28 research outputs found

    Lipschitz and uniformly continuous reducibilities on ultrametric Polish spaces

    Full text link
    We analyze the reducibilities induced by, respectively, uniformly continuous, Lipschitz, and nonexpansive functions on arbitrary ultrametric Polish spaces, and determine whether under suitable set-theoretical assumptions the induced degree-structures are well-behaved.Comment: 37 pages, 2 figures, revised version, accepted for publication in the Festschrift that will be published on the occasion of Victor Selivanov's 60th birthday by Ontos-Verlag. A mistake has been corrected in Section

    Degrees of Computability and Randomness

    Get PDF

    The proof-theoretic strength of Ramsey's theorem for pairs and two colors

    Get PDF
    Ramsey's theorem for nn-tuples and kk-colors (RTkn\mathsf{RT}^n_k) asserts that every k-coloring of [N]n[\mathbb{N}]^n admits an infinite monochromatic subset. We study the proof-theoretic strength of Ramsey's theorem for pairs and two colors, namely, the set of its Π10\Pi^0_1 consequences, and show that RT22\mathsf{RT}^2_2 is Π30\Pi^0_3 conservative over IΣ10\mathsf{I}\Sigma^0_1. This strengthens the proof of Chong, Slaman and Yang that RT22\mathsf{RT}^2_2 does not imply IΣ20\mathsf{I}\Sigma^0_2, and shows that RT22\mathsf{RT}^2_2 is finitistically reducible, in the sense of Simpson's partial realization of Hilbert's Program. Moreover, we develop general tools to simplify the proofs of Π30\Pi^0_3-conservation theorems.Comment: 32 page

    On the mathematical and foundational significance of the uncountable

    Full text link
    We study the logical and computational properties of basic theorems of uncountable mathematics, including the Cousin and Lindel\"of lemma published in 1895 and 1903. Historically, these lemmas were among the first formulations of open-cover compactness and the Lindel\"of property, respectively. These notions are of great conceptual importance: the former is commonly viewed as a way of treating uncountable sets like e.g. [0,1][0,1] as 'almost finite', while the latter allows one to treat uncountable sets like e.g. R\mathbb{R} as 'almost countable'. This reduction of the uncountable to the finite/countable turns out to have a considerable logical and computational cost: we show that the aforementioned lemmas, and many related theorems, are extremely hard to prove, while the associated sub-covers are extremely hard to compute. Indeed, in terms of the standard scale (based on comprehension axioms), a proof of these lemmas requires at least the full extent of second-order arithmetic, a system originating from Hilbert-Bernays' Grundlagen der Mathematik. This observation has far-reaching implications for the Grundlagen's spiritual successor, the program of Reverse Mathematics, and the associated G\"odel hierachy. We also show that the Cousin lemma is essential for the development of the gauge integral, a generalisation of the Lebesgue and improper Riemann integrals that also uniquely provides a direct formalisation of Feynman's path integral.Comment: 35 pages with one figure. The content of this version extends the published version in that Sections 3.3.4 and 3.4 below are new. Small corrections/additions have also been made to reflect new development

    Set Theory

    Get PDF
    corecore