2 research outputs found

    How does Connected Components Labeling with Decision Trees perform on GPUs?

    Get PDF
    In this paper the problem of Connected Components Labeling (CCL) in binary images using Graphic Processing Units (GPUs) is tackled by a different perspective. In the last decade, many novel algorithms have been released, specifically designed for GPUs. Because CCL literature concerning sequential algorithms is very rich, and includes many efficient solutions, designers of parallel algorithms were often inspired by techniques that had already proved successful in a sequential environment, such as the Union-Find paradigm for solving equivalences between provisional labels. However, the use of decision trees to minimize memory accesses, which is one of the main feature of the best performing sequential algorithms, was never taken into account when designing parallel CCL solutions. In fact, branches in the code tend to cause thread divergence, which usually leads to inefficiency. Anyway, this consideration does not necessarily apply to every possible scenario. Are we sure that the advantages of decision trees do not compensate for the cost of thread divergence? In order to answer this question, we chose three well-known sequential CCL algorithms, which employ decision trees as the cornerstone of their strategy, and we built a data-parallel version of each of them. Experimental tests on real case datasets show that, in most cases, these solutions outperform state-of-the-art algorithms, thus demonstrating the effectiveness of decision trees also in a parallel environment

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    corecore