6,930 research outputs found

    A visual analytics approach for visualisation and knowledge discovery from time-varying personal life data

    Get PDF
    A thesis submitted to the University of Bedfordshire, in ful filment of the requirements for the degree of Doctor of PhilosophyToday, the importance of big data from lifestyles and work activities has been the focus of much research. At the same time, advances in modern sensor technologies have enabled self-logging of a signi cant number of daily activities and movements. Lifestyle logging produces a wide variety of personal data along the lifespan of individuals, including locations, movements, travel distance, step counts and the like, and can be useful in many areas such as healthcare, personal life management, memory recall, and socialisation. However, the amount of obtainable personal life logging data has enormously increased and stands in need of effective processing, analysis, and visualisation to provide hidden insights owing to the lack of semantic information (particularly in spatiotemporal data), complexity, large volume of trivial records, and absence of effective information visualisation on a large scale. Meanwhile, new technologies such as visual analytics have emerged with great potential in data mining and visualisation to overcome the challenges in handling such data and to support individuals in many aspects of their life. Thus, this thesis contemplates the importance of scalability and conducts a comprehensive investigation into visual analytics and its impact on the process of knowledge discovery from the European Commission project MyHealthAvatar at the Centre for Visualisation and Data Analytics by actively involving individuals in order to establish a credible reasoning and effectual interactive visualisation of such multivariate data with particular focus on lifestyle and personal events. To this end, this work widely reviews the foremost existing work on data mining (with the particular focus on semantic enrichment and ranking), data visualisation (of time-oriented, personal, and spatiotemporal data), and methodical evaluations of such approaches. Subsequently, a novel automated place annotation is introduced with multilevel probabilistic latent semantic analysis to automatically attach relevant information to the collected personal spatiotemporal data with low or no semantic information in order to address the inadequate information, which is essential for the process of knowledge discovery. Correspondingly, a multi-signi ficance event ranking model is introduced by involving a number of factors as well as individuals' preferences, which can influence the result within the process of analysis towards credible and high-quality knowledge discovery. The data mining models are assessed in terms of accurateness and performance. The results showed that both models are highly capable of enriching the raw data and providing significant events based on user preferences. An interactive visualisation is also designed and implemented including a set of novel visual components signifi cantly based upon human perception and attentiveness to visualise the extracted knowledge. Each visual component is evaluated iteratively based on usability and perceptibility in order to enhance the visualisation towards reaching the goal of this thesis. Lastly, three integrated visual analytics tools (platforms) are designed and implemented in order to demonstrate how the data mining models and interactive visualisation can be exploited to support different aspects of personal life, such as lifestyle, life pattern, and memory recall (reminiscence). The result of the evaluation for the three integrated visual analytics tools showed that this visual analytics approach can deliver a remarkable experience in gaining knowledge and supporting the users' life in certain aspects

    Social influence analysis in microblogging platforms - a topic-sensitive based approach

    Get PDF
    The use of Social Media, particularly microblogging platforms such as Twitter, has proven to be an effective channel for promoting ideas to online audiences. In a world where information can bias public opinion it is essential to analyse the propagation and influence of information in large-scale networks. Recent research studying social media data to rank users by topical relevance have largely focused on the “retweet", “following" and “mention" relations. In this paper we propose the use of semantic profiles for deriving influential users based on the retweet subgraph of the Twitter graph. We introduce a variation of the PageRank algorithm for analysing users’ topical and entity influence based on the topical/entity relevance of a retweet relation. Experimental results show that our approach outperforms related algorithms including HITS, InDegree and Topic-Sensitive PageRank. We also introduce VisInfluence, a visualisation platform for presenting top influential users based on a topical query need

    Positioning for conceptual development using latent semantic analysis

    Get PDF
    With increasing opportunities to learn online, the problem of positioning learners in an educational network of content offers new possibilities for the utilisation of geometry-based natural language processing techniques. In this article, the adoption of latent semantic analysis (LSA) for guiding learners in their conceptual development is investigated. We propose five new algorithmic derivations of LSA and test their validity for positioning in an experiment in order to draw back conclusions on the suitability of machine learning from previously accredited evidence. Special attention is thereby directed towards the role of distractors and the calculation of thresholds when using similarities as a proxy for assessing conceptual closeness. Results indicate that learning improves positioning. Distractors are of low value and seem to be replaceable by generic noise to improve threshold calculation. Furthermore, new ways to flexibly calculate thresholds could be identified

    Dynamics of private social networks

    Get PDF
    Social networks, have been a significant turning point in ways individuals and companies interact. Various research has also revolved around public social networks, such as Twitter and Facebook. In most cases trying to understand what's happening in the network such predicting trends, and identifying natural phenomenon. Seeing the growth of public social networks several corporations have sought to build their own private networks to enable their staff to share knowledge, and expertise. Little research has been done in regards to the value private networks give to their stake holders. This is primarily due to the fact as their name implies, these networks are private, thus access to internal data is limited to a trusted few. This paper looks at a particular online private social network, and seeks to investigate the research possibilities made available, and how this can bring value to the organisation which runs the network. Notwithstanding the limitations of the network, this paper seeks to explore the connections graph between members of the network, as well as understanding the topics discussed within the network. The findings show that by visualising a social network one can assess the success or failure of their online networks. The Analysis conducted can also identify skill shortages within areas of the network, thus allowing corporations to take action and rectify any potential problems.peer-reviewe

    Straight to Shapes: Real-time Detection of Encoded Shapes

    Full text link
    Current object detection approaches predict bounding boxes, but these provide little instance-specific information beyond location, scale and aspect ratio. In this work, we propose to directly regress to objects' shapes in addition to their bounding boxes and categories. It is crucial to find an appropriate shape representation that is compact and decodable, and in which objects can be compared for higher-order concepts such as view similarity, pose variation and occlusion. To achieve this, we use a denoising convolutional auto-encoder to establish an embedding space, and place the decoder after a fast end-to-end network trained to regress directly to the encoded shape vectors. This yields what to the best of our knowledge is the first real-time shape prediction network, running at ~35 FPS on a high-end desktop. With higher-order shape reasoning well-integrated into the network pipeline, the network shows the useful practical quality of generalising to unseen categories similar to the ones in the training set, something that most existing approaches fail to handle.Comment: 16 pages including appendix; Published at CVPR 201
    • 

    corecore