6 research outputs found

    At the crossroads of big science, open science, and technology transfer

    Get PDF
    Les grans infraestructures científiques s’enfronten a demandes creixents de responsabilitat pública, no només per la seva contribució al descobriment científic, sinó també per la seva capacitat de generar valor econòmic secundari. Per construir i operar les seves infraestructures sofisticades, sovint generen tecnologies frontereres dissenyant i construint solucions tècniques per a problemes d’enginyeria complexos i sense precedents. En paral·lel, la dècada anterior ha presenciat la ràpida irrupció de canvis tecnològics que han afectat la manera com es fa i es comparteix la ciència, cosa que ha comportat l’emergència del concepte d’Open Science (OS). Els governs avancen ràpidament vers aquest paradigma de OS i demanen a les grans infraestructures científiques que "obrin" els seus processos científics. No obstant, aquestes dues forces s'oposen, ja que la comercialització de tecnologies i resultats científics requereixen normalment d’inversions financeres importants i les empreses només estan disposades a assumir aquest cost si poden protegir la innovació de la imitació o de la competència deslleial. Aquesta tesi doctoral té com a objectiu comprendre com les noves aplicacions de les TIC afecten els resultats de la recerca i la transferència de tecnologia resultant en el context de les grans infraestructures científiques. La tesis pretén descobrir les tensions entre aquests dos vectors normatius, així com identificar els mecanismes que s’utilitzen per superar-les. La tesis es compon de quatre estudis: 1) Un estudi que aplica un mètode de recerca mixt que combina dades de dues enquestes d’escala global realitzades online (2016, 2018), amb dos cas d’estudi de dues comunitats científiques en física d’alta energia i biologia molecular que avaluen els factors explicatius darrere les pràctiques de compartir dades per part dels científics; 2) Un estudi de cas d’Open Targets, una infraestructura d’informació basada en dades considerades bens comuns, on el Laboratori Europeu de Biologia Molecular-EBI i empreses farmacèutiques col·laboren i comparteixen dades científiques i eines tecnològiques per accelerar el descobriment de medicaments; 3) Un estudi d’un conjunt de dades únic de 170 projectes finançats en el marc d’ATTRACT (un nou instrument de la Comissió Europea liderat per les grans infraestructures científiques europees) que té com a objectiu comprendre la naturalesa del procés de serendipitat que hi ha darrere de la transició de tecnologies de grans infraestructures científiques a aplicacions comercials abans no anticipades. ; i 4) un cas d’estudi sobre la tecnologia White Rabbit, un hardware sofisticat de codi obert desenvolupat al Consell Europeu per a la Recerca Nuclear (CERN) en col·laboració amb un extens ecosistema d’empreses.Las grandes infraestructuras científicas se enfrentan a crecientes demandas de responsabilidad pública, no solo por su contribución al descubrimiento científico sino también por su capacidad de generar valor económico para la sociedad. Para construir y operar sus sofisticadas infraestructuras, a menudo generan tecnologías de vanguardia al diseñar y construir soluciones técnicas para problemas de ingeniería complejos y sin precedentes. Paralelamente, la década anterior ha visto la irrupción de rápidos cambios tecnológicos que afectan la forma en que se genera y comparte la ciencia, lo que ha llevado a acuñar el concepto de Open Science (OS). Los gobiernos se están moviendo rápidamente hacia este nuevo paradigma y están pidiendo a las grandes infraestructuras científicas que "abran" el proceso científico. Sin embargo, estas dos fuerzas se oponen, ya que la comercialización de tecnología y productos científicos generalmente requiere importantes inversiones financieras y las empresas están dispuestas a asumir este coste solo si pueden proteger la innovación de la imitación o la competencia desleal. Esta tesis doctoral tiene como objetivo comprender cómo