1,954 research outputs found

    OV Graphs Are (Probably) Hard Instances

    Get PDF
    © Josh Alman and Virginia Vassilevska Williams. A graph G on n nodes is an Orthogonal Vectors (OV) graph of dimension d if there are vectors v1, . . ., vn ∈ {0, 1}d such that nodes i and j are adjacent in G if and only if hvi, vji = 0 over Z. In this paper, we study a number of basic graph algorithm problems, except where one is given as input the vectors defining an OV graph instead of a general graph. We show that for each of the following problems, an algorithm solving it faster on such OV graphs G of dimension only d = O(log n) than in the general case would refute a plausible conjecture about the time required to solve sparse MAX-k-SAT instances: Determining whether G contains a triangle. More generally, determining whether G contains a directed k-cycle for any k ≥ 3. Computing the square of the adjacency matrix of G over Z or F2. Maintaining the shortest distance between two fixed nodes of G, or whether G has a perfect matching, when G is a dynamically updating OV graph. We also prove some complementary results about OV graphs. We show that any problem which is NP-hard on constant-degree graphs is also NP-hard on OV graphs of dimension O(log n), and we give two problems which can be solved faster on OV graphs than in general: Maximum Clique, and Online Matrix-Vector Multiplication

    Syntactic Separation of Subset Satisfiability Problems

    Get PDF
    Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the time complexity for certain problems, so that the hardness results match long-standing algorithmic results. In this paper, we consider a syntactically defined class of problems, and give conditions for when problems in this class require strongly exponential time to approximate to within a factor of (1-epsilon) for some constant epsilon > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics, computational geometry, and graph theory. Our hardness results also match the best known algorithmic results for these problems

    Learning and Testing Variable Partitions

    Get PDF
    Let FF be a multivariate function from a product set Σn\Sigma^n to an Abelian group GG. A kk-partition of FF with cost δ\delta is a partition of the set of variables V\mathbf{V} into kk non-empty subsets (X1,…,Xk)(\mathbf{X}_1, \dots, \mathbf{X}_k) such that F(V)F(\mathbf{V}) is δ\delta-close to F1(X1)+⋯+Fk(Xk)F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k) for some F1,…,FkF_1, \dots, F_k with respect to a given error metric. We study algorithms for agnostically learning kk partitions and testing kk-partitionability over various groups and error metrics given query access to FF. In particular we show that 1.1. Given a function that has a kk-partition of cost δ\delta, a partition of cost O(kn2)(δ+ϵ)\mathcal{O}(k n^2)(\delta + \epsilon) can be learned in time O~(n2poly(1/ϵ))\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon)) for any ϵ>0\epsilon > 0. In contrast, for k=2k = 2 and n=3n = 3 learning a partition of cost δ+ϵ\delta + \epsilon is NP-hard. 2.2. When FF is real-valued and the error metric is the 2-norm, a 2-partition of cost δ2+ϵ\sqrt{\delta^2 + \epsilon} can be learned in time O~(n5/ϵ2)\tilde{\mathcal{O}}(n^5/\epsilon^2). 3.3. When FF is Zq\mathbb{Z}_q-valued and the error metric is Hamming weight, kk-partitionability is testable with one-sided error and O(kn3/ϵ)\mathcal{O}(kn^3/\epsilon) non-adaptive queries. We also show that even two-sided testers require Ω(n)\Omega(n) queries when k=2k = 2. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.Comment: Innovations in Theoretical Computer Science (ITCS) 202

    Limits to Non-Malleability

    Get PDF
    There have been many successes in constructing explicit non-malleable codes for various classes of tampering functions in recent years, and strong existential results are also known. In this work we ask the following question: When can we rule out the existence of a non-malleable code for a tampering class ?? First, we start with some classes where positive results are well-known, and show that when these classes are extended in a natural way, non-malleable codes are no longer possible. Specifically, we show that no non-malleable codes exist for any of the following tampering classes: - Functions that change d/2 symbols, where d is the distance of the code; - Functions where each input symbol affects only a single output symbol; - Functions where each of the n output bits is a function of n-log n input bits. Furthermore, we rule out constructions of non-malleable codes for certain classes ? via reductions to the assumption that a distributional problem is hard for ?, that make black-box use of the tampering functions in the proof. In particular, this yields concrete obstacles for the construction of efficient codes for NC, even assuming average-case variants of P ? NC

    The power of sum-of-squares for detecting hidden structures

    Full text link
    We study planted problems---finding hidden structures in random noisy inputs---through the lens of the sum-of-squares semidefinite programming hierarchy (SoS). This family of powerful semidefinite programs has recently yielded many new algorithms for planted problems, often achieving the best known polynomial-time guarantees in terms of accuracy of recovered solutions and robustness to noise. One theme in recent work is the design of spectral algorithms which match the guarantees of SoS algorithms for planted problems. Classical spectral algorithms are often unable to accomplish this: the twist in these new spectral algorithms is the use of spectral structure of matrices whose entries are low-degree polynomials of the input variables. We prove that for a wide class of planted problems, including refuting random constraint satisfaction problems, tensor and sparse PCA, densest-k-subgraph, community detection in stochastic block models, planted clique, and others, eigenvalues of degree-d matrix polynomials are as powerful as SoS semidefinite programs of roughly degree d. For such problems it is therefore always possible to match the guarantees of SoS without solving a large semidefinite program. Using related ideas on SoS algorithms and low-degree matrix polynomials (and inspired by recent work on SoS and the planted clique problem by Barak et al.), we prove new nearly-tight SoS lower bounds for the tensor and sparse principal component analysis problems. Our lower bounds for sparse principal component analysis are the first to suggest that going beyond existing algorithms for this problem may require sub-exponential time

    Bounded Representations of Interval and Proper Interval Graphs

    Full text link
    Klavik et al. [arXiv:1207.6960] recently introduced a generalization of recognition called the bounded representation problem which we study for the classes of interval and proper interval graphs. The input gives a graph G and in addition for each vertex v two intervals L_v and R_v called bounds. We ask whether there exists a bounded representation in which each interval I_v has its left endpoint in L_v and its right endpoint in R_v. We show that the problem can be solved in linear time for interval graphs and in quadratic time for proper interval graphs. Robert's Theorem states that the classes of proper interval graphs and unit interval graphs are equal. Surprisingly the bounded representation problem is polynomially solvable for proper interval graphs and NP-complete for unit interval graphs [Klav\'{\i}k et al., arxiv:1207.6960]. So unless P = NP, the proper and unit interval representations behave very differently. The bounded representation problem belongs to a wider class of restricted representation problems. These problems are generalizations of the well-understood recognition problem, and they ask whether there exists a representation of G satisfying some additional constraints. The bounded representation problems generalize many of these problems
    • …
    corecore