6 research outputs found

    How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.

    Get PDF
    Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults

    Sleep problems at ages 8–9 and ADHD symptoms at ages 10–11:evidence in three cohorts from INMA study

    Get PDF
    Sleep problems and attention deficit hyperactivity disorder (ADHD) are interrelated during childhood and preadolescence. The objective of this work is assessing if sleep problems at ages 8–9 represent an alarm sign for presenting ADHD problems at ages 10–11 in three cohorts from INMA Study. Participants were 1244 children from Gipuzkoa, Sabadell, and Valencia cohorts. Sleep problems were assessed (ages 8–9) with the sleep items of the Child’s Behaviour Checklist (CBCL), and ADHD problems were collected through the Conner’s Parent Rating Scales-Revised: Short Form (CPRS-R:S) (age 10–11). Minimally and fully adjusted negative binomial models were fitted for each CPRS-R:S scale. Linearity of the relationship was assessed with generalized additive models (cubic smoothing splines with 2, 3, and 4 knots). For sensitivity analyses, children with previous symptoms, those born preterm and small for gestational age, and cases with extreme values, were excluded. Sleep problems presented IRR (95% CI) of 1.14 (1.10–1.19), 1.20 (1.14–1.26), 1.18 (1.11–1.25), and 1.18 (1.13–1.23) for opposition, inattention, hyperactivity, and ADHD scales, respectively. Fully adjusted models slightly decreased the IRR, but the association remained similar and significant. Sensitivity analyses showed similar results to fully adjusted models with only hyperactivity shown a slight decrease on significance (p = 0.051) when ADHD cases at age 9 were excluded. Conclusion: Sleep problems are an alarm sign for later neurodevelopment problems such as ADHD. Healthcare systems could take advantage implementing policies to pay special attention on the sleep habits and sleep hygiene. This could contribute to add evidence to public health programmes such as the Healthy Child Programme.</p

    The spatiotemporal pattern of the human electroencephalogram at sleep onset after a period of prolonged wakefulness

    Get PDF
    During the sleep onset (SO) process, the human electroencephalogram (EEG) is characterized by an orchestrated pattern of spatiotemporal changes. Sleep deprivation (SD) strongly affects both wake and sleep EEG, but a description of the topographical EEG power spectra and oscillatory activity during the wake-sleep transition after a period of prolonged wakefulness is still missing. The increased homeostatic sleep pressure should induce an earlier onset of sleep-related EEG oscillations. The aim of the present study was to assess the spatiotemporal EEG pattern at SO following SD. A dataset of a previous study was analyzed. We assessed the spatiotemporal EEG changes (19 cortical derivations) during the SO (5 min before vs. 5 min after the first epoch of Stage 2) of a recovery night after 40 h of SD in 39 healthy subjects, analyzing the EEG power spectra (fast Fourier transform) and the oscillatory activity [better oscillation (BOSC) detection method]. The spatiotemporal pattern of the EEG power spectra mostly confirmed the changes previously observed during the wake-sleep transition at baseline. The comparison between baseline and recovery showed a wide increase of the post- vs. pre-SO ratio during the recovery night in the frequency bins 10 Hz. We found a predominant alpha oscillatory rhythm in the pre-SO period, while after SO the theta oscillatory activity was prevalent. The oscillatory peaks showed a generalized increase in all frequency bands from delta to sigma with different predominance, while beta activity increased only in the fronto-central midline derivations. Overall, the analysis of the EEG power replicated the topographical pattern observed during a baseline night of sleep but with a stronger intensity of the SO-induced changes in the frequencies 10 Hz, and the detection of the rhythmic activity showed the rise of several oscillations at SO after SD that was not observed during the wake-sleep transition at baseline (e.g., alpha and frontal theta in correspondence of their frequency peaks). Beyond confirming the local nature of the EEG pattern at SO, our results show that SD has an impact on the spatiotemporal modulation of cortical activity during the falling-asleep process, inducing the earlier emergence of sleep-related EEG oscillations

    Local and Widespread Slow Waves in Stable NREM Sleep: Evidence for Distinct Regulation Mechanisms

    Get PDF
    Previous work showed that two types of slow waves are temporally dissociated during the transition to sleep: widespread, large and steep slow waves predominate early in the falling asleep period (type I), while smaller, more circumscribed slow waves become more prevalent later (type II). Here, we studied the possible occurrence of these two types of slow waves in stable non-REM (NREM) sleep and explored potential differences in their regulation. A heuristic approach based on slow wave synchronization efficiency was developed and applied to high-density electroencephalographic (EEG) recordings collected during consolidated NREM sleep to identify the potential type I and type II slow waves. Slow waves with characteristics compatible with those previously described for type I and type II were identified in stable NREM sleep. Importantly, these slow waves underwent opposite changes across the night, with only type II slow waves displaying a clear homeostatic regulation. In addition, we showed that the occurrence of type I slow waves was often followed by larger type II slow waves, whereas the occurrence of type II slow waves was usually followed by smaller type I waves. Finally, type II slow waves were associated with a relative increase in spindle activity, while type I slow waves triggered periods of high-frequency activity. Our results provide evidence for the existence of two distinct slow wave synchronization processes that underlie two different types of slow waves. These slow waves may have different functional roles and mark partially distinct “micro-states” of the sleeping brain

