
Syntactic Separation of Subset Satisfiability
Problems
Eric Allender
Rutgers University, Piscataway, NJ 08854, USA
allender@cs.rutgers.edu

Martín Farach-Colton
Rutgers University, Piscataway, NJ 08854, USA
farach@cs.rutgers.edu

Meng-Tsung Tsai
National Chiao Tung University, Hsinchu, Taiwan
mtsai@cs.nctu.edu.tw

Abstract
Variants of the Exponential Time Hypothesis (ETH) have been used to derive lower bounds on the
time complexity for certain problems, so that the hardness results match long-standing algorithmic
results. In this paper, we consider a syntactically defined class of problems, and give conditions for
when problems in this class require strongly exponential time to approximate to within a factor of
(1− ε) for some constant ε > 0, assuming the Gap Exponential Time Hypothesis (Gap-ETH), versus
when they admit a PTAS. Our class includes a rich set of problems from additive combinatorics,
computational geometry, and graph theory. Our hardness results also match the best known
algorithmic results for these problems.
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1 Introduction

Variants of the Exponential Time Hypothesis (ETH) [30, 31] have been used to derive lower
bounds that match long-standing upper bounds for several important problems. In particular,
the Strong Exponential Time Hypothesis (SETH) has been used to study the fine-grained
complexity of problems in P [46, 47, 1, 14, 8], and the Gap Exponential Time Hypothesis
(Gap-ETH) [21, 40] was used to study inapproximability [17, 22]. In this paper, we consider a
syntactically-defined class of problems, defined below, and give conditions for when problems
in this class require strongly exponential time to approximate to within a factor of (1− ε) for
some constant ε > 0, assuming Gap-ETH, versus when they admit a PTAS. Our hardness
results also match the best known algorithmic results for these problems. Our class includes a
rich set of problems from additive combinatorics, computational geometry, and graph theory.
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16:2 Syntactic Separation of Subset Satisfiability Problems

Let L = {`1(x), `2(x), . . . , `k(x)} be a finite set of homogeneous linear functions in Z[x]
on the same set of variables x = (x1, x2, . . . , xr). We define a function `(x) to be True at a
if `(a) 6= 0. Otherwise, it is False at a. For any set S and integer r, let

D(S, r) := {(x1, x2, . . . , xr) ∈ Sr : xi 6= xj if i 6= j for all i, j ∈ [1, r]},

that is, the set of permutations over all subsets of S of size r.

Subset-CSAT(L). Define L∗(x) =
∧
`∈L `(x). Given a set S of n integers, find a largest

T ⊆ S so that for each r-tuple a = (a1, a2, . . . , ar) ∈ D(T, r), L∗ is True at a.1

Subset-DSAT(L). Define L+(x) =
∨
`∈L `(x). Given a set S of n integers, find a largest

T ⊆ S so that for each r-tuple a = (a1, a2, . . . , ar) ∈ D(T, r), L+ is True at a.1

Many problems can be encoded as one of these two problem types [35, 51, 23, 54, 20,
29, 42, 24, 2, 25], some of which are known to be APX-hard, some of which are known to
be NP-hard, and some of which have no known hardness result. The best known exact
algorithms for each of them take strongly exponential time, i.e. 2Ω(n) time. Our main results
are Theorem 2 and Theorem 3, below, which can be used to show that all these problems
are strongly APX-hard, where we define a problem X to be strongly APX-hard if there
exists a size-preserving PTAS (SPTAS) reduction from Max-3SAT to X. A SPTAS
reduction is a PTAS reduction whose output has “size”2 O(n) for any input of size n.

Consequently, given Gap-ETH (Conjecture 1), X cannot be (1 − δ)-approximated in
subexponential time for a sufficiently small constant δ > 0. To simplify the reductions shown
in the subsequent sections, we may restrict the instances of Max-3SAT as was done in [22].
That is, we make use of the observation in footnote 5 of [40], so that we may assume that
there is some constant ∆ such that no variable of the formula appears in more than ∆ clauses,
and hence there are only O(n) clauses, where n is the number of variables.

I Conjecture 1 (Gap-ETH [21, 40]). There exist constants ε, c > 0 so that no algorithm can
distinguish a satisfiable 3SAT formula from those that cannot have more than (1− ε)-fraction
of clauses being simultaneously satisfied in 2cn time where n denotes the number of variables
in the input instance.

Our results are:

I Theorem 2. Let L be a finite set of homogeneous linear functions whose coefficients
are in Z.
(i) If L contains only functions with 1 or 2 variables, then Subset-CSAT(L) admits a

PTAS and can be exactly solved in 2O(nc) time for some constant c < 1.
(ii) Otherwise, Subset-CSAT(L) is strongly APX-hard.

We observe here that it is necessary to limit our attention to hardness of approximation
to within a constant factor. The problems we consider can easily be approximated to within
a superconstant factor in 2o(n) time. Thus strong APX-hardness differs from other hardness
of approximation notions (which do not rely on strongly-exponential runtimes), for which
it is interesting to consider larger approximation factors. We observe further that not all
problems in case (i) are easy to compute exactly, nor are all problems in case (ii) hard to

1 We assume that |T | ≥ r to avoid degenerate cases, which can be identified in O(nr) time.
2 The size parameter is determined by problems: typically the number of variables in a formula or the

number of nodes in a graph.
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approximate to within a constant factor. An example problem for the former is finding a
maximum independent set for c-far unit-disk graphs, an NP-hard problem [41, 56]. We defer
the discussions to Appendix A. As for the latter, if all terms in L have positive sign, then a
linear-time 1/2-approximation algorithm exists. Moreover, the constant c of case (i) depends
on the coefficients of functions in L and the inapproximability constant of case (ii) depends
on the number of variables of L.

We need some notions for the next result. We say an r × k matrix M is strongly full
rank if k ≤ r and every k × k submatrix of M is full rank. Let v1,v2, . . . ,vk be vectors of
the same dimensionality, and let M = (v1|v2| . . . |vk) be the matrix where Mij = vj[i]. We
call M the aggregation of v1,v2, . . . ,vk. We say a vector space is in general position if
it has a set of basis vectors whose aggregation is strongly full rank.

I Theorem 3. Let L be a finite set of homogeneous linear functions whose coefficients are in
Z. For each Subset-DSAT(L), if the solutions to

∨
`∈L `(x) = False form a vector space

in general position and has dimension at least 2 (hence x is a vector of at least 3 variables),
then Subset-DSAT(L) is strongly APX-hard.

Applications. We show how to apply Theorem 2 and Theorem 3 to extend previous hardness
results.

(1) Max-General: Given a set S of n points in R2, find a largest T ⊆ S so that T contains
no three distinct colinear points, i.e. finding a largest subset in general position. This
problem is known to be APX-hard [25].

Here we show how to extend the APX-hardness result simply by encoding Max-
General as a Subset-CSAT(L) problem for some L. Let S = {(a, a3) : a ∈ Q} for
any set Q of integers. It is known [28] that Q has no three distinct integers that sum to
0 if and only if S has no three distinct colinear points. Therefore,

Subset-CSAT(LGP := {`(x, y, z) = x+ y + z})

can be reduced to Max-General by a linear-time reduction. Together with Theorem 2,
one has that Max-General is strongly APX-hard.

Note that Subset-CSAT(LGP) can be interpreted as the Max-3SUM problem, and
Max-General is a typical example of a Max-3SUM-hard problem. More examples
can be found in Section 3.

(2) Max-GolombRuler: Given a set S of n integers in Z, find a largest T ⊆ S so that T
has |T |2 distinct pairwise sums. This problem is known to be NP-hard to approximate
to within an additive constant c > 0 [42].

We show how to improve the above inapproximability by encoding Max-GolombRuler
as a Subset-CSAT(L) problem for some L. Observe that S has fewer than |S|2 distinct
pairwise sums if and only if either there exist four distinct numbers a, b, c, d ∈ S so that
a + b = c + d, or there exist three distinct numbers a, b, c ∈ S so that a + b = 2c. To
remove the fewest elements from S so that neither of the two cases hold is the same
as solving

Subset-CSAT(LGR := {`1(x, y, z, w) = x+ y − z − w, `2(x, y, z, w) = x+ y − 2z}).

