8,548 research outputs found

    Connecting people through physiosocial technology

    Get PDF
    Social connectedness is one of the most important predictors of health and well-being. The goal of this dissertation is to investigate technologies that can support social connectedness. Such technologies can build upon the notion that disclosing emotional information has a strong positive influence on social connectedness. As physiological signals are strongly related to emotions, they might provide a solid base for emotion communication technologies. Moreover, physiological signals are largely lacking in unmediated communication, have been used successfully by machines to recognize emotions, and can be measured relatively unobtrusively with wearable sensors. Therefore, this doctoral dissertation examines the following research question: How can we use physiological signals in affective technology to improve social connectedness? First, a series of experiments was conducted to investigate if computer interpretations of physiological signals can be used to automatically communicate emotions and improve social connectedness (Chapters 2 and 3). The results of these experiments showed that computers can be more accurate at recognizing emotions than humans are. Physiological signals turned out to be the most effective information source for machine emotion recognition. One advantage of machine based emotion recognition for communication technology may be the increase in the rate at which emotions can be communicated. As expected, experiments showed that increases in the number of communicated emotions increased feelings of closeness between interacting people. Nonetheless, these effects on feelings of closeness are limited if users attribute the cause of the increases in communicated emotions to the technology and not to their interaction partner. Therefore, I discuss several possibilities to incorporate emotion recognition technologies in applications in such a way that users attribute the communication to their interaction partner. Instead of using machines to interpret physiological signals, the signals can also be represented to a user directly. This way, the interpretation of the signal is left to be done by the user. To explore this, I conducted several studies that employed heartbeat representations as a direct physiological communication signal. These studies showed that people can interpret such signals in terms of emotions (Chapter 4) and that perceiving someone's heartbeat increases feelings of closeness between the perceiver and sender of the signal (Chapter 5). Finally, we used a field study (Chapter 6) to investigate the potential of heartbeat communication mechanisms in practice. This again confirmed that heartbeat can provide an intimate connection to another person, showing the potential for communicating physiological signals directly to improve connectedness. The last part of the dissertation builds upon the notion that empathy has positive influences on social connectedness. Therefore, I developed a framework for empathic computing that employed automated empathy measurement based on physiological signals (Chapter 7). This framework was applied in a system that can train empathy (Chapter 8). The results showed that providing users frequent feedback about their physiological synchronization with others can help them to improve empathy as measured through self-report and physiological synchronization. In turn, this improves understanding of the other and helps people to signal validation and caring, which are types of communication that improve social connectedness. Taking the results presented in this dissertation together, I argue that physiological signals form a promising modality to apply in communication technology (Chapter 9). This dissertation provides a basis for future communication applications that aim to improve social connectedness

    Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI

    Get PDF
    As an emerging interaction paradigm, physiological computing is increasingly being used to both measure and feed back information about our internal psychophysiological states. While most applications of physiological computing are designed for individual use, recent research has explored how biofeedback can be socially shared between multiple users to augment human-human communication. Reflecting on the empirical progress in this area of study, this paper presents a systematic review of 64 studies to characterize the interaction contexts and effects of social biofeedback systems. Our findings highlight the importance of physio-temporal and social contextual factors surrounding physiological data sharing as well as how it can promote social-emotional competences on three different levels: intrapersonal, interpersonal, and task-focused. We also present the Social Biofeedback Interactions framework to articulate the current physiological-social interaction space. We use this to frame our discussion of the implications and ethical considerations for future research and design of social biofeedback interfaces.Comment: [Accepted version, 32 pages] Clara Moge, Katherine Wang, and Youngjun Cho. 2022. Shared User Interfaces of Physiological Data: Systematic Review of Social Biofeedback Systems and Contexts in HCI. In CHI Conference on Human Factors in Computing Systems (CHI'22), ACM, https://doi.org/10.1145/3491102.351749

    The experience of enchantment in human-computer interaction

    Get PDF
    Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p

    User Experience in Social Virtual Reality

    Get PDF

    ARTIFICIAL AGENTS MODELING FOR INTIMATE TELEPRESENCE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore