438 research outputs found

    Using Mean Embeddings for State Estimation and Reinforcement Learning

    Get PDF
    To act in complex, high-dimensional environments, autonomous systems require versatile state estimation techniques and compact state representations. State estimation is crucial when the system only has access to stochastic measurements or partial observations. Furthermore, in combination with models of the system such techniques allow to predict the future which enables the system to asses the outcome of possible decisions. Compact state representations alleviate the curse of dimensionality by distilling the important information from high-dimensional observations. Due to noisy sensory information and non-perfect models of the system, estimates of the state never reflect the true state perfectly but are always subject to errors. The natural choice to incorporate the uncertainty about the state estimate is to use a probability distribution as representation. This results in the so called belief state. High-dimensional observations, for example images, often contain much less information than conveyed by their dimensionality. But also if all the information is necessary to describe the state of the system—for example, think of the state of a swarm with the positions of all agents—a less complex description might be a sufficient representation. In such situations, finding the generative distribution that explains the state would give a much more compact while informative representation. Traditionally, parametric distributions have been used as state representations such as most prevalently the Gaussian distribution. However, in many cases a unimodal distribution might not be sufficient to represent the belief state. Using multi-modal probability distributions, instead, requires more advanced approaches such as mixture models or particle-based Monte Carlo methods. Learning mixture models is however not straight-forward and often results in locally optimal solutions. Similarly, maintaining a good population of particles during inference is a complicated and cumbersome process. A third approach is kernel density estimation which is located at the intersection of mixture models and particle-based approaches. Still, performing inference with any of these approaches requires heuristics that lead to poor performance and a limited scalability to higher dimensional spaces. A recent technique that alleviates this problem are the embeddings of probability distributions into reproducing kernel Hilbert spaces (RKHS). Conditional distributions can be embedded as operators based on which a framework for inference has been presented that allows to apply the sum rule, the product rule and Bayes’ rule entirely in Hilbert space. Using sample based estimators and the kernel-trick of the representer theorem allows to represent the operations as vector-matrix manipulations. The contributions of this thesis are based on or inspired by the embeddings of distributions into reproducing kernel Hilbert spaces. In the first part of this thesis, I propose additions to the framework for nonparametric inference that allow the inference operators to scale more gracefully with the number of samples in the training set. The first contribution is an alternative approach to the conditional embedding operator formulated as a least-squares problem i which allows to use only a subset of the data as representation while using the full data set to learn the conditional operator. I call this operator the subspace conditional embedding operator. Inspired by the least-squares derivations of the Kalman filter, I furthermore propose an alternative operator for Bayesian updates in Hilbert space, the kernel Kalman rule. This alternative approach is numerically more robust than the kernel Bayes rule presented in the framework for non-parametric inference and scales better with the number of samples. Based on the kernel Kalman rule, I derive the kernel Kalman filter and the kernel forward-backward smoother to perform state estimation, prediction and smoothing based on Hilbert space embeddings of the belief state. This representation is able to capture multi-modal distributions and inference resolves--due to the kernel trick--into easy matrix manipulations. In the second part of this thesis, I propose a representation for large sets of homogeneous observations. Specifically, I consider the problem of learning a controller for object assembly and object manipulation with a robotic swarm. I assume a swarm of homogeneous robots that are controlled by a common input signal, e.g., the gradient of a light source or a magnetic field. Learning policies for swarms is a challenging problem since the state space grows with the number of agents and becomes quickly very high dimensional. Furthermore, the exact number of agents and the order of the agents in the observation is not important to solve the task. To approach this issue, I propose the swarm kernel which uses a Hilbert space embedding to represent the swarm. Instead of the exact positions of the agents in the swarm, the embedding estimates the generative distribution behind the swarm configuration. The specific agent positions are regarded as samples of this distribution. Since the swarm kernel compares the embeddings of distributions, it can compare swarm configurations with varying numbers of individuals and is invariant to the permutation of the agents. I present a hierarchical approach for solving the object manipulation task where I assume a high-level object assembly policy as given. To learn the low-level object pushing policy, I use the swarm kernel with an actor-critic policy search method. The policies which I learn in simulation can be directly transferred to a real robotic system. In the last part of this thesis, I investigate how we can employ the idea of kernel mean embeddings to deep reinforcement learning. As in the previous part, I consider a variable number of homogeneous observations—such as robot swarms where the number of agents can change. Another example is the representation of 3D structures as point clouds. The number of points in such clouds can vary strongly and the order of the points in a vectorized representation is arbitrary. The common architectures for neural networks have a fixed structure that requires that the dimensionality of inputs and outputs is known in advance. A variable number of inputs can only be processed by applying tricks. To approach this problem, I propose the deep M-embeddings which are inspired by the kernel mean embeddings. The deep M-embeddings provide a network structure to compute a fixed length representation from a variable number of inputs. Additionally, the deep M-embeddings exploit the homogeneous nature of the inputs to reduce the number of parameters in the network and, thus, make the learning easier. Similar to the swarm kernel, the policies learned with the deep M-embeddings can be transferred to different swarm sizes and different number of objects in the environment without further learning