Hence, by Theorem 2, Max-GolombRuler is strongly APX-hard.

APPROX/RANDOM 2019



16:4 Syntactic Separation of Subset Satisfiability Problems

(3) Max-C3-Free: Given an undirected graph, find a largest node-induced subgraph (in
terms of the number of nodes) that contains no cycle of length 3, i.e. a triangle. This
problem is known to be NP-hard [35].

We show how to extend the NP-hardness result by encoding Max-C3-Free as a
Subset-CSAT(L) problem for some L with a restricted input S̄. We restrict S̄ to be
a set such that for every six distinct integers a1, a2, . . . , a6 ∈ S̄, there are at most two
triples summing to 0. We construct an undirected graph G = (V,E) as follows. Initially,
V ← ∅, E ← ∅. For each a ∈ S̄, add va to V . For each triple a, b, c ∈ S̄ summing to
0, add edges {va, vb}, {vb, vc}, {va, vc} to E. Given this construction, G has a C3-free
node-induced subgraph of k nodes if and only if

Subset-CSAT(LC3 := {`(x, y, z) = x+ y + z}) with input S̄

has output of size k, which is strongly APX-hard as shown in Corollary 15. Hence,
Max-C3-Free is strongly APX-hard.

(4) Max-kAP-Free for each k ≥ 3: Given two integers n and m, decide whether there
exists a subset of S = {1, 2, . . . , n} of size at least m so that the subset contains no k
distinct integers that form a k-term arithmetic progression. The tally representation
of YES-instances of this problem defines a sparse language, which cannot be NP-
complete unless P = NP [45]. An analogous situation also arises in other problems, such
as in lattice problems in statistical physics (survey in [57]) or in determining Ramsey
numbers (survey in [49]). More generally, if we assume ETH, no optimization problem
that has 2o(n/ logn) feasible instances can be strongly APX-hard. We refer readers to
Section 7 for more discussion.

The current best algorithms for Max-kAP-Free [29, 24, 2] rely on branch-and-bound
and have to invoke many Max-kAP-Free subproblems, that is, with an arbitrary
S ⊆ {1, 2, . . . , n}. A hardness result for the subproblem would suggest the limit of
solving Max-kAP-Free by branch-and-bound algorithms. We show that it is strongly
APX-hard.

We encode Max-kAP-Free as

Subset-DSAT(LkAP := {`i(x1, x2, . . . , xk) = xi − 2xi+1 + xi+2 : i ∈ [1, k − 2]})

where |LkAP| = k − 2 and set v1 = (1, 3, . . . , 2k − 1), v2 = (2, 4, . . . , 2k) as two basis
vectors in the solution space of

∨
`∈LkAP

`(x). Because M = (v1|v2) is strongly full rank,
by Theorem 3 we are done.

Our Techniques. We outline the techniques used in the proofs of Theorem 2 and Theorem 3.
Both the algorithmic and the hardness results rely on Turán’s Theorem [55, 53]. As originally
stated, Turán’s Theorem [55] said that for every n-node undirected simple graph G, if G has
no clique of r + 1 nodes for an integer r ≥ 2, then G has no more than (1− 1/r)n2/2 edges.
In our proofs, when we refer to “Turán’s Theorem”, we refer to the second formulation of
Turán’s Theorem [53], that is:

I Theorem 4 (Turán’s Theorem [55, 53]). Every n-node m-edge undirected simple graph has
an independent set of size at least n2

n+2m .

We now describe our approach, and the role Turán’s Theorem plays in obtaining our
results.



E. Allender, M. Farach-Colton, and M.-T. Tsai 16:5

(1) Our Algorithmic Results: Let L2− be any finite set that contains only homogeneous
linear functions with 1 or 2 variables, with coefficients in Z. In Theorem 2, we claim
that Subset-CSAT(L2−) admits a PTAS and can be solved exactly in 2O(nc) time for
some constant c < 1.

To obtain a PTAS or an exact algorithm for Subset-CSAT(L2−), we reduce it to
finding a maximum independent set for the graph class G that contains all subgraphs
of c-nearest neighborhood graphs, defined in [26, 43], for some constant c. By a
generalization of Lipton and Tarjan’s algorithm [36], Max Independent Set for G can
be solved efficiently. Lipton and Tarjan show how to approximate the Max Independent
Set for planar graphs by exploiting the fact that every planar graph has a node separator
of size O(n1/2) whose removal partitions the graph into two balanced disconnected
subgraphs. Their algorithm can be generalized to any graph class H that satisfies all the
following properties:

For every graph H in H, any subgraph of H is a graph in H.
Every h-node graph H in H has a node separator of size O(hc) for some constant
c < 1, whose removal partitions H into two balanced disconnected subgraphs, and
the separator can be found in time polynomial in h.
Every h-node H in H has an independent set of size Ω(h).
In Section 2, we will see that G satisfies all the above properties, and we generalize

Lipton and Tarjan’s algorithm for any graph class that fulfills all the required properties.
We remark that Lipton and Tarjan [36] use the Four Color Theorem [6, 7] to prove the
last property for planar graphs. However, since G contains non-planar graphs, we need to
replace the Four Color Theorem with Turán’s Theorem to show the last property for G.

(2) Our Hardness Results: If a finite set L of homogeneous linear functions satisfies the
condition for case (2) of Theorem 2 (resp. Theorem 3), then Subset-CSAT(L) (resp.
Subset-DSAT(L)) is strongly APX-hard.

We show the hardness results by a reduction that maps from problem instances of
Max Independent Set for sparse large-girth graphs to those of Subset-CSAT(L)
or Subset-DSAT(L), so that if the former problem instance has an independent set of
size k, then the latter problem instance has an output set of size f(k) for some function
f . The existence of the hardness reduction is secured by a probabilistic proof based on
the Schwartz-Zippel Lemma [48, 58] as well as some tricks that prohibit the polynomials
indicating the probability of desired events from vanishing, that is, that the desired
events never happened.

Since all of our claims are applied to deterministic algorithms, we show how to
derandomize the probabilistic construction by noting that the construction still works
even when the random variables are constant-wise independent. We then use a standard
technique to derandomize algorithms that use constant-wise independent random vari-
ables [37, 38]. Then, we prove that the reduction is approximation-preserving, again by
Turán’s Theorem.

We complete the proof by showing that Max Independent Set is strongly APX-
hard even for sparse large-girth graphs.

Related Work. Our strong APX-hardness results apply to Max-rSUM and to some similar
problems, which can be viewed as replacing the sum function with more general functions. A
similar generalization from rSUM problems [32, 16] to a wider class of problems has also
been found useful in studies of the time complexity of rSUM-hard problems in P, because
the sum function may be not sufficient to encode an rSUM-hard problem but a more general
function may [10].

APPROX/RANDOM 2019



16:6 Syntactic Separation of Subset Satisfiability Problems

We present a class of optimization problems that are strongly APX-hard because of a
simple syntactic criterion. In that respect, there is some similarity to prior work on the
MaxOnes problem. In [34], syntactic criteria were presented for certain MaxOnes problems,
that imply APX-hardness. Related topics were also discussed in [9, 33]. Our results are
not closely related to [9, 33, 34]; the full version of our paper will compare and contrast our
results in more detail.

Paper Organization. In Section 2, we show the algorithmic results. Then, in Section 3,
we exhibit our main techniques by proving the strong APX-hardness of a simple case
Max-3SUM, implying strong APX-hardness for a list of Max-3SUM-hard problems via
previously-known approximation-preserving reductions from 3SUM-hardness. In Section 4
and Section 5, we generalize the techniques used in Section 3 to prove Theorem 2. We prove
Theorem 3 in Section 6, and relate strong APX-hardness to the density of languages in
Section 7. Then, in Appendix A, we reduce the maximum independent set problem for some
intersection graphs to the 2-variate case of Theorem 2 part (ii). In Appendix B, we prove the
strong APX-hardness of some problems, which are used as source problems for the hardness
reductions used in Sections 3 to 6. Finally, we give an inapproximability constant for each
intractable problem in our syntactically-defined class in Appendix C.

