8 research outputs found

    Query-to-Communication Lifting for BPP

    Full text link
    For any nn-bit boolean function ff, we show that the randomized communication complexity of the composed function f∘gnf\circ g^n, where gg is an index gadget, is characterized by the randomized decision tree complexity of ff. In particular, this means that many query complexity separations involving randomized models (e.g., classical vs. quantum) automatically imply analogous separations in communication complexity.Comment: 21 page

    LIPIcs

    Get PDF
    We study space complexity and time-space trade-offs with a focus not on peak memory usage but on overall memory consumption throughout the computation. Such a cumulative space measure was introduced for the computational model of parallel black pebbling by [Alwen and Serbinenko ’15] as a tool for obtaining results in cryptography. We consider instead the non- deterministic black-white pebble game and prove optimal cumulative space lower bounds and trade-offs, where in order to minimize pebbling time the space has to remain large during a significant fraction of the pebbling. We also initiate the study of cumulative space in proof complexity, an area where other space complexity measures have been extensively studied during the last 10–15 years. Using and extending the connection between proof complexity and pebble games in [Ben-Sasson and Nordström ’08, ’11] we obtain several strong cumulative space results for (even parallel versions of) the resolution proof system, and outline some possible future directions of study of this, in our opinion, natural and interesting space measure

    KRW Composition Theorems via Lifting

    Full text link
    One of the major open problems in complexity theory is proving super-logarithmic lower bounds on the depth of circuits (i.e., P⊈NC1\mathbf{P}\not\subseteq\mathbf{NC}^1). Karchmer, Raz, and Wigderson (Computational Complexity 5(3/4), 1995) suggested to approach this problem by proving that depth complexity behaves "as expected" with respect to the composition of functions f⋄gf\diamond g. They showed that the validity of this conjecture would imply that P⊈NC1\mathbf{P}\not\subseteq\mathbf{NC}^1. Several works have made progress toward resolving this conjecture by proving special cases. In particular, these works proved the KRW conjecture for every outer function ff, but only for few inner functions gg. Thus, it is an important challenge to prove the KRW conjecture for a wider range of inner functions. In this work, we extend significantly the range of inner functions that can be handled. First, we consider the monotone\textit{monotone} version of the KRW conjecture. We prove it for every monotone inner function gg whose depth complexity can be lower bounded via a query-to-communication lifting theorem. This allows us to handle several new and well-studied functions such as the s-ts\textbf{-}t-connectivity, clique, and generation functions. In order to carry this progress back to the non-monotone\textit{non-monotone} setting, we introduce a new notion of semi-monotone\textit{semi-monotone} composition, which combines the non-monotone complexity of the outer function ff with the monotone complexity of the inner function gg. In this setting, we prove the KRW conjecture for a similar selection of inner functions gg, but only for a specific choice of the outer function ff

    36th International Symposium on Theoretical Aspects of Computer Science: STACS 2019, March 13-16, 2019, Berlin, Germany

    Get PDF
    corecore