las nuevas aplicaciones de las TIC están afectando los resultados científicos y la transferencia de tecnología resultante en el contexto de las grandes infraestructuras científicas. La tesis pretende descubrir las tensiones entre estas dos fuerzas normativas e identificar los mecanismos que se emplean para superarlas. La tesis se compone de cuatro estudios: 1) Un estudio que emplea un método mixto de investigación que combina datos de dos encuestas de escala global realizadas online (2016, 2018), con dos caso de estudio sobre dos comunidades científicas distintas -física de alta energía y biología molecular- que evalúan los factores explicativos detrás de las prácticas de intercambio de datos científicos; 2) Un caso de estudio sobre Open Targets, una infraestructura de información basada en datos considerados como bienes comunes, donde el Laboratorio Europeo de Biología Molecular-EBI y compañías farmacéuticas colaboran y comparten datos científicos y herramientas tecnológicas para acelerar el descubrimiento de fármacos; 3) Un estudio de un conjunto de datos único de 170 proyectos financiados bajo ATTRACT, un nuevo instrumento de la Comisión Europea liderado por grandes infraestructuras científicas europeas, que tiene como objetivo comprender la naturaleza del proceso fortuito detrás de la transición de las tecnologías de grandes infraestructuras científicas a aplicaciones comerciales previamente no anticipadas ; y 4) un estudio de caso de la tecnología White Rabbit, un sofisticado hardware de código abierto desarrollado en el Consejo Europeo de Investigación Nuclear (CERN) en colaboración con un extenso ecosistema de empresas.Big science infrastructures are confronting increasing demands for public accountability, not only within scientific discovery but also their capacity to generate secondary economic value. To build and operate their sophisticated infrastructures, big science often generates frontier technologies by designing and building technical solutions to complex and unprecedented engineering problems. In parallel, the previous decade has seen the disruption of rapid technological changes impacting the way science is done and shared, which has led to the coining of the concept of Open Science (OS). Governments are quickly moving towards the OS paradigm and asking big science centres to "open up” the scientific process. Yet these two forces run in opposition as the commercialization of scientific outputs usually requires significant financial investments and companies are willing to bear this cost only if they can protect the innovation from imitation or unfair competition. This PhD dissertation aims at understanding how new applications of ICT are affecting primary research outcomes and the resultant technology transfer in the context of big and OS. It attempts to uncover the tensions in these two normative forces and identify the mechanisms that are employed to overcome them. The dissertation is comprised of four separate studies: 1) A mixed-method study combining two large-scale global online surveys to research scientists (2016, 2018), with two case studies in high energy physics and molecular biology scientific communities that assess explanatory factors behind scientific data-sharing practices; 2) A case study of Open Targets, an information infrastructure based upon data commons, where European Molecular Biology Laboratory-EBI and pharmaceutical companies collaborate and share scientific data and technological tools to accelerate drug discovery; 3) A study of a unique dataset of 170 projects funded under ATTRACT -a novel policy instrument of the European Commission lead by European big science infrastructures- which aims to understand the nature of the serendipitous process behind transitioning big science technologies to previously unanticipated commercial applications; and 4) a case study of White Rabbit technology, a sophisticated open-source hardware developed at the European Council for Nuclear Research (CERN) in collaboration with an extensive ecosystem of companies