2 Algorithmic Results

In this section, we prove the algorithmic results stated in Theorem 2, that is, for any finite
set L2− that contains only functions with 1 or 2 variables, Subset-CSAT(L2−) admits a
PTAS and can be exactly solved in 2O(nc) time for some constant c < 1. Some of these
problems are known to be NP-hard; see Appendix A. If L2− contains a homogeneous linear
function with 1 variable, then it suffices to remove 0 from S. Thus, in what follows, we
consider Subset-CSAT(L2) where L2 is a finite set of homogeneous linear functions with
precisely 2 variables. Note that every `(x) ∈ L2 still has r input variables, but only 2 of the
r variables are used.

Given a problem Subset-CSAT(L2), we construct an undirected simple graph GL2 =
(V,E) where V = {va : a ∈ S} and

E = {(va, vb) : `(x) = 0 when xi = a, xj = b for some i 6= j ∈ [1, r], `(x) ∈ L2}.

Because L2 contains only linear functions with 2 variables, finding a maximum independent
set for GL2 is equivalent to solving Subset-CSAT(L2). In what follows, we show that GL2 is
a subgraph of some c-nearest neighborhood graph (Lemma 6), defined below, and show
that Max Independent Set for the graph class that consists of subgraphs of c-nearest
neighborhood graphs admits a PTAS and can be solved exactly in subexponential time
(Theorem 7). We assume that the underlying point set of c-nearest neighborhood graphs (or
subgraphs of c-nearest neighborhood graphs) is given. This assumption holds for our case
because the c-nearest neighborhood graphs used in our proofs are induced by a point set,
and their subgraphs are induced by a subset of the same point set.

I Definition 5 (c-nearest neighborhood graphs [26]). Given a set P of points in Rd, the
c-nearest neighborhood graph of P is a graph GP = (V,E) whose V = {va : a ∈ P} and

E = {(va, vb) ∈ V 2 : a is the i-th nearest neighbor of b for some i ≤ c},

where ties are broken arbitrarily.
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I Lemma 6. GL2 is a subgraph of some cL2-nearest neighborhood graph of an n-point set
PL2 in ZdL2 for some constants cL2 , dL2 .

Proof. We construct the n-point set PL2 by projecting each va ∈ V (GL2) into a point in
Zt+2 for some constant t ≥ 0 as follows. Define

DL2 = {d : d is prime and d divides c, where c is a coefficient of some `(x) ∈ L2}
= {d1, d2, . . . , dt} where t := |DL2 |.

Since L2 is a finite set and each `(x) ∈ L2 has constant coefficients, t is a constant. Given
DL2 , for each va ∈ V (GL2) we write a as the unique factorization

a = (d1)a1 · · · (dt)at(−1)at+1at+2 where at+1 ∈ {0, 1}, at+2 > 0 and d - at+2 for all d ∈ DL2 ,

based on which we map va into the point pa := (a1, a2, . . . , at+2) for each va ∈ V (GL2).
Since each `(x) ∈ L2 has constant coefficients with prime divisors in DL2 , if `(x) = 0

when we set xi = a and xj = b for some i 6= j ∈ [1, r], then at+2 = bt+2 and ai − bi = O(1)
for each i ∈ [1, t+ 1]. This yields that for every (va, vb) ∈ E(GL2) the Euclidean distance
between their associated points pa, pb is a constant, i.e. ||pa − pb||2 is a constant.

Let C = max(va,vb)∈E(G),i∈[1,t+2] |ai − bi|. Then, for every edge (va, vb) ∈ E(GL2), pa is
the i-th nearest neighbor of pb for some i ≤ (2C + 1)t+2, and vice versa. By setting

cL2 = (2C + 1)t+2 and dL2 = t+ 2,

we are done. J

I Theorem 7. Max Independent Set for H admits a PTAS and can be solved exactly in
subexponential time, where H is any graph class that satisfies all the following properties.
(a) For every graph H in H, any subgraph of H is a graph in H.
(b) Every h-node graph H in H has a node separator of size O(hc) for some constant c < 1,

whose removal partitions H into two balanced disconnected subgraphs, and the separator
can be found in time polynomial in h.

(c) Every h-node H in H has an independent set of size α(H) = Ω(h).

Proof. We show this by generalizing Lipton and Tarjan’s algorithm for Max Independent
Set on planar graphs, whose approximate version has the following pseudocode:

Input: an h-node undirected simple graph H ∈ H

1 Find a node separator C of size O(h/sε) whose removal partitions H into
disconnected subgraphs H1, H2, . . . ,Ht, each of which has fewer than s nodes,
where s ∈ (1, h) is a function of h and ε is some constant > 0;

2 Compute a maximum independent set Ii in Hi for each i ∈ [1, t] by exhaustive search;

Output: I1 ∪ I2 ∪ · · · ∪ It

We need to argue that such a node separator C exists, given the properties of H. We
initialize a computation tree T as follows. Initially, T has only a root node, associated with
H. Then, if there exists a leaf node a ∈ T associated with a graph Ha that has more than s
nodes, we find a node separator Ca to partition Ha into two balanced disconnected subgraphs
Ha1 and Ha2 . Such a Ca must exist by Properties (a) and (b). Then we link a with two child
nodes, a1 and a2, whose associated graphs are Ha1 and Ha2 . Finally, each leaf node in T has
fewer than s nodes. We let the subgraphs associated with leaf nodes in T be H1, H2, . . . ,Ht,
and let the union of separators found during the construction of T be C.

APPROX/RANDOM 2019



16:8 Syntactic Separation of Subset Satisfiability Problems

By Property (b), C can be constructed in time polynomial in h. The following shows why
the size of C is O(h/sε) for some constant ε > 0. We label each node a ∈ T with a height
t(a), i.e. the maximum length among all a-to-descendant-leaf paths. Let si for i ≥ 1 be the
lower bound on |Ha| for all a ∈ T with height i. Since the found separator Ca partitions
graph Ha into two balanced subgraphs, both of which have a constant fraction of the nodes
in Ha, one can set s1 = s and si = ∆si−1 for some constant ∆ > 1. The total number of
nodes in the separators associated with of all nodes in T with height i is thus

∑
a∈T ,t(a)=i

|Ca| ≤ δ

 ∑
a∈T ,t(a)=i

|Ha|1−ε
 ≤ δ h

sεi

where δ is a constant determined in Property (b) and the last inequality holds due to Hölder’s
inequality. Putting it all together, we get

|C| =
∑
a∈T
|Ca| ≤ δ

∞∑
i=1

h

(∆i−1s)ε = O

(
h

sε

)
.

To devise a polynomial-time approximation algorithm, we set s = log h. Thus, the
exhaustive search in Step 2 can be done in polynomial time. By the maximality of Ii, we
have α(H) ≤

∑
i∈t |Ii| + O(h/ logε h). Together with α(H) = Ω(h) due to Property (c),∑

i∈t |Ii| = (1− o(1))α(H), yielding a (1− o(1))-approximation algorithm.
To devise a subexponential-time exact algorithm, we set s = hδ for some constant

δ ∈ (0, 1). Thus, the separator C has size O(h1−δε). Then we try all possible independent
sets IC of C, to be included in the output independent set, in O(h22h1−δε) time. For each
IC , we remove the neighbor nodes of IC in H1, H2, . . . ,Ht. Then, we exhaustively search for
a maximum independent set in the rest of Hi for each i ∈ [1, t]. These exhaustive searches
can be done in O(h32hδ ) time. As a result, IC ∪ I1 ∪ · · · ∪ It is a maximum independent set
for some IC , and this exact algorithm takes

O(h52h
δ+h1−δε

)

time, which is subexponential for any constant δ ∈ (0, 1). J

It remains to show that the graph class G that consists of subgraphs of c-nearest neigh-
borhood subgraphs for some constant c satisfies all the properties listed in Theorem 7. It
is clear that Property (a) holds for G. It was shown in [26] that for any h-point set P , GP
has a node separator of size O(c1/dh1−1/d) whose removal partitions GP into two balanced
disconnected subgraphs. Moreover, such a node separator can be computed deterministically
in O(ch log c+h log h) time. For any resulting subgraph H of GP , whose nodes are associated
with a point set P ′ ⊆ P , one can construct the supergraph GP ′ of H and use the node
separator of GP ′ as the node separator for H. Analogously, the size of the node separator
and the running time to find it match the requirement. Thus, Property (b) holds for G. Since
any h-node subgraph of c-nearest neighborhood graphs have O(h) edges for any constant c,
by Turán’s Theorem, Property (c) holds.

