pilots on the percentage of fixation on the HUD, time spent looking outside the cockpit, and the performance of situational awareness (SA). Discussion: Experienced pilots have better SA performance and paid more attention to the HUD but focused less outside the cockpit when compared with novice pilots. Furthermore, pilots with better SA performance exhibited a smaller pupil size during the operational phase of lock-on whilst pursuing a dynamic target. Understanding pilots’ visual scan patterns and attention distribution are beneficial to the design of interface displays in the cockpit and in developing human factors training syllabi to improve safety of flight operations

    Controller workload, airspace capacity and future systems.

    No full text
    In air traffic control (ATC), controller workload – or controller mental workload – is an extremely important topic. There have been many research studies, reports and reviews on workload (as it will be referred to here). Indeed, the joke is that researchers will produce ‘reviews of reviews’ (Stein, 1998). The present document necessarily has something of that flavour, and does review many of the ‘breakthrough’ research results, but there is a concentration on some specific questions about workload

    The evaluation of pilots performance and mental workload by eye movement

    Get PDF
    Pilots make important decisions often using ambiguous information, while under stresses and with very little time. During flight operations detecting the warning light of system failure is a task with real-world application relates to measurement of pilot's performance and eye movement. The demand for a pilot’s visual and situational awareness in multiple tasks can be detrimental during pilots’ mental overload conditions. The purpose of this research is to evaluate the relationship between pilot’s mental workload and operational performance by eye tracking. Collecting eye movement data during flight operations in a virtual reality of flight simulator provided useful information to analysis participants’ cognitive processes. There were 36 pilots participated in this research, the experience of flight hours between 320 and 2,920, the range of age between 26 and 51 years old. The apparatus included Applied Science Laboratories (ASL) eye tracking, IDF flight simulator and NASA_TLX for data collection. The results show that pilots with high SA detecting hydraulic malfunction have shorter total fixation duration on Air Speed Indicator and longer total fixation duration on Altitude Indicator, Vertical Speed Indicator, Right multi-display and Left multi-display compared with pilots without detecting the signal of hydraulic malfunction. Pilots’ total fixation time on Integration Control Panel, Altitude Indicator, Attitude Indicator and Right Multi-display, and pilots’ subjective rating on NASA-TLX effort dimension for the mission of close pattern have significant relationship with pilots’ performance on the operational time for completing the tactic mission. Experienced pilots operate aircraft familiar with monitoring Airspeed Indicator and kinetic maneuvering result in less fuel consumption. This study could provide guidelines for future training design to reduce pilots mental workload and improve situational awareness for enhancing flight safety

    EVS: Head-up or Head Down? Evaluation of Crew Procedure and Human Factors for Enhanced Vision Systems

    Get PDF
    Feasibility of an EVS head-down procedure is examined that may provide the same operational benefits under low visibility as the FAA rule on Enhanced Flight Visibility that requires the use of a head-up display (HUD). The main element of the described EVS head-down procedure is the crew procedure within cockpit for flying the approach. The task sharing between Pilot-Flying and Pilot-Not-Flying is arranged such that multiple head-up/head-down transitions can be avoided. The pilot-flying is using the head-down display for acquisition of the necessary visual cues in the EVS image. The pilot-not-flying is monitoring the instruments and looking for the outside visual cues

    Pilot workload and fatigue: A critical survey of concepts and assessment techniques

    Get PDF
    The principal unresolved issues in conceptualizing and measuring pilot workload and fatigue are discussed. These issues are seen as limiting the development of more useful working concepts and techniques and their application to systems engineering and management activities. A conceptual analysis of pilot workload and fatigue, an overview and critique of approaches to the assessment of these phenomena, and a discussion of current trends in the management of unwanted workload and fatigue effects are presented. Refinements and innovations in assessment methods are recommended for enhancing the practical significance of workload and fatigue studies

    Detect the unexpected: a science for surveillance

    Get PDF
    Purpose – The purpose of this paper is to outline a strategy for research development focused on addressing the neglected role of visual perception in real life tasks such as policing surveillance and command and control settings. Approach – The scale of surveillance task in modern control room is expanding as technology increases input capacity at an accelerating rate. The authors review recent literature highlighting the difficulties that apply to modern surveillance and give examples of how poor detection of the unexpected can be, and how surprising this deficit can be. Perceptual phenomena such as change blindness are linked to the perceptual processes undertaken by law-enforcement personnel. Findings – A scientific programme is outlined for how detection deficits can best be addressed in the context of a multidisciplinary collaborative agenda between researchers and practitioners. The development of a cognitive research field specifically examining the occurrence of perceptual “failures” provides an opportunity for policing agencies to relate laboratory findings in psychology to their own fields of day-to-day enquiry. Originality/value – The paper shows, with examples, where interdisciplinary research may best be focussed on evaluating practical solutions and on generating useable guidelines on procedure and practice. It also argues that these processes should be investigated in real and simulated context-specific studies to confirm the validity of the findings in these new applied scenarios

    Best Practices for Evaluating Flight Deck Interfaces for Transport Category Aircraft with Particular Relevance to Issues of Attention, Awareness, and Understanding CAST SE-210 Output 2 Report 6 of 6

    Get PDF
    Attention, awareness, and understanding of the flight crew are a critical contributor to safety and the flight deck plays a critical role in supporting these cognitive functions. Changes to the flight deck need to be evaluated for whether the changed device provides adequate support for these functions. This report describes a set of diverse evaluation methods. The report recommends designing the interface-evaluation to span the phases of the device development, from early to late, and it provides methods appropriate at each phase. It describes the various ways in which an interface or interface component can fail to support awareness as potential issues to be assessed in evaluation. It summarizes appropriate methods to evaluate different issues concerning inadequate support for these functions, throughout the phases of development

    Classification and reduction of pilot error

    Get PDF
    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses
    corecore