4,307 research outputs found

    Addressing barriers in comprehensiveness, accessibility, reusability, interoperability and reproducibility of computational models in systems biology

    Get PDF
    Computational models are often employed in systems biology to study the dynamic behaviours of complex systems. With the rise in the number of computational models, finding ways to improve the reusability of these models and their ability to reproduce virtual experiments becomes critical. Correct and effective model annotation in community-supported and standardised formats is necessary for this improvement. Here,we present recent efforts toward a common framework for annotated, accessible, reproducible and interoperable computational models in biology, and discuss key challenges of the field. Scientists from different systems biology fields have long been developing community-driven guidelines and best practices for annotation, interoperability and reusability of computational models in biology. However, the parallel work, grounded on shared needs and similar aims, of separate communities creates a need for exchange and alignment of the different efforts to harmonise best practices. Hence, members of the Consortium for Logical Models and Tools (CoLoMoTo, http://colomoto.org) and the Computational Modelling of Biological Systems community of the International Society for Computational Biology (SysMod, https:// sysmod.info/) organised aworkshop to discusscommunitydriven guidelines and efforts for the curation and annotation of computational models during [BC]2 2021. The workshop grew from a previous edition organised during [BC]2 2019 focused on logical modelling [1]. The second edition brought together scientists with various research backgrounds and from different working groups such as BioModels [2], a central repository of mathematical models of biological/biomedical processes; the Computational Modelling in Biology Network initiative (COMBINE) [3]; CoLoMoTo, [4]; SysMod, [5]; the Systems Biology Graphical Notation (SBGN) project [6]; the systems biology markup language (SBML) [7] and simulation experiment description markup language (SED-ML) [8], to exchange and expand on several key topics of common interest (Figure 1). While the modelling approaches across these communities differ, several critical points are shared, such as (i) the importance of annotations for reproducibility, (ii) the use of community standards for exchange and annotation encoding, (iii) the need to implement standards in tools and platforms to boost reusability and interoperability, (iv) the importance of transparency of modelling frameworks in publications and (v) the use of shared repositories to enhance model accessibility (Figure 2). We use the term annotation to describe ‘a computeraccessible metadata item that captures, entirely or in part, the meaning of a model, model component or data element’. We borrow this definition from [9] which is in accordance with its use in [1]. We discuss the identified needs in the following sections

    Developing Predictive Molecular Maps of Human Disease through Community-based Modeling

    Get PDF
    The failure of biology to identify the molecular causes of disease has led to disappointment in the rate of development of new medicines. By combining the power of community-based modeling with broad access to large datasets on a platform that promotes reproducible analyses we can work towards more predictive molecular maps that can deliver better therapeutics

    Systems Biology in ELIXIR: modelling in the spotlight

    Get PDF
    In this white paper, we describe the founding of a new ELIXIR Community - the Systems Biology Community - and its proposed future contributions to both ELIXIR and the broader community of systems biologists in Europe and worldwide. The Community believes that the infrastructure aspects of systems biology - databases, (modelling) tools and standards development, as well as training and access to cloud infrastructure - are not only appropriate components of the ELIXIR infrastructure, but will prove key components of ELIXIR\u27s future support of advanced biological applications and personalised medicine. By way of a series of meetings, the Community identified seven key areas for its future activities, reflecting both future needs and previous and current activities within ELIXIR Platforms and Communities. These are: overcoming barriers to the wider uptake of systems biology; linking new and existing data to systems biology models; interoperability of systems biology resources; further development and embedding of systems medicine; provisioning of modelling as a service; building and coordinating capacity building and training resources; and supporting industrial embedding of systems biology. A set of objectives for the Community has been identified under four main headline areas: Standardisation and Interoperability, Technology, Capacity Building and Training, and Industrial Embedding. These are grouped into short-term (3-year), mid-term (6-year) and long-term (10-year) objectives

    Credible practice of modeling and simulation in healthcare: ten rules from a multidisciplinary perspective

    Get PDF
    The complexities of modern biomedicine are rapidly increasing. Thus, modeling and simulation have become increasingly important as a strategy to understand and predict the trajectory of pathophysiology, disease genesis, and disease spread in support of clinical and policy decisions. In such cases, inappropriate or ill-placed trust in the model and simulation outcomes may result in negative outcomes, and hence illustrate the need to formalize the execution and communication of modeling and simulation practices. Although verification and validation have been generally accepted as significant components of a model\u27s credibility, they cannot be assumed to equate to a holistic credible practice, which includes activities that can impact comprehension and in-depth examination inherent in the development and reuse of the models. For the past several years, the Committee on Credible Practice of Modeling and Simulation in Healthcare, an interdisciplinary group seeded from a U.S. interagency initiative, has worked to codify best practices. Here, we provide Ten Rules for credible practice of modeling and simulation in healthcare developed from a comparative analysis by the Committee\u27s multidisciplinary membership, followed by a large stakeholder community survey. These rules establish a unified conceptual framework for modeling and simulation design, implementation, evaluation, dissemination and usage across the modeling and simulation life-cycle. While biomedical science and clinical care domains have somewhat different requirements and expectations for credible practice, our study converged on rules that would be useful across a broad swath of model types. In brief, the rules are: (1) Define context clearly. (2) Use contextually appropriate data. (3) Evaluate within context. (4) List limitations explicitly. (5) Use version control. (6) Document appropriately. (7) Disseminate broadly. (8) Get independent reviews. (9) Test competing implementations. (10) Conform to standards. Although some of these are common sense guidelines, we have found that many are often missed or misconstrued, even by seasoned practitioners. Computational models are already widely used in basic science to generate new biomedical knowledge. As they penetrate clinical care and healthcare policy, contributing to personalized and precision medicine, clinical safety will require established guidelines for the credible practice of modeling and simulation in healthcare

    Nanoinformatics: a new area of research in nanomedicine

    Get PDF
    Over a decade ago, nanotechnologists began research on applications of nanomaterials for medicine. This research has revealed a wide range of different challenges, as well as many opportunities. Some of these challenges are strongly related to informatics issues, dealing, for instance, with the management and integration of heterogeneous information, defining nomenclatures, taxonomies and classifications for various types of nanomaterials, and research on new modeling and simulation techniques for nanoparticles. Nanoinformatics has recently emerged in the USA and Europe to address these issues. In this paper, we present a review of nanoinformatics, describing its origins, the problems it addresses, areas of interest, and examples of current research initiatives and informatics resources. We suggest that nanoinformatics could accelerate research and development in nanomedicine, as has occurred in the past in other fields. For instance, biomedical informatics served as a fundamental catalyst for the Human Genome Project, and other genomic and ?omics projects, as well as the translational efforts that link resulting molecular-level research to clinical problems and findings
    corecore