3 Hardness of Max-3SUM

In this section, we prove the hardness of Subset-CSAT(L3S := {`(x, y, z) = x+ y+ z}) and
defer a proof for the general case in Theorem 2 to Section 4. The proof of the hardness of
approximating Subset-CSAT(L3S) will serve as intuition for the general case. The hardness
of Subset-CSAT(L3S) implies the hardness of the maximization version of numerous
3SUM-hard problems whose hardness reductions satisfy the following observation.
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IObservation 8. There are many rSUM-hard decision problems P whose hardness reductions
can be directly restated as SPTAS reductions from Max-rSUM to Max-P.

Examples [28, 11, 13] include:
Max-General: Given S ⊂ R2, find a largest T ⊆ S so that T contains no three colinear
points. This is one of the applications mentioned in Section 1.
Max-δ∆-Free: Given S ⊂ R2, find a largest T ⊆ S so that T contains no three distinct
points that form a triangle with area less than δ, for any fixed constant δ.
Max-3AP-Free: Given S ⊂ Z, find a largest T ⊆ S so that T contains no three distinct
integers that form an arithmetic progression. A more general case Max-kAP-Free for
each k > 3 needs the hardness results shown in Section 6. We note here that a subset
containing no 4-term arithmetic progressions may have 3-term arithmetic progressions,
so the hardness of Max-3AP-Free does not immediately imply the hardness of Max-
kAP-Free for each k > 3, whose proof relies on another system Subset-DSAT(L) for
some L whose |L| = k − 2.
Max-3L1P : Given S, a set of lines in R2, find a largest T ⊆ S so that T contains no
three distinct lines that intersect at a point.

NP-hardness. We claim the existence of a polynomial-time many-one reduction from
instances of Max Independent Set to instances of Subset-CSAT(L3S). Let n-node
m-edge graph G = (V,E) be an instance of Max Independent Set. We need a mapping
f from V ∪ E to a set S of n + m integers so that G has an independent set of size k iff
Subset-CSAT(L3S) with input S has output of size k + m. We show that such a set S
exists by the probabilistic method [5] and show how to construct S deterministically in time
polynomial in n, using derandomization [37, 38].

I Lemma 9. Subset-CSAT(L3S) is NP-hard.

Proof. To implement a mapping f : V ∪E → S, we will use an n-order superposable set
w.r.t. the function `(x, y, z) = x+ y + z ∈ L3S , which we define as follows. For any set B of
n integers X1, X2, . . . , Xn, we define the auxiliary set A` induced by B and ` to be

{Yij : `(Xi, Xj , Yij) = 0, i, j ∈ [1, n], i < j}.

We say B is an n-order superposable set if A` contains only integers, |B ∪A`| = n+
(
n
2
)
, and

for every three distinct integers a1, a2, a3 ∈ B ∪ A`, `(a1, a2, a3) = 0 only if {a1, a2, a3} =
{Xi, Xj , Yij} for some i, j ∈ [1, n], i < j.

Given the superposable set B, one can realize a mapping f : V ∪E → S, where f(vi) = Xi

for each vi ∈ V and f({vi, vj}) = Yij for each {vi, vj} ∈ E. The following lemma will establish
that the image set S and graph G preserve the relation required in the many-one reduction.

I Lemma 10. An n-node m-edge graph G = (V,E) has an independent set of size k iff
Subset-CSAT(L3S) with input S = f(V ∪ E) has output of size k +m.

Proof.
(⇒) For each independent set I of G, I ∪ E corresponds to a set T = {f(a) : a ∈ I ∪ E}, a

subset of S. Since I is an independent set, for every edge {vi, vj}, the two integers f(vi),
f(vj) are not simultaneously contained in T . By the definition of a superposable set, T is
a valid output for Subset-CSAT(L3S) with input S since it does not contain all three
of f(vi), f(vj), f({vi, vj}), for each pair of i, j ∈ [1, n], i < j.
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(⇐) Let T be a valid output for Subset-CSAT(L3S) with input S. For each edge {vi, vj} ∈
E, if both f(vi), f(vj) ∈ T , then f({vi, vj}) /∈ T because T is a valid output. In that
case, one can modify T by replacing f(vi) with f({vi, vj}). Such a modification does
not change the size of T but reduces the number of pairs of f(vi), f(vj) in T whose
corresponding nodes vi, vj are adjacent in G. One can repeat the change until no such
f(vi), f(vj) pair exists in T . Hence, G has an independent set of size at least k. J

Let Rp(n) be a set of n integers X1, X2, . . . , Xn sampled uniformly at random from the
universe U = Zp, for some prime p. In Lemma 11, we prove that, for sufficiently large
p, Rp(n) is a superposable set with positive probability. We choose Zp to facilitate the
derandomization. However, if a set is superposable under Zp, then it is superposable under
Z. After the construction, we use this superposable set under Z.

I Lemma 11. The probability that Rp(n) is an n-order superposable set is 1−O(n6/p).

Proof. We note that for any pair of different linear polynomials, assigning an integer sampled
uniformly at random from a universe U to each variable in the polynomials makes the two
polynomials equal in Zp with probability peq = 1/|U |, by a simple version of the Schwartz-
Zippel Lemma [48, 58]. Here U = Zp and 1/|U | = 1/p. In subsequent sections, we will
replace U with another set and will rely more heavily on the Schwartz-Zippel Lemma.

To show B = Rp(n) is superposable, we consider the two probabilities:

Pr
[
|B ∪A`| < n+

(
n

2

)]
≤

∑
Xi,Xj∈B

peq +
∑

Xi∈B,Yij∈A`

peq +
∑

Yij ,Yi′j′∈A`

peq = O(n4/p)

and

Pr [`(a1, a2, a3) = 0 for some {a1, a2, a3} /∈ Γ] ≤
∑

a1,a2,a3∈B∪A`

peq = O(n6/p),

where Γ := {{Xi, Xj , Yij} : i, j ∈ [n], i < j}. We are done by applying the Union bound to
the two failure probabilities. J

Observe that a fully random assignment to the variables of the polynomials is not necessary
to make the two polynomials equal with probability as small as 1/p. Instead, since L3S
contains only `(x, y, z) = x + y + z, if the variables X1, X2, . . . , Xn are assigned 6-wise-
independently, the probability peq is still 1/p. This observation yields a polynomial-time
construction of the superposable set, as follows.

I Lemma 12. One can construct an n-order superposable set in time polynomial in n.

Proof. Exhaustively explore the polynomial-size probability space of 6-wise independence to
find the superposable set, which is known to exist [37, 38]. J

We complete the proof of Lemma 9 by combining Lemmas 10, 11, and 12. J

Strong APX-hardness. In the NP-hardness reduction, we have presented a mapping
f : V ∪ E → S, so that every n-node m-edge graph G has an independent set of size k iff
Subset-CSAT(L3S) with input S has output of size k+m. In order to demonstrate the strong
APX-hardness of Subset-CSAT(L3S), it suffices to restrict the Max Independent Set
problem to sparse graphs. Thus we will give an SPTAS reduction from Max Independent
Set for sparse graphs, which is strongly APX-hard (Lemma 24), to Subset-CSAT(L3S).
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I Lemma 13. There is an SPTAS reduction from Max Independent Set for sparse graphs
to Subset-CSAT(L3S).

Proof. We use the same reduction as in the proof of Lemma 9, which has the property
that independent sets of size k correspond to a solution of Subset-CSAT(L3S) with size
≥ k +m. But by Turán’s Theorem, we have that any sparse graph has an independent set
of size Ω(m). Thus any solution that approximates Subset-CSAT(L3S) to within a factor
of (1− ε) for some constant ε > 0 maps to a solution that approximates Max Independent
Set for sparse graphs to within a factor of (1−O(ε)). It is easy to verify that the size of the
output of the reduction is linear in the size of the input. J

By Lemma 13 and Lemma 24, we get:

I Theorem 14. Subset-CSAT(L3S) is strongly APX-hard.

