1,118 research outputs found

    Reasoning about Independence in Probabilistic Models of Relational Data

    Full text link
    We extend the theory of d-separation to cases in which data instances are not independent and identically distributed. We show that applying the rules of d-separation directly to the structure of probabilistic models of relational data inaccurately infers conditional independence. We introduce relational d-separation, a theory for deriving conditional independence facts from relational models. We provide a new representation, the abstract ground graph, that enables a sound, complete, and computationally efficient method for answering d-separation queries about relational models, and we present empirical results that demonstrate effectiveness.Comment: 61 pages, substantial revisions to formalisms, theory, and related wor

    Simplicial matrix-tree theorems

    Get PDF
    We generalize the definition and enumeration of spanning trees from the setting of graphs to that of arbitrary-dimensional simplicial complexes Δ\Delta, extending an idea due to G. Kalai. We prove a simplicial version of the Matrix-Tree Theorem that counts simplicial spanning trees, weighted by the squares of the orders of their top-dimensional integral homology groups, in terms of the Laplacian matrix of Δ\Delta. As in the graphic case, one can obtain a more finely weighted generating function for simplicial spanning trees by assigning an indeterminate to each vertex of Δ\Delta and replacing the entries of the Laplacian with Laurent monomials. When Δ\Delta is a shifted complex, we give a combinatorial interpretation of the eigenvalues of its weighted Laplacian and prove that they determine its set of faces uniquely, generalizing known results about threshold graphs and unweighted Laplacian eigenvalues of shifted complexes.Comment: 36 pages, 2 figures. Final version, to appear in Trans. Amer. Math. So

    Cellular spanning trees and Laplacians of cubical complexes

    Get PDF
    We prove a Matrix-Tree Theorem enumerating the spanning trees of a cell complex in terms of the eigenvalues of its cellular Laplacian operators, generalizing a previous result for simplicial complexes. As an application, we obtain explicit formulas for spanning tree enumerators and Laplacian eigenvalues of cubes; the latter are integers. We prove a weighted version of the eigenvalue formula, providing evidence for a conjecture on weighted enumeration of cubical spanning trees. We introduce a cubical analogue of shiftedness, and obtain a recursive formula for the Laplacian eigenvalues of shifted cubical complexes, in particular, these eigenvalues are also integers. Finally, we recover Adin's enumeration of spanning trees of a complete colorful simplicial complex from the cellular Matrix-Tree Theorem together with a result of Kook, Reiner and Stanton.Comment: 24 pages, revised version, to appear in Advances in Applied Mathematic

    Improved Parallel Algorithms for Spanners and Hopsets

    Full text link
    We use exponential start time clustering to design faster and more work-efficient parallel graph algorithms involving distances. Previous algorithms usually rely on graph decomposition routines with strict restrictions on the diameters of the decomposed pieces. We weaken these bounds in favor of stronger local probabilistic guarantees. This allows more direct analyses of the overall process, giving: * Linear work parallel algorithms that construct spanners with O(k)O(k) stretch and size O(n1+1/k)O(n^{1+1/k}) in unweighted graphs, and size O(n1+1/klogk)O(n^{1+1/k} \log k) in weighted graphs. * Hopsets that lead to the first parallel algorithm for approximating shortest paths in undirected graphs with O(m  polylog  n)O(m\;\mathrm{polylog}\;n) work

    Intersections of Schubert varieties and eigenvalue inequalities in an arbitrary finite factor

    Full text link
    It is known that the eigenvalues of selfadjoint elements a,b,c with a+b+c=0 in the factor R^omega (ultrapower of the hyperfinite II1 factor) are characterized by a system of inequalities analogous to the classical Horn inequalities of linear algebra. We prove that these inequalities are in fact true for elements of an arbitrary finite factor. A matricial (`complete') form of this result is equivalent to an embedding question formulated by Connes.Comment: 41 pages, many figure
    corecore