31,829 research outputs found

    The abstraction transition taxonomy: developing desired learning outcomes through the lens of situated cognition

    Get PDF
    We report on a post-hoc analysis of introductory programming lecture materials. The purpose of this analysis is to identify what knowledge and skills we are asking students to acquire, as situated in the activity, tools, and culture of what programmers do and how they think. The specific materials analyzed are the 133 Peer Instruction questions used in lecture to support cognitive apprenticeship -- honoring the situated nature of knowledge. We propose an Abstraction Transition Taxonomy for classifying the kinds of knowing and practices we engage students in as we seek to apprentice them into the programming world. We find students are asked to answer questions expressed using three levels of abstraction: English, CS Speak, and Code. Moreover, many questions involve asking students to transition between levels of abstraction within the context of a computational problem. Finally, by applying our taxonomy in classifying a range of introductory programming exams, we find that summative assessments (including our own) tend to emphasize a small range of the skills fostered in students during the formative/apprenticeship phase

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Contemporary developments in teaching and learning introductory programming: Towards a research proposal

    Get PDF
    The teaching and learning of introductory programming in tertiary institutions is problematic. Failure rates are high and the inability of students to complete small programming tasks at the completion of introductory units is not unusual. The literature on teaching programming contains many examples of changes in teaching strategies and curricula that have been implemented in an effort to reduce failure rates. This paper analyses contemporary research into the area, and summarises developments in the teaching of introductory programming. It also focuses on areas for future research which will potentially lead to improvements in both the teaching and learning of introductory programming. A graphical representation of the issues from the literature that are covered in the document is provided in the introduction

    A review of Australasian investigations into problem solving and the novice programmer

    Get PDF
    This Australasian focused review compares a number of recent studies that have identified difficulties encountered by novices while learning programming and problem solving. These studies have shown that novices are not performing at expected levels and many novices have only a fragile knowledge of programming, which may prevent them from learning and applying problem solving strategies. The review goes on to explore proposals for explicitly incorporating problem solving strategy instruction into introductory programming curricula and assessment, in an attempt to produce improved learning outcomes for novices. Finally, directions suggested by the reviewed studies are gathered and some unanswered questions are raised

    A Data Science Course for Undergraduates: Thinking with Data

    Get PDF
    Data science is an emerging interdisciplinary field that combines elements of mathematics, statistics, computer science, and knowledge in a particular application domain for the purpose of extracting meaningful information from the increasingly sophisticated array of data available in many settings. These data tend to be non-traditional, in the sense that they are often live, large, complex, and/or messy. A first course in statistics at the undergraduate level typically introduces students with a variety of techniques to analyze small, neat, and clean data sets. However, whether they pursue more formal training in statistics or not, many of these students will end up working with data that is considerably more complex, and will need facility with statistical computing techniques. More importantly, these students require a framework for thinking structurally about data. We describe an undergraduate course in a liberal arts environment that provides students with the tools necessary to apply data science. The course emphasizes modern, practical, and useful skills that cover the full data analysis spectrum, from asking an interesting question to acquiring, managing, manipulating, processing, querying, analyzing, and visualizing data, as well communicating findings in written, graphical, and oral forms.Comment: 21 pages total including supplementary material

    Synthesizing Imperative Programs from Examples Guided by Static Analysis

    Full text link
    We present a novel algorithm that synthesizes imperative programs for introductory programming courses. Given a set of input-output examples and a partial program, our algorithm generates a complete program that is consistent with every example. Our key idea is to combine enumerative program synthesis and static analysis, which aggressively prunes out a large search space while guaranteeing to find, if any, a correct solution. We have implemented our algorithm in a tool, called SIMPL, and evaluated it on 30 problems used in introductory programming courses. The results show that SIMPL is able to solve the benchmark problems in 6.6 seconds on average.Comment: The paper is accepted in Static Analysis Symposium (SAS) '17. The submission version is somewhat different from the version in arxiv. The final version will be uploaded after the camera-ready version is read
    • …
    corecore