The above SPTAS reduction is based on the hardness of Max Independent Set for
sparse graphs (Lemma 24), which specifies additional structure on the input set S for Subset-
CSAT(L3S). Our reduction still works if the graph class is replaced with another graph
class G, as long as every n-node graph in G has O(n) edges and has an independent set of
size Ω(n), and Max Independent Set for G is strongly APX-hard. Such a replacement is
useful for proving further hardness results. For example, by Lemma 25 and Turán’s Theorem,
the source problem of the reduction used in the proof of Theorem 14 can be replaced with
Max Independent Set for triangle-free sparse graphs. This yields the following corollary.

I Corollary 15. Subset-CSAT(L3S) with input S, in which for every 6 distinct integers,
there are at most two triples summing to 0, is strongly APX-hard.

4 Hardness of Subset-CSAT(LSr)

We generalize the hardness result of Subset-CSAT(L3S) in Section 3 to Subset-CSAT(LSr)
where LSr := {`(x) = c · x}, and `(x) is any linear function with coefficients c ∈ (Z \ {0})r,
for any r ≥ 3.

Here we extend the definition of n-order superposable set for any r-variate homogeneous
linear function `(x). Let t := r − 3. For any set

B = {Xi : i ∈ [1, n]} ∪ {Xijk : i, j ∈ [1, n], i < j, k ∈ [1, t]}

of n+ t
(
n
2
)
integers, we define the auxiliary set A` induced by B and ` to be

A` = {Yij : `(Xi, Xj , Xij1, . . . , Xijt, Yij) = 0, i, j ∈ [1, n], i < j}.

Let Γ = {Sij := {Xi, Xj , Xij1, . . . , Xijt, Yij} : i, j ∈ [1, n], i < j}. We say B is an n-order
superposable set if A` contains only integers, |B ∪ A`| = n + (t + 1)

(
n
2
)
, and for every r

distinct integers a1, a2, . . . , ar ∈ B ∪A`, `(a1, a2, . . . , ar) = 0 only if {a1, a2, . . . , ar} ∈ Γ.
Let G = (V,E) be a problem instance of Max Independent Set for sparse graphs.

Given the superposable set B, we define a mapping f : V ∪E → 2B∪A` , where f(vi) = {Xi}
for each vi ∈ V and f({vi, vj}) = {Xij1, . . . , Xijr, Yij} for each {vi, vj} ∈ E. As in the proof
of Lemma 9, if an n-order superposable set B can be constructed in time polynomial in n,
then Subset-CSAT(LSr) is NP-hard. Moreover, the hardness-reduction is approximation-
preserving for `(x) simply by replacing (1−O(ε)) with (1−O(rε)) in the proof of Lemma 13.
Hence, Lemma 16 immediately follows by constructing B in polynomial-time.
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I Lemma 16. Subset-CSAT(LSr) is strongly APX-hard.

Proof. Recall that `(x) = c · x =
∑r
i=1 cixi where ci ∈ Z \ {0} for each i ∈ [1, r], and

t := r − 3. Let m = `cm(c1, c2, . . . , cr). We construct an n-order superposable set B by
sampling Xi for each i ∈ [1, n] and Xijk for i, j ∈ [1, n], i < j, k ∈ [1, t] from the universe
U = Zp∩mZ for some prime p. We choose the universe U in this way because no matter what
the sampled values of Xi’s and Xijk’s are, they make all Yij ’s integral. Before the sampling
is performed, each Xi, Xijk in B can be seen as an independent random variable and each
Yij in A` can be seen as some linear combination of these independent random variables.

We show that the sampled B is an n-order superposable set with positive probability
by bounding the probabilities of following bad events. Let E1 indicate the event that
|B ∪ A`| < n+ (t+ 1)

(
n
2
)
. We claim that Pr [E1] = nc/(p/m) for some constant c > 0. To

see this, we note that every two distinct random variables a1, a2 ∈ B ∪ A` are different
linear combinations of the random variables in {X1, X2, . . . , Xn}. Since X1, X2, . . . , Xn are
sampled independently from U , Pr [a1 = a2] = 1/(p/m). Together with the Union bound,
the claimed bound for Pr [E1] holds.

Let E2 indicate the event that `(a1, a2, . . . , ar) = 0 for some {a1, . . . , ar} /∈ Γ. We claim
that for every r distinct integers in B ∪ A`, `(a1, a2, . . . , ar) cannot be a zero function if
(a1, a2, . . . , ar) /∈ Γ. We express ak for each k ∈ [1, r] as a linear combination of the random
variables in B. To make `(a1, a2, . . . , ar) a zero function, each variable in B either does not
appear or appear more than once in ak’s expressions, for all k ∈ [1, r]. This observation
implies that if an Xijk in B for some i, j ∈ [n], i < j, k ∈ [1, t] appears in the r expressions
and `(a1, a2, . . . , ar) is a zero function, then Xi, Xj , Xij1, . . . , Xijt, Yij also appear in the r
expressions. Hence, in this case, {a1, a2, . . . , ar} ∈ Γ.

The remaining case is that Xijk does not appear in any of the r expressions. In this case,
to make `(a1, a2, . . . , ar) a zero function, the only possible case happens when r = 3 and
{a1, a2, a3} = {Yij , Yjk, Yik} for some i, j, k ∈ [n], i < j < k. However,

`(a1, a2, a3) = c1

(
c1Xi + c2Xj

−c3

)
+ c2

(
c1Xj + c2Xk

−c3

)
+ c3

(
c1Xi + c2Xk

−c3

)
cannot be a zero function because Xj ’s coefficient is non-zero, or

`(a1, a2, a3) = c1

(
c1Xi + c2Xj

−c3

)
+ c2

(
c1Xi + c2Xk

−c3

)
+ c3

(
c1Xj + c2Xk

−c3

)
cannot be a zero function unless (c1, c2, c3) = (∆,−∆,∆) for some ∆ 6= 0, which can be
avoided by sorting the variables in ` by their coefficients. The same argument works when
(a1, a2, a3) equals other permutations of (Yij , Yjk, Yik). Hence, the claim is true. There are a
polynomial number of non-zero linear functions `(a1, a2, . . . , ar) that cannot be zeroed by
the random assigned values of Xi, Xijk for i, j ∈ [1, n], i < j, k ∈ [1, t]. Therefore the failure
rate is nc/(p/m) for some constant c > 0.

Given the bounds on failure probability, the randomly sampled B is an n-order su-
perposable set with positive probability by picking p polynomially large in n. After a
derandomization step similar to that in Lemma 12, we have B constructed in deterministic
polynomial time. J
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5 Hardness of Subset-CSAT(Lr)

We extend the hardness result of Subset-CSAT(LSr) to

Subset-CSAT(Lr := {`1(x), `2(x), . . . , `k(x)}),

where `i(x) ∈ Z[x] for each i ∈ [1, k], x = (x1, x2, . . . , xr), and at least one `i(x) uses at least
3 of the r input variables. Showing the strong APX-hardness of Subset-CSAT(Lr) proves
Theorem 2.

We begin by defining a canonical representation for the `i(x)’s. Observe that

Subset-CSAT({`1(x, y, z, w) = x+ y − z, `2(x, y, z, w) = y + w − x})

equals Subset-CSAT({`(x, y, z, w) = x+y−z}), which also equals Subset-CSAT({`(x, y, z) =
δ(x + y − z)}) for any constant δ 6= 0, because in the definition of Subset-CSAT(L), we
assume that the output has size at least r. Let Coef(`i(x)) be the multi-set of coefficients in
`i(x). We say that `i(x) and `j(x) are in the same equivalence class if Coef(`i(x)) = {δc :
c ∈ Coef(`j(x))} for some non-zero constant δ. Thus, we can remove redundant functions in
L, if any, by removing `i(x) from L if `i(x) and `j(x) are from the same equivalence class,
for some j < i. Given the succinct representation of L, let `∗(x) be the `i(x) in L that has
the largest number of variables. If there is a tie, then pick any of them.