    2019 EC3 July 10-12, 2019 Chania, Crete, Greece

    Get PDF

    Foundations of Trusted Autonomy

    Get PDF
    Trusted Autonomy; Automation Technology; Autonomous Systems; Self-Governance; Trusted Autonomous Systems; Design of Algorithms and Methodologie

    Competitive Dynamics between Physical and Virtual Markets in Multiplex Networks

    Get PDF
    Despite having interesting results of analyzing the adoption of e-commerce using social networks, diffusion does not occur in a single-layered network. There is sufficient evidence that game theory, complex networks and Theory of Planned Behavior are suitable frameworks to represent some part of the dynamics of innovation diffusion. However, it is necessary to integrate this methodological triplet to accept that an emergent behavior is generated by more real causes. We analyzed the effect of the multiplex topology when people decide to make transactions through virtual or physical channels, and found that connectivity is a key issue when managing the agent’s behavior. This also translates into greater coordination in the agents' decisions. When a multiplex is formed by at least one network with very efficient information flow, this network will govern the dynamics affecting channel selection and will also reduce transaction uncertainty. In addition, we found that investing in connectivity is worthwhile when trust is low in at least one channel; otherwise, it does not have enough impact to increase current transactions. This article makes a significant methodological contribution by showing a new way to analyze the impact of multiplex social networks, as well as a practical contribution by evidencing the effects of the structures on both intentions and actions

    Cooperation and Social Dilemmas with Reinforcement Learning

    Get PDF
    Cooperation between humans has been foundational for the development of civilisation and yet there are many questions about how it emerges from social interactions. As artificial agents begin to play a more significant role in our lives and are introduced into our societies, it is apparent that understanding the mechanisms of cooperation is important also for the design of next-generation multi-agent AI systems. Indeed, this is particularly important in the case of supporting cooperation between self-interested AI agents. In this thesis, we focus on the analysis of the application of mechanisms that are at the basis of human cooperation to the training of reinforcement learning agents. Human behaviour is a product of cultural norms, emotions and intuition amongst other things: we argue it is possible to use similar mechanisms to deal with the complexities of multi-agent cooperation. We outline the problem of cooperation in mixed-motive games, also known as social dilemmas, and we focus on the mechanisms of reputation dynamics and partner selection, two mechanisms that have been strongly linked to indirect reciprocity in Evolutionary Game Theory. A key point that we want to emphasise is the fact we assume no prior knowledge and explicit definition of strategies, which instead are fully learnt by the agents during the games. In our experimental evaluation, we demonstrate the benefits of applying these mechanisms to the training process of the agents, and we compare our findings with results presented in a variety of other disciplines, including Economics and Evolutionary Biology

    Adaptive Regret Minimization in Bounded-Memory Games

    Get PDF
    Online learning algorithms that minimize regret provide strong guarantees in situations that involve repeatedly making decisions in an uncertain environment, e.g. a driver deciding what route to drive to work every day. While regret minimization has been extensively studied in repeated games, we study regret minimization for a richer class of games called bounded memory games. In each round of a two-player bounded memory-m game, both players simultaneously play an action, observe an outcome and receive a reward. The reward may depend on the last m outcomes as well as the actions of the players in the current round. The standard notion of regret for repeated games is no longer suitable because actions and rewards can depend on the history of play. To account for this generality, we introduce the notion of k-adaptive regret, which compares the reward obtained by playing actions prescribed by the algorithm against a hypothetical k-adaptive adversary with the reward obtained by the best expert in hindsight against the same adversary. Roughly, a hypothetical k-adaptive adversary adapts her strategy to the defender's actions exactly as the real adversary would within each window of k rounds. Our definition is parametrized by a set of experts, which can include both fixed and adaptive defender strategies. We investigate the inherent complexity of and design algorithms for adaptive regret minimization in bounded memory games of perfect and imperfect information. We prove a hardness result showing that, with imperfect information, any k-adaptive regret minimizing algorithm (with fixed strategies as experts) must be inefficient unless NP=RP even when playing against an oblivious adversary. In contrast, for bounded memory games of perfect and imperfect information we present approximate 0-adaptive regret minimization algorithms against an oblivious adversary running in time n^{O(1)}.Comment: Full Version. GameSec 2013 (Invited Paper