    How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep

    Full text link
    INTRODUCTION Slow waves, the hallmarks of non-rapid eye-movement (NREM) sleep, are thought to reflect maturational changes that occur in the cerebral cortex throughout childhood and adolescence. Recent work in adults has revealed evidence for two distinct synchronization processes involved in the generation of slow waves, which sequentially come into play in the transition to sleep. In order to understand how these two processes are affected by developmental changes, we compared slow waves between children and young adults in the falling asleep period. METHODS The sleep onset period (starting 30s before end of alpha activity and ending at the first slow wave sequence) was extracted from 72 sleep onset high-density EEG recordings (128 electrodes) of 49 healthy subjects (age 8-25). Using an automatic slow wave detection algorithm, the number, amplitude and slope of slow waves were analyzed and compared between children (age 8-11) and young adults (age 20-25). RESULTS Slow wave number and amplitude increased linearly in the falling asleep period in children, while in young adults, isolated high-amplitude slow waves (type I) dominated initially and numerous smaller slow waves (type II) with progressively increasing amplitude occurred later. Compared to young adults, children displayed faster increases in slow wave amplitude and number across the falling asleep period in central and posterior brain regions, respectively, and also showed larger slow waves during wakefulness immediately prior to sleep. CONCLUSIONS Children do not display the two temporally dissociated slow wave synchronization processes in the falling asleep period observed in adults, suggesting that maturational factors underlie the temporal segregation of these two processes. Our findings provide novel perspectives for studying how sleep-related behaviors and dreaming differ between children and adults

    Chimeras in physics and biology : Synchronization and desynchronization of rhythms

    Get PDF
    Rhythmen prĂ€gen unser Leben auf vielfĂ€ltige Weise, z. B. durch Herzschlag und Atmung, oszillierende Gehirnströme, Lebenszyklen und Jahreszeiten, Uhren und Metronome, pulsierende Laser, Übertragung von Datenpaketen, und vieles andere. Die Physik komplexer nichtlinearer Systeme hat Methoden entwickelt, wie periodische Schwingungen und deren Synchronisation in komplexen Netzwerken, die aus vielen Bestandteilen zusammengesetzt sind, beschrieben und analysiert werden können. Synchronisierte Oszillationen, aber auch völlig desynchronisierte, chaotische Oszillationen spielen eine große Rolle in vielen Netzwerken in Natur und Technik. Beispielsweise ist das synchronisierte Feuern aller Neuronen im Gehirn ein pathologischer Zustand, etwa bei Epilepsie oder Parkinson-Erkrankung, und sollte unterdrĂŒckt werden, wie auch synchrone mechanische Schwingungen von BrĂŒcken. Andererseits ist die Synchronisation erwĂŒnscht beim stabilen Betrieb von Stromnetzen oder bei der verschlĂŒsselten Kommunikation mit chaotischen Signalen. In Netzwerken aus identischen Komponenten können sich ĂŒberraschenderweise auch spontan Hybrid-ZustĂ€nde („SchimĂ€ren“) bilden, die aus rĂ€umlich koexistierenden synchronisierten und desynchronisierten Bereichen bestehen, welche scheinbar nicht zusammen passen. Diese könnten relevant sein bei der Auslösung oder Beendigung epileptischer AnfĂ€lle, oder beim halbseitigen Schlaf einer GehirnhĂ€lfte, der bei bestimmten Zugvögeln oder SĂ€ugetieren auftritt, oder beim kaskadenartigen Zusammenbruch des Stromnetzes.Rhythms influence our life in various ways, e.g., through heart beat and respiration, oscillating brain currents, life cycles and seasons, clocks and metronomes, pulsating lasers, transmission of data packets, and many others. The physics of complex nonlinear systems has developed methods to describe and analyze periodic oscillations and their synchronization in complex networks, which are composed of many components. Synchronized oscillations as well as completely asynchronous chaotic oscillations play a major role in many networks in nature and technology. For instance, the synchronous firing of all neurons in the brain represents a pathological state, like in epilepsy or Parkinson’s disease, and should be suppressed, as well as the synchronous mechanical vibration of bridges. On the other hand, synchronization is desirable for the stable operation of power grids or in encrypted communication with chaotic signals. In networks composed of identical components, intriguing hybrid states (“chimeras”) may form spontaneously, which consist of spatially coexisting synchronized and desynchronized domains, i.e., seemingly incongruous parts. This might be of relevance in inducing and terminating epileptic seizures, or in unihemispheric sleep which is found in certain migratory birds and mammals, or in cascading failures of the power grid.DFG, 163436311, Kontrolle selbstorganisierender nichtlinearer Systeme: Theoretische Methoden und AnwendungskonzepteDFG, 308748074, DFG-RSF: Komplexe dynamische Netzwerke: Effekte von heterogenen, adaptiven und zeitverzögerten Kopplunge
    corecore