I Lemma 17. Consider an r-variate homogeneous linear function `∗(x) where r ≥ 3, and
an r′-variate homogeneous linear function `(x) where r′ ≤ r. Let t := r − 3. Then for any
constant ε > 0 there exists a randomized algorithm that constructs with probability at least
1−ε an n-order superposable set B = {Xi : i ∈ [1, n]}∪{Xijk : i, j ∈ [n], i < j, k ∈ [1, t]} and
the auxiliary set A`∗ = {Yij : `(Xi, Xj , Xij1, . . . , Xijt, Yij) = 0, i, j ∈ [1, n], i < j} induced by
B and `∗, so that for every r distinct integers in B ∪A`∗ , `(a1, a2, . . . , ar′) = 0 only if either
of the following two cases applies:

r′ = r and {a1, a2, . . . , ar′} = {Xi, Xj , Xij1, . . . , Xijt, Yij},
r′ = r = 3 and {a1, a2, a3} = {Ys1s2 , Ys2s3 , Ys1s3} for some 1 ≤ s1 < s2 < s3 ≤ n.

Proof. Set each element in B to be a random variable, and therefore each element in A`∗ is
a linear combination of r − 1 random variables and none of them in the linear combination
has coefficient 0. To make `(x) a zero function by setting r′ distinct variables from (B ∪A`∗),
it is necessary that each variable in B either does not appear among any of the r′ picked
variables or appears in at least two of them, noting that Xi is considered to “appear” in Xi

and Yij for any j ∈ [1, n]. There are two cases. If Xijk for some i < j, i, j ∈ [n], k ∈ [1, t] is
one of the r′ picked variables, then `(x) is zero only if the r′ picked variables are exactly
Xi, Xj , Xij1, . . . , Xijt, Yij . Otherwise, for every i < j, i, j ∈ [n], k ∈ [1, t], Xijk is not picked
as one of the r′ variables. In this case, to make `(x) zero it is necessary that t = 0 (or
equivalently r = 3), r′ = r, and the r′ picked variables are either Xi, Xj , Yij for some i, j ∈ [n]
or Ys1s2 , Ys2s3 , Ys3s1 for some 1 ≤ s1 < s2 < s3 ≤ n.

Therefore, if we let B = Rp(n), then the probability that `(a1, a2, . . . , ar′) = 0 for some
a1, a2, . . . , ar′ other than the two given ones (the only cases that may make `(x) as a zero
function) is 1/p. By the Union bound over all possible r′ distinct values from B ∪ A`∗ in
which there are O(n2) elements, we get the success probability of our random assignment is
at least 1− n2r′/p. Picking a sufficiently large p completes the proof. J

We apply Lemma 17 to each `(x) in the succinct representation of L, take the Union
bound over the failure probabilities, by the aforementioned derandomization step, we get:
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I Lemma 18. For any set Lr(x) of r-variate homogeneous linear functions, if the function
`∗(x) in L(x) that uses the largest number of variables is r′-variate for some r′ ≥ 3, let
t := r′ − 3, there exists a deterministic polynomial-time algorithm that can construct an
n-order superposable set B = {Xi : i ∈ [1, n]} ∪ {Xijk : i, j ∈ [n], i < j, k ∈ [1, t]} w.r.t. `∗
and the auxiliary set A`∗ = {Yij : `∗(Xi, Xj , Xij1, . . . , Xijt, Yij)} induced by B and `∗ so that∧
`∈L `(a1, a2, . . . , ar) evaluates to False only if either of the two following cases applies:

{a1, a2, . . . , ar} = {Xi, Xj , Xij1, . . . , Xijt, Yij},

r = 3 and {a1, a2, a3} = {Xij , Xjk, Xik}.

Proof of Theorem 2. Given Lemma 18, one can reuse the many-one reduction mentioned
previously, but restrict the input graph to be triangle-free (i.e. girth ≥ 3), so that a1, a2, a3 in
the second case of Lemma 18 cannot simultaneously appear in the set S, i.e. the input of the
reduction target. By Lemma 25, the maximum independent set problem for sparse graphs of
girth ≥ 3 is strongly APX-hard, implying that Subset-CSAT(Lr) is strongly APX-hard. J

6 Hardness of Subset-DSAT(L∨)

In this section, we will show the strong APX-hardness of

Subset-DSAT(L∨ := {`1(x), `2(x), . . . , `k(x)}),

where `i(x) ∈ Z[x] for each i ∈ [1, k], x = (x1, x2, . . . , xr), and the solutions to
∨
`∈L `(x) =

False form a vector space in general position and has dimension d at least 2. That is, we
prove Theorem 3.

To prove Theorem 3 for d = r − 1, one can use the proof of Theorem 2. For d < r − 1 in
general, the number of dependent random variables induced by the superposable set B is no
longer 1, thus requiring the solution set of to be in general position. We need to modify the
definition of the superposable set w.r.t. such a χL∨(x), as described below.

Proof of Theorem 3. For any n-node, m-edge graph G = (V,E) that has m = O(n) and
girth at least r + 1, we construct a set B of independent random variables and an auxiliary
set AχL∨ so that

B = {Xi : i ∈ V } ∪ {Xijk : (i, j) ∈ E, i < j, k ∈ [1, d− 2]}, and

AχL∨ = {Yij1, . . . , Yij(r−d) : χL∨
(
Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)

)
= 0,

(i, j) ∈ E, i < j},
where the solution space of χL∨(x) = 0 is in general position and has dimension d ≥ 2.
Hence, for every (i, j) ∈ E, i < j,

(
Yij1, Yij2, . . . , Yij(r−d)

)
is unique.

Here we define the Yijk explicitly. Let v1,v2, . . . ,vd be a set of basis vectors (column
vectors) in Zr of the solution set of χL∨(x) = 0. Let A be the aggregation of v1,v2, . . . ,vd
where A = (v1|v2| · · · |vd). Let Q be the square matrix composed of the upper d rows of A.
By the definition of general position, A is strongly full rank, Q is full rank, and thus z is
uniquely defined by
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Qz =


Xi

Xj

Xij1
...

Xij(d−2)

 , and we set Az = A

Q−1


Xi

Xj

Xij1
...

Xij(d−2)



 =



Xi

Xj

Xij1
...

Xij(d−2)
Yij1
...

Yij(r−d)


.

Thus, each of Yij1, . . . , Yij(r−d) is a nontrivial linear combination of Xi, Xj , Xij1, . . . , Xij(d−2).
Note that AQ−1 is also strongly full rank, yielding that any nontrivial linear combination
of d variables from the set

{
Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)

}
cannot be a zero

function. We are ready to prove that B is superposable w.r.t. E, that is:

I Lemma 19. For any distinct a1, a2, . . . , ar ∈ B ∪ AχL∨ , χL∨(a1, a2, . . . , ar) is a zero
function only if {a1, a2, . . . , ar} = {Xi, Xj , Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)} for some
(i, j) ∈ E, i < j.

Proof. If {a1, a2, . . . , ar} ⊆ {Xi : i ∈ [1, n]}, then χL∨(a1, a2, . . . , ar) cannot be a zero
function because the Xi’s are independent variables and each Xi appears at most once in
any linear function `j(x) that comprises χL∨ . Thus, to zero χL∨(a1, a2, . . . , ar) we may
assume that

ap ∈ Sij := {Xij1, . . . , Xij(d−2), Yij1, . . . , Yij(r−d)} for some p ∈ [1, r], (i, j) ∈ E, i < j.

