1,452 research outputs found

    Models and Algorithms for Graph Watermarking

    Full text link
    We introduce models and algorithmic foundations for graph watermarking. Our frameworks include security definitions and proofs, as well as characterizations when graph watermarking is algorithmically feasible, in spite of the fact that the general problem is NP-complete by simple reductions from the subgraph isomorphism or graph edit distance problems. In the digital watermarking of many types of files, an implicit step in the recovery of a watermark is the mapping of individual pieces of data, such as image pixels or movie frames, from one object to another. In graphs, this step corresponds to approximately matching vertices of one graph to another based on graph invariants such as vertex degree. Our approach is based on characterizing the feasibility of graph watermarking in terms of keygen, marking, and identification functions defined over graph families with known distributions. We demonstrate the strength of this approach with exemplary watermarking schemes for two random graph models, the classic Erd\H{o}s-R\'{e}nyi model and a random power-law graph model, both of which are used to model real-world networks

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Audio watermarking techniques using singular value decomposition

    Get PDF
    In an increasingly digital world, proving ownership of files is more and more difficult. For audio files, many schemes have been put into place to attempt to protect the rights of the digital content owners. In general, these techniques fall under the classification of Digital Rights Management (DRM). Audio watermarking is one of the less invasive schemes which embeds security into the data itself instead of in an outside layer meant to encapsulate and protect the data. There are many domains in which an audio watermark can be applied. The simplest is that of the time domain; often, however, other domains may be more desirable due to greater imperceptibility and robustness to attack. Common domains include the frequency domain, or domains similar to frequency through functions such as the Wavelet Transform. One domain of particular interest is that of the Singular Value Decomposition. The goal of this thesis is to propose and test many different watermarking schemes as well as test an existing watermarking scheme operating in the SVD domain in order to assess the viability of the SVD as a watermarking carrier domain. Different carrier matrices as well as bit embedding methods are explored. The use of a standard set of audio files was used to help test the systems; a standard set of watermarking tests was unavailable, so a comparable test bed was implemented and utilized
    corecore