    SmOOD: Smoothness-based Out-of-Distribution Detection Approach for Surrogate Neural Networks in Aircraft Design

    Full text link
    Aircraft industry is constantly striving for more efficient design optimization methods in terms of human efforts, computation time, and resource consumption. Hybrid surrogate optimization maintains high results quality while providing rapid design assessments when both the surrogate model and the switch mechanism for eventually transitioning to the HF model are calibrated properly. Feedforward neural networks (FNNs) can capture highly nonlinear input-output mappings, yielding efficient surrogates for aircraft performance factors. However, FNNs often fail to generalize over the out-of-distribution (OOD) samples, which hinders their adoption in critical aircraft design optimization. Through SmOOD, our smoothness-based out-of-distribution detection approach, we propose to codesign a model-dependent OOD indicator with the optimized FNN surrogate, to produce a trustworthy surrogate model with selective but credible predictions. Unlike conventional uncertainty-grounded methods, SmOOD exploits inherent smoothness properties of the HF simulations to effectively expose OODs through revealing their suspicious sensitivities, thereby avoiding over-confident uncertainty estimates on OOD samples. By using SmOOD, only high-risk OOD inputs are forwarded to the HF model for re-evaluation, leading to more accurate results at a low overhead cost. Three aircraft performance models are investigated. Results show that FNN-based surrogates outperform their Gaussian Process counterparts in terms of predictive performance. Moreover, SmOOD does cover averagely 85% of actual OODs on all the study cases. When SmOOD plus FNN surrogates are deployed in hybrid surrogate optimization settings, they result in a decrease error rate of 34.65% and a computational speed up rate of 58.36 times, respectively

    If interpretability is the answer, what is the question?