Say ap appears in some homogeneous linear function `q(x) that comprises χL∨ . In order to
make χL∨(a1, . . . , ar) a zero function, one must make `q(x) a zero function. We disprove
the possibility of making `q(x) zeroed as follows. If `q(x) picks ≥ d variables from Sij , then
each of a1, . . . , ar can be represented by a linear combination of random variables in Sij . In
other words, {a1, . . . , ar} ⊆ (Sij ∪ {Xi, Xj}) because d ≥ 2. If `q(x) picks d − 1 variables
from Sij , then to make `q(x) zeroed, `q(x) needs to pick two variables aw and az where
aw is from Sik ∪ {Xi} and az is from Sj` ∪ {Xj}. Note that k 6= ` because G has girth
r + 1 ≥ d+ 2 ≥ 4. This would lead to a contradiction since if we solve the system by the
d − 1 variables from Sij as well as aw, then az can be represented by linear combination
of variables from Sij ∪ Sik ∪ {Xi}, contradicting that az ∈ Sj`, ` 6= k, and d ≥ 2. If `q(x)
picks ≤ d− 2 variables from Sij , since the rest of variables can be partitioned into subsets,
each of which sum to a multiple of Xi, or a multiple of Xj , but not a linear combination of
Xi and Xj due to G having girth at least r + 1, therefore `q(x) cannot be zeroed since this
effectively picks ≤ d variables from Sij ∪ {Xi, Xj}. J

Lastly, the exact construction of the superposable set is similar to that in Theorems 2. By
Lemma 19 and the Swartz-Zippel Lemma, we know that sampling {Xi : i ∈ [1, n]} ∪ {Xijk :
(i, j) ∈ E, i < j, k ∈ [1, d − 2]} uniformly at random from (det(Q)Z)n+(d−2)m yields a
superposable set with positive probability. We pick every Xi and Xijk as multiples of det(Q)
to ensure that all dependent variables Yijk’s are in Z. Then, after derandomization using
techniques for constant-wise independence, the construction takes time polynomial in n.
Setting g = r+1, we know that Subset-DSAT(L∨) is strongly APX-hard by Lemma 25. J
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An implication of Theorem 3 is the strong APX-hardness of finding the maximum-
cardinality k-term AP-free subset S for any fixed k ≥ 3, noting that S may contain elements
that form an i-term arithmetic progression for i < k but not i ≥ k. This problem can be
encoded as

Subset-DSAT(LkAP := {`i(x1, x2, . . . , xk) = xi − 2xi+1 + xi+2 : i ∈ [1, k − 2]}),

and the solution set of
∑
`(x)∈KkAP

`2(x) = 0 contains the plane

(x1, x2, . . . , xk) = α(1, 3, . . . , 2k − 1) + β(2, 4, . . . , 2k) for constant α, β ∈ R.

Therefore,

M =


1 2
3 4
...

...
2k − 1 2k

 in which every 2× 2 submatrix
[
2i− 1 2j − 1

2i 2j

]

is full rank. By Theorem 3, we get:

I Corollary 20. Finding a maximum-cardinality k-term AP-free subset of a given integral
set S for any fixed k ≥ 3 is strongly APX-hard.

Sharpness of d ≥ 2. Not every problem in the class Subset-DSAT(L) is hard to approxi-
mate. If the solution set of χ(x) =

∑
`(x)∈L `

2(x) is a point3, then it suffices to remove an
integer in the set S that coincides with the coordinate of the point. If it is a line, for example
α(1, 2, 4, 8) for α ∈ R, then a greedy algorithm can solve this case in P by removing the last
coordinate for every tuple of 4 integers that are multiples of (1, 2, 4, 8).

7 A Sparsity Bound, Assuming ETH

Define a sparse language as one where there are nO(1) length-n Yes-instances. Mahaney’s
theorem [39, 45] states that if P 6= NP, then there is no NP-hard sparse language. Buhrman
and Hitchcock prove a stronger (optimal) bound from a stronger hypothesis [15]: if PH
doesn’t collapse, then there is no NP-hard set with 2no(1) length-n Yes-instances. If one
assumes ETH, then an even stronger bound holds for strongly APX-hard problems.

I Theorem 21. If X is an optimization problem such that X has 2o(n/ logn) strings of length
n, then X cannot be strongly APX-hard unless ETH fails.

Proof. This proof is based on the proof of Mahaney’s theorem presented in [45]. Assume
that X is strongly APX-hard, and we will present a subexponential-time algorithm to solve
3SAT. Let

L = {(ϕ, a) : ϕ has a satisfying assignment a′ lexicographically smaller than a}.

L is in nondeterministic linear time, and hence by [19] there is a reduction g of L to 3SAT
such that, on input (ϕ, a) of size n, g(ϕ, a) is a 3CNF formula with O(n logn) variables, each
of which appears in O(1) clauses.

3 0 must be a solution of χ(x) because the `i(x)’s are homogeneous.
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Since X is strongly APX-hard, there is a function f such that, for any 3CNF formula ψ
of size n, f(ψ) has size O(n), where f yields the SPTAS reduction from Max-3SAT to X.

Consider any satisfiable formula ϕ with n variables; let aϕ be its lexicographically smallest
satisfying assignment. Hence, (ϕ, a) ∈ L if and only if a ≥ aϕ, lexicographically.

We now present an algorithm for finding aϕ that runs in subexponential time. (If the
algorithm fails to find a satisfying assignment, then ϕ is not satisfiable.) We start with
a search space of size 2n. Let C = 2o(n) be greater than the number of strings in X of
length m = O(n logn), where the output of the reduction g(ϕ, a) has length m. Find C

assignments a1, . . . , aC that are evenly spaced among the current search space, and compute
zi = f(g(ϕ, ai)) for 1 ≤ i ≤ C.

If there are i < j such that zi = zj , then g(ϕ, ai) is in 3SAT iff g(ϕ, aj) is, and thus aϕ
does not lie in the segment (ai, aj ], and thus we can reduce the size of our search space by a
factor of 1/C.

Otherwise, there are C distinct elements zi of the form f(g(ϕ, ai)), which is greater than
the number of relevant elements of X that can be in the range of f . Thus at least one of
the formulae g(ϕ, ai) must be unsatisfiable, since f maps it to an infeasible instance of X.
But if any formula g(ϕ, ai) is unsatisfiable, it follows that g(ϕ, a1) is unsatisfiable, and hence
aϕ does not lie in the segment [0n, a1], and thus again we can reduce the size of our search
space by a factor of 1/C.

We now repeat the process with a new set of C checkpoints. As in [45], the bookkeeping
that is necessary to keep track of the current search space and to compute the new checkpoints
does not get too complicated, and after a small number of iterations the entire search space
is of size at most C, at which point we can check directly in subexponential time if any of
the remaining assignments satisfies ϕ.

This algorithm can thus determine if ϕ is satisfiable or not, which is at least as hard as
solving 3SAT. J
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A Reducing Some MIS Problems to Subset-CSAT(L)

We reduce the problem of finding a maximum independent set for c-far unit-disk graphs to
Subset-CSAT(L) for some 2-variable L. A unit disk graph G is an intersection graph of unit
disks in the plane. We say a unit-disk graph is c-far if for each pair of disks the Euclidean
distance between their centers does not fall within the interval [0, c) ∪ (2, 2 + c) for some
constant c > 0. It is known that the maximum independent set problem remains NP-hard
for c-far unit-disk graphs [41, 56], even when the locations of disks are given.

I Theorem 22. There exists a polynomial-time many-one reduction from finding a maximum
independent set for c-far unit-disk graphs to Subset-CSAT(L) for some 2-variable L.

Proof. The reduction comes as follows. Let D = {d1, d2, . . . , dn} be the set of the n disks and
let x(di) and y(di) denote the x- and y-coordinate of disk di for each i ∈ [1, n]. We discretize
the locations of disks in D so that x(di) and y(di) for all i ∈ [1, n] are mapped to multiples
of ε where ε is set as c/6. Observe that, if two disks intersect before the discretization,
then their distance is in the range [4c/6, 2 + 2c/6]; if two disks do not intersect before the
discretization, then their distance now falls within [2 + 4c/6,∞). If we enlarge the radius
of all disks from 1 to 1 + 3c/12, then the discretization does not alter whether two disks
intersect or not. In other words, if two disks intersect, then the center of one disk is located
at one of the O(1/ε2) discretized coordinates surrounding the center of the other.

