26,833 research outputs found

    Opinion dynamics with backfire effect and biased assimilation

    Get PDF
    The democratization of AI tools for content generation, combined with unrestricted access to mass media for all (e.g. through microblogging and social media), makes it increasingly hard for people to distinguish fact from fiction. This raises the question of how individual opinions evolve in such a networked environment without grounding in a known reality. The dominant approach to studying this problem uses simple models from the social sciences on how individuals change their opinions when exposed to their social neighborhood, and applies them on large social networks. We propose a novel model that incorporates two known social phenomena: (i) Biased Assimilation: the tendency of individuals to adopt other opinions if they are similar to their own; (ii) Backfire Effect: the fact that an opposite opinion may further entrench someone in their stance, making their opinion more extreme instead of moderating it. To the best of our knowledge this is the first DeGroot-type opinion formation model that captures the Backfire Effect. A thorough theoretical and empirical analysis of the proposed model reveals intuitive conditions for polarization and consensus to exist, as well as the properties of the resulting opinions

    The Evolution of Beliefs over Signed Social Networks

    Full text link
    We study the evolution of opinions (or beliefs) over a social network modeled as a signed graph. The sign attached to an edge in this graph characterizes whether the corresponding individuals or end nodes are friends (positive links) or enemies (negative links). Pairs of nodes are randomly selected to interact over time, and when two nodes interact, each of them updates its opinion based on the opinion of the other node and the sign of the corresponding link. This model generalizes DeGroot model to account for negative links: when two enemies interact, their opinions go in opposite directions. We provide conditions for convergence and divergence in expectation, in mean-square, and in almost sure sense, and exhibit phase transition phenomena for these notions of convergence depending on the parameters of the opinion update model and on the structure of the underlying graph. We establish a {\it no-survivor} theorem, stating that the difference in opinions of any two nodes diverges whenever opinions in the network diverge as a whole. We also prove a {\it live-or-die} lemma, indicating that almost surely, the opinions either converge to an agreement or diverge. Finally, we extend our analysis to cases where opinions have hard lower and upper limits. In these cases, we study when and how opinions may become asymptotically clustered to the belief boundaries, and highlight the crucial influence of (strong or weak) structural balance of the underlying network on this clustering phenomenon

    Opinion Polarization by Learning from Social Feedback

    Full text link
    We explore a new mechanism to explain polarization phenomena in opinion dynamics in which agents evaluate alternative views on the basis of the social feedback obtained on expressing them. High support of the favored opinion in the social environment, is treated as a positive feedback which reinforces the value associated to this opinion. In connected networks of sufficiently high modularity, different groups of agents can form strong convictions of competing opinions. Linking the social feedback process to standard equilibrium concepts we analytically characterize sufficient conditions for the stability of bi-polarization. While previous models have emphasized the polarization effects of deliberative argument-based communication, our model highlights an affective experience-based route to polarization, without assumptions about negative influence or bounded confidence.Comment: Presented at the Social Simulation Conference (Dublin 2017

    Opinion dynamics: models, extensions and external effects

    Full text link
    Recently, social phenomena have received a lot of attention not only from social scientists, but also from physicists, mathematicians and computer scientists, in the emerging interdisciplinary field of complex system science. Opinion dynamics is one of the processes studied, since opinions are the drivers of human behaviour, and play a crucial role in many global challenges that our complex world and societies are facing: global financial crises, global pandemics, growth of cities, urbanisation and migration patterns, and last but not least important, climate change and environmental sustainability and protection. Opinion formation is a complex process affected by the interplay of different elements, including the individual predisposition, the influence of positive and negative peer interaction (social networks playing a crucial role in this respect), the information each individual is exposed to, and many others. Several models inspired from those in use in physics have been developed to encompass many of these elements, and to allow for the identification of the mechanisms involved in the opinion formation process and the understanding of their role, with the practical aim of simulating opinion formation and spreading under various conditions. These modelling schemes range from binary simple models such as the voter model, to multi-dimensional continuous approaches. Here, we provide a review of recent methods, focusing on models employing both peer interaction and external information, and emphasising the role that less studied mechanisms, such as disagreement, has in driving the opinion dynamics. [...]Comment: 42 pages, 6 figure

    Quantifying and minimizing risk of conflict in social networks

    Get PDF
    Controversy, disagreement, conflict, polarization and opinion divergence in social networks have been the subject of much recent research. In particular, researchers have addressed the question of how such concepts can be quantified given people’s prior opinions, and how they can be optimized by influencing the opinion of a small number of people or by editing the network’s connectivity. Here, rather than optimizing such concepts given a specific set of prior opinions, we study whether they can be optimized in the average case and in the worst case over all sets of prior opinions. In particular, we derive the worst-case and average-case conflict risk of networks, and we propose algorithms for optimizing these. For some measures of conflict, these are non-convex optimization problems with many local minima. We provide a theoretical and empirical analysis of the nature of some of these local minima, and show how they are related to existing organizational structures. Empirical results show how a small number of edits quickly decreases its conflict risk, both average-case and worst-case. Furthermore, it shows that minimizing average-case conflict risk often does not reduce worst-case conflict risk. Minimizing worst-case conflict risk on the other hand, while computationally more challenging, is generally effective at minimizing both worst-case as well as average-case conflict risk
    • …
    corecore