    Get PDF
    Due to the ability to model even complex dependencies, machine learning (ML) can be used to tackle a broad range of (high-stakes) prediction problems. The complexity of the resulting models comes at the cost of transparency, meaning that it is difficult to understand the model by inspecting its parameters. This opacity is considered problematic since it hampers the transfer of knowledge from the model, undermines the agency of individuals affected by algorithmic decisions, and makes it more challenging to expose non-robust or unethical behaviour. To tackle the opacity of ML models, the field of interpretable machine learning (IML) has emerged. The field is motivated by the idea that if we could understand the model's behaviour -- either by making the model itself interpretable or by inspecting post-hoc explanations -- we could also expose unethical and non-robust behaviour, learn about the data generating process, and restore the agency of affected individuals. IML is not only a highly active area of research, but the developed techniques are also widely applied in both industry and the sciences. Despite the popularity of IML, the field faces fundamental criticism, questioning whether IML actually helps in tackling the aforementioned problems of ML and even whether it should be a field of research in the first place: First and foremost, IML is criticised for lacking a clear goal and, thus, a clear definition of what it means for a model to be interpretable. On a similar note, the meaning of existing methods is often unclear, and thus they may be misunderstood or even misused to hide unethical behaviour. Moreover, estimating conditional-sampling-based techniques poses a significant computational challenge. With the contributions included in this thesis, we tackle these three challenges for IML. We join a range of work by arguing that the field struggles to define and evaluate "interpretability" because incoherent interpretation goals are conflated. However, the different goals can be disentangled such that coherent requirements can inform the derivation of the respective target estimands. We demonstrate this with the examples of two interpretation contexts: recourse and scientific inference. To tackle the misinterpretation of IML methods, we suggest deriving formal interpretation rules that link explanations to aspects of the model and data. In our work, we specifically focus on interpreting feature importance. Furthermore, we collect interpretation pitfalls and communicate them to a broader audience. To efficiently estimate conditional-sampling-based interpretation techniques, we propose two methods that leverage the dependence structure in the data to simplify the estimation problems for Conditional Feature Importance (CFI) and SAGE. A causal perspective proved to be vital in tackling the challenges: First, since IML problems such as algorithmic recourse are inherently causal; Second, since causality helps to disentangle the different aspects of model and data and, therefore, to distinguish the insights that different methods provide; And third, algorithms developed for causal structure learning can be leveraged for the efficient estimation of conditional-sampling based IML methods.Aufgrund der Fähigkeit, selbst komplexe Abhängigkeiten zu modellieren, kann maschinelles Lernen (ML) zur Lösung eines breiten Spektrums von anspruchsvollen Vorhersageproblemen eingesetzt werden. Die Komplexität der resultierenden Modelle geht auf Kosten der Interpretierbarkeit, d. h. es ist schwierig, das Modell durch die Untersuchung seiner Parameter zu verstehen. Diese Undurchsichtigkeit wird als problematisch angesehen, da sie den Wissenstransfer aus dem Modell behindert, sie die Handlungsfähigkeit von Personen, die von algorithmischen Entscheidungen betroffen sind, untergräbt und sie es schwieriger macht, nicht robustes oder unethisches Verhalten aufzudecken. Um die Undurchsichtigkeit von ML-Modellen anzugehen, hat sich das Feld des interpretierbaren maschinellen Lernens (IML) entwickelt. Dieses Feld ist von der Idee motiviert, dass wir, wenn wir das Verhalten des Modells verstehen könnten - entweder indem wir das Modell selbst interpretierbar machen oder anhand von post-hoc Erklärungen - auch unethisches und nicht robustes Verhalten aufdecken, über den datengenerierenden Prozess lernen und die Handlungsfähigkeit betroffener Personen wiederherstellen könnten. IML ist nicht nur ein sehr aktiver Forschungsbereich, sondern die entwickelten Techniken werden auch weitgehend in der Industrie und den Wissenschaften angewendet. Trotz der Popularität von IML ist das Feld mit fundamentaler Kritik konfrontiert, die in Frage stellt, ob IML tatsächlich dabei hilft, die oben genannten Probleme von ML anzugehen, und ob es überhaupt ein Forschungsgebiet sein sollte: In erster Linie wird an IML kritisiert, dass es an einem klaren Ziel und damit an einer klaren Definition dessen fehlt, was es für ein Modell bedeutet, interpretierbar zu sein. Weiterhin ist die Bedeutung bestehender Methoden oft unklar, so dass sie missverstanden oder sogar missbraucht werden können, um unethisches Verhalten zu verbergen. Letztlich stellt die Schätzung von auf bedingten Stichproben basierenden Verfahren eine erhebliche rechnerische Herausforderung dar. In dieser Arbeit befassen wir uns mit diesen drei grundlegenden Herausforderungen von IML. Wir schließen uns der Argumentation an, dass es schwierig ist, "Interpretierbarkeit" zu definieren und zu bewerten, weil inkohärente Interpretationsziele miteinander vermengt werden. Die verschiedenen Ziele lassen sich jedoch entflechten, sodass kohärente Anforderungen die Ableitung der jeweiligen Zielgrößen informieren. Wir demonstrieren dies am Beispiel von zwei Interpretationskontexten: algorithmischer Regress und wissenschaftliche Inferenz. Um der Fehlinterpretation von IML-Methoden zu begegnen, schlagen wir vor, formale Interpretationsregeln abzuleiten, die Erklärungen mit Aspekten des Modells und der Daten verknüpfen. In unserer Arbeit konzentrieren wir uns speziell auf die Interpretation von sogenannten Feature Importance Methoden. Darüber hinaus tragen wir wichtige Interpretationsfallen zusammen und kommunizieren sie an ein breiteres Publikum. Zur effizienten Schätzung auf bedingten Stichproben basierender Interpretationstechniken schlagen wir zwei Methoden vor, die die Abhängigkeitsstruktur in den Daten nutzen, um die Schätzprobleme für Conditional Feature Importance (CFI) und SAGE zu vereinfachen. Eine kausale Perspektive erwies sich als entscheidend für die Bewältigung der Herausforderungen: Erstens, weil IML-Probleme wie der algorithmische Regress inhärent kausal sind; zweitens, weil Kausalität hilft, die verschiedenen Aspekte von Modell und Daten zu entflechten und somit die Erkenntnisse, die verschiedene Methoden liefern, zu unterscheiden; und drittens können wir Algorithmen, die für das Lernen kausaler Struktur entwickelt wurden, für die effiziente Schätzung von auf bindingten Verteilungen basierenden IML-Methoden verwenden
    • …
    corecore