Consequently, if we map each disk di to an integer 2x(di)/ε3y(di)/ε, noting that the
exponents are integers for each i ∈ [1, n], and set

Ludisk = {`(a, b) = 2r13r2a−2r33r4b : ε
√

(r1 − r3)2 + (r2 − r4)2 < 2+c/2, r1, r2, r3, r4 ∈ N},

then it is clear that Subset-CSAT(Ludisk) is a restatement of finding a maximum independent
set for c-far unit-disk graphs. J

Combining Theorem 22 and Theorem 2, we get:

I Corollary 23. Finding a maximum independent set for c-far unit-disk graphs admits a
PTAS.

http://dl.acm.org/citation.cfm?id=645514.658082
https://doi.org/10.1109/CEC.2004.1330839
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We remark here that one can have a result analogous to Corollary 23 for c-far intersection
graphs whose underlying shape is a unit symmetric convex set. This result is not as general
as for ordinary intersection graphs because c-farness implies that all nodes in the intersection
graph have a constant degree.

B Initial Hardness Results

Our hardness proofs are based on the strong APX-hardness of Max Independent Set for
sparse large-girth graphs, which can be shown by the following chain of reductions.

Let Max-3SAT-∆ be the subproblem of Max-3SAT so that there exists a constant
∆ such that no variables of the formula appears in more than ∆ clauses. Let Max-IS be
the maximum independent set problem. In what follows, we will show that Max-3SAT-∆
≤SPTAS Max-IS for sparse graphs ≤SPTAS Max-IS for sparse large-girth graphs.

I Lemma 24. Max Independent Set for sparse graphs, i.e. with a linear number of
edges, is strongly APX-hard.

Proof. Let I3SAT be an instance of Max-3SAT-∆. We assume that I3SAT has n variables
and m clauses, and each clause in I3SAT has exactly 3 literals. Otherwise, one can duplicate
some literal in each of the 1-literal and 2-literal clauses. Given I3SAT, we construct a graph
G = (V,E) as IMIS as follows. For each i ∈ [1,m], we add three nodes vi1 , vi2 , vi3 to V , link
each pair of the three nodes with an edge, and label vi1 , vi2 , vi3 with the corresponding literal
in the i-th clause. Then, for every pair of nodes in V , if their labels are literals which are
negations of each other, then link an edge between them. Consequently, G has 3m nodes
and at most 3m + 9

(∆
2
)
n = O(m) edges. It can be checked that I3SAT can have t clauses

simultaneously satisfied if and only if IMIS has an independent set of size t. Moreover, the
problem instances have size linear to each other. This gives a SPTAS reduction. J

I Lemma 25. For every constant c ≥ 3, Max Independent Set for sparse graphs of girth
≥ c is strongly APX-hard.

Proof. Let Is (resp. Is,g≥c) be an instance of Max Independent Set for sparse graphs
(resp. Max Independent Set for sparse graphs of girth ≥ c). One can map Is to Is,g≥c
by replacing each edge (va, vb) with a path from va to vb with 2c internal nodes, as shown
in [44]. Hence, Is,g≥c has girth ≥ 6c+ 3, and Is has an independent set t if and only if Is,g≥c
has an independent set of size t+ cm. Every (1 − ε)-approximation for Is,g≥c determines
that Is,g≥c has an independent set of size (1− ε)(t+ cm), which corresponds to Is having an
independent set of size (1− ε)t− εcm = (1−O(ε))t, where the equality holds because c is a
constant and t = Ω(n) = Ω(m) by Turán’s Theorem. Moreover, the problem instances have
size linear to each other. This gives a SPTAS reduction. J

C Inapproximability Constants

Lastly, for each problem in the syntactically-defined class that does not admit a PTAS, we
determine an inapproximability constant 1− ε, so that it cannot be (1− ε)-approximated
unless P = NP. We use the facts that Max Independent Set on 3-regular graphs cannot
be approximated to within the constant C3 = 139/140 + ε for any constant ε > 0 [12], and
Max Independent Set on 3-regular triangle-free graphs can not be approximated to within
the constant C3∆ = 1422/1432 + ε for any constant ε > 0 [18].

APPROX/RANDOM 2019
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We first apply Lemma 13 to bound an inapproximability constant 1 − δr based on C3
and then replace the use of Turán’s Theorem in Lemma 13 with the AKS Theorem [4] and
Staton’s result [52] to bound the claimed inapproximability constant 1− εr based on C3∆.

Since Max Independent Set on 3-regular graphs cannot be approximated to within
C3, from Lemma 13 we have following theorem:

I Lemma 26. For every homogeneous, r-variate (r ≥ 3), linear function `(x), Subset-
CSAT({`(x)}) cannot be approximated to within any constant factor larger than 1− δr in
polynomial time unless P = NP, where δr = 1−C3

7+6(r−3) .

Simply replacing C3 with C3∆ cannot increase δr because C3 < C3∆ and such a replace-
ment in Lemma 26 makes δr smaller. Instead, we replace the use of Turán’s Theorem,
which applies to general graphs, with the AKS Theorem (see Theorem 27), which works for
triangle-free graphs. In [3, 50], the constant in the big-Omega notation in AKS Theorem
is bounded above by 1/100 and 1/8, respectively. Though the size of an independent set
guaranteed by the AKS theorem is asymptotically larger than that of Turán theorem, it is
numerically smaller when d = 3.

I Theorem 27 (AKS Theorem [4]). Every d-regular triangle-free graph has an independent
set of size Ω(n log d/d).

Note that the constant in the big-Omega notation is universal for every d. For a particular
value of d the constant can be larger. In particular, in [52] Staton shows that every 3-regular
triangle-free graph has an independent set of size 5m/21, which is more than the m/6
guaranteed by Turán’s theorem. The constant 5/21 is tight due to Fajtlowicz [27]. Based on
this improved guarantee of the size of an independent set, we obtain the following result.

I Lemma 28. For each homogeneous, r-variate, linear function `(x), Subset-CSAT({`(x)})
cannot be approximated to within any constant factor larger than 1− εr in polynomial time
unless P = NP, where εr = 1− 1−C3∆

5.2+4.2(r−3) .

Lemma 28 and the proof of Theorem 2 together imply that:

I Theorem 29. Let L be a finite set of homogeneous linear functions whose coefficients
are in Z. If L contains a homogeneous r-variate linear function `(x) for some r ≥ 3, then
Subset-CSAT(L) cannot be approximated to within any constant factor larger than 1− εr
in polynomial time unless P = NP, where εr = 1− 1−C3∆

5.2+4.2(r−3) .

To obtain the inapproximability constants for Subset-DSAT(L), we need Lemma 30.

I Lemma 30. Max Independent Set for graphs whose maximum degree ≤ 3 and girth
≥ g cannot be approximated to within any constant factor larger than 1− εg in polynomial
time unless P = NP, where εg < 1

140(6d(g−3)/6e+1) .

Proof. We prove this by giving a PTAS reduction from Max Independent Set for 3-regular
graphs G3r = (V3r, E3r) to Max Independent Set for graphs Gg+ = (Vg+ , Eg+) of girth
≥ g. We obtain Gg+ from G3r by replacing each edge in E3r with a path of length 2t+ 1
(t ∈ Z), connecting 2t new nodes. Hence, the smallest cycle in Gg+ is 3 + 6t. We pick
t = d(g − 3)/6e so that Gg+ has no cycle of length < g.

It is known [44] that Gg+ has an independent set of size t|E3r| + k iff G3r has an
independent set of size k. Every (1− ε)-approximation algorithm for Max Independent
Set of Gg+ can find an independent set of size (1− ε)(t|E3r|+ k), which corresponds to an
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independent set of size (1− ε)k− εt|E3r| ≥ (1− (6t+ 1)ε)k in G3r, where the last inequality
follows from the fact that k ≥ |E3r|/6 for every 3-regular graph, due to Turán’s Theorem [53].

Based on [12], Max Independent Set for 3-regular graphs cannot be approximated to
within 1− ε3r for any ε3r < 1/140. Thus, ε cannot be less than 1

140(6t+1) = 1
140(6d(g−3)/6e+1) .

J

In the proof of Theorem 3, the girth g is set as r + 1, where r denotes |x|. Hence, we get:

I Theorem 31. Let L be a finite set of homogeneous linear functions whose coefficients are
in Z. For each Subset-DSAT(L), if the solutions to

∨
`∈L `(x) = False form a vector

space in general position and has dimension at least 2, then Subset-DSAT(L) cannot be
approximated to within any constant factor larger than 1− εr in polynomial time unless P =
NP, where εr = 1

140(6d(r−2)/6e+1) .
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