    Investigating the Societal Impact of Large Research Infrastructure : A Study on the Compact Linear Collider at CERN

    Get PDF
    Research is less and less assessed on scientific impact alone. Governments invest public funds into scientific research with the expectation that economic, medical and other benefits would ensue as the increasingly important contributions of science to society. Research came to be seen as a valuable enterprise itself, given the value of the knowledge generated, even if its application is not immediate. Diverse Big Science centres issue annual impact reports highlighting the positive impacts from the science on society, industry, and technological progress, human excellence, and education. Number of publications, licensing, start-ups, bilateral cooperation agreements, sustainable development goals, related events are used as indicators to measure the impact of a research. Beside an increased number of literatures on the socio-economic impact assessment, many important meetings and workshops includes an obligatory discussion on the impact. Thus, the European particle physics community repeatedly raised the question on the societal impact during conversations. The community meets to define a strategy for the future developments in fundamental research on physics by evaluating ongoing studies. Thereby in an open symposium in Granada in May 2019, the committee highlighted a pure academic significance of an international collider study and its unclear technical and economic ripple effects for general public. Likewise, the European Strategy update in June 2020 again recommended to emphasise the scientific impact of particle physics, as well as its technological, societal and human capital outcomes. Additionally, the committee underlined an importance of partnership with industry and other research institutes, as these collaborations are key for sustaining scientific and technological progress, helping to drive innovation, and bringing societal benefits. Despite the raised interest to the topic, there is still no common methodology or tool yet for evaluation of Big Science impacts. The assessment of the costs and benefits of research, development and innovation infrastructures stays extremely difficult and is still discussed as quite subjective and intuitive approach. Causal factors leading to impact remain speculative which creates much uncertainty for effective measures of impact areas. Thus, this study seeks to obtain data which will help to address the indicated research gaps. There are two primary aims of this dissertation: to identify impact fields and its measures and to explain the relationship between them. The research is built on the Compact Linear Collider (CLIC) study as a large-scale international project at its early development phase. The project still has the ‘study’ status since CLIC has not been approved for the construction. The initial data on the CLIC study was collected from the CERN procurement database and presented about 13000 procurement orders, 130 collaboration contracts, 180 collaborators, 930 suppliers, 1800 publications, 296 early career researchers and 54 countries. Then the second generation of the data gathering had more concentrated character and was performed via an online survey distributed among 152 CLIC suppliers. The feedback was received from 74 hi-tech companies. First, the impacts were assessed from the internal viewpoint using data collected inside the project. Three areas found in earlier research to benefit most were focused on: knowledge formation, technological output, and human capital formation. The particle physics attracts young minds and provide their education and training. Thus, early career researchers benefit via incremental salaries caused by getting first working experience. The scientific community advantages with created knowledge – publications, and its application for their research in terms of citations. Industrial partners profit from increased turnovers and saving in-house resources through the ability to use already existing developments of CLIC. The methodology is heavily built on the previous relevant studies. Opposite to the most part of the preceding studies the assessment was done before the construction phase of a scientific infrastructure and focused only on the past development phase experience. All three impact fields demonstrated as beneficial even already at the study status of the large- scale project. However, the highest benefit/cost ratio belongs to the knowledge output component of profits. The latter is in line with the focal point of this study on the development phase of the CLIC project when the intense procurement has not yet started. The intense procurement and employment belong to construction phase of the project. Second, the impacts were assessed from the external viewpoint through the data collected through an online survey of CLIC suppliers. The methodology was heavily built on the already existing theories about research – industry collaboration. The benefits for industry were determined as innovation, market expansion, marketing image, economic outcome, R&D improvement and learning on processes and services. The main influencing factors were distinguished from the concerned literature and grouped in three sets such as firm attributes, research infrastructure attributes and relationship attributes. Afterwards the linear regression analysis was conducted to define the relationship between six types of benefits and three sets of explanatory factors. It was found that the industrial partners could benefit from the collaboration even at the earlier phase of the fundamental scientific study through increased knowledge, market expansion, marketing image enhancement, economic outcome, improved research and development, and learnings on internal services and processes. The highest statistical significance and models’ fits was demonstrated for knowledge, market expansion, R&D and learning service benefits. The analysis highlighted the importance for companies to participate in scientific events organised by research infrastructures, as well as doing business with other scientific laboratories. On another hand, the Big Science centre can enhance the benefits for industry by simplifying the procurement policy and having well-established communication channels. Hence, the dissertation contributes to two existing contemporary fields as societal impact assessment of fundamental science and research-industry collaboration evaluation. The research shows that a large-scale international study can already create benefits at a very beginning development phase from internal and external point of view. The developed conceptual model can be used to defend the required public investments in fundamental research and to entice prospective industrial partners. Nevertheless, the study introduces limitations in generalisability of the results and recommends the future research on the missing potential beneficial fields from CLIC and a more detailed analysis of the research-industry collaboration by introducing industrial case studies

    Tudományos karrierek a 21. század elején

    Get PDF
    corecore