42 research outputs found

    SC-MAD: Mixtures of Higher-order Networks for Data Augmentation

    Full text link
    The myriad complex systems with multiway interactions motivate the extension of graph-based pairwise connections to higher-order relations. In particular, the simplicial complex has inspired generalizations of graph neural networks (GNNs) to simplicial complex-based models. Learning on such systems requires large amounts of data, which can be expensive or impossible to obtain. We propose data augmentation of simplicial complexes through both linear and nonlinear mixup mechanisms that return mixtures of existing labeled samples. In addition to traditional pairwise mixup, we present a convex clustering mixup approach for a data-driven relationship among several simplicial complexes. We theoretically demonstrate that the resultant synthetic simplicial complexes interpolate among existing data with respect to homomorphism densities. Our method is demonstrated on both synthetic and real-world datasets for simplicial complex classification.Comment: 5 pages, 1 figure, 1 tabl

    Does Progress On Object Recognition Benchmarks Improve Real-World Generalization?

    Full text link
    For more than a decade, researchers have measured progress in object recognition on ImageNet-based generalization benchmarks such as ImageNet-A, -C, and -R. Recent advances in foundation models, trained on orders of magnitude more data, have begun to saturate these standard benchmarks, but remain brittle in practice. This suggests standard benchmarks, which tend to focus on predefined or synthetic changes, may not be sufficient for measuring real world generalization. Consequently, we propose studying generalization across geography as a more realistic measure of progress using two datasets of objects from households across the globe. We conduct an extensive empirical evaluation of progress across nearly 100 vision models up to most recent foundation models. We first identify a progress gap between standard benchmarks and real-world, geographical shifts: progress on ImageNet results in up to 2.5x more progress on standard generalization benchmarks than real-world distribution shifts. Second, we study model generalization across geographies by measuring the disparities in performance across regions, a more fine-grained measure of real world generalization. We observe all models have large geographic disparities, even foundation CLIP models, with differences of 7-20% in accuracy between regions. Counter to modern intuition, we discover progress on standard benchmarks fails to improve geographic disparities and often exacerbates them: geographic disparities between the least performant models and today's best models have more than tripled. Our results suggest scaling alone is insufficient for consistent robustness to real-world distribution shifts. Finally, we highlight in early experiments how simple last layer retraining on more representative, curated data can complement scaling as a promising direction of future work, reducing geographic disparity on both benchmarks by over two-thirds

    Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

    Full text link
    Prior works have found it beneficial to combine provably noise-robust loss functions e.g., mean absolute error (MAE) with standard categorical loss function e.g. cross entropy (CE) to improve their learnability. Here, we propose to use Jensen-Shannon divergence as a noise-robust loss function and show that it interestingly interpolate between CE and MAE with a controllable mixing parameter. Furthermore, we make a crucial observation that CE exhibit lower consistency around noisy data points. Based on this observation, we adopt a generalized version of the Jensen-Shannon divergence for multiple distributions to encourage consistency around data points. Using this loss function, we show state-of-the-art results on both synthetic (CIFAR), and real-world (e.g., WebVision) noise with varying noise rates.Comment: Neural Information Processing Systems (NeurIPS 2021

    Domain Generalization in Machine Learning Models for Wireless Communications: Concepts, State-of-the-Art, and Open Issues

    Full text link
    Data-driven machine learning (ML) is promoted as one potential technology to be used in next-generations wireless systems. This led to a large body of research work that applies ML techniques to solve problems in different layers of the wireless transmission link. However, most of these applications rely on supervised learning which assumes that the source (training) and target (test) data are independent and identically distributed (i.i.d). This assumption is often violated in the real world due to domain or distribution shifts between the source and the target data. Thus, it is important to ensure that these algorithms generalize to out-of-distribution (OOD) data. In this context, domain generalization (DG) tackles the OOD-related issues by learning models on different and distinct source domains/datasets with generalization capabilities to unseen new domains without additional finetuning. Motivated by the importance of DG requirements for wireless applications, we present a comprehensive overview of the recent developments in DG and the different sources of domain shift. We also summarize the existing DG methods and review their applications in selected wireless communication problems, and conclude with insights and open questions

    Adaptive Contextual Perception: How to Generalize to New Backgrounds and Ambiguous Objects

    Full text link
    Biological vision systems make adaptive use of context to recognize objects in new settings with novel contexts as well as occluded or blurry objects in familiar settings. In this paper, we investigate how vision models adaptively use context for out-of-distribution (OOD) generalization and leverage our analysis results to improve model OOD generalization. First, we formulate two distinct OOD settings where the contexts are either irrelevant (Background-Invariance) or beneficial (Object-Disambiguation), reflecting the diverse contextual challenges faced in biological vision. We then analyze model performance in these two different OOD settings and demonstrate that models that excel in one setting tend to struggle in the other. Notably, prior works on learning causal features improve on one setting but hurt in the other. This underscores the importance of generalizing across both OOD settings, as this ability is crucial for both human cognition and robust AI systems. Next, to better understand the model properties contributing to OOD generalization, we use representational geometry analysis and our own probing methods to examine a population of models, and we discover that those with more factorized representations and appropriate feature weighting are more successful in handling Background-Invariance and Object-Disambiguation tests. We further validate these findings through causal intervention on representation factorization and feature weighting to demonstrate their causal effect on performance. Lastly, we propose new augmentation methods to enhance model generalization. These methods outperform strong baselines, yielding improvements in both in-distribution and OOD tests. In conclusion, to replicate the generalization abilities of biological vision, computer vision models must have factorized object vs. background representations and appropriately weight both kinds of features.Comment: 21 pages, 12 figures. Our code is available at https://github.com/zfying/AdaptiveContex

    Towards Generalizable Deepfake Detection by Primary Region Regularization

    Full text link
    The existing deepfake detection methods have reached a bottleneck in generalizing to unseen forgeries and manipulation approaches. Based on the observation that the deepfake detectors exhibit a preference for overfitting the specific primary regions in input, this paper enhances the generalization capability from a novel regularization perspective. This can be simply achieved by augmenting the images through primary region removal, thereby preventing the detector from over-relying on data bias. Our method consists of two stages, namely the static localization for primary region maps, as well as the dynamic exploitation of primary region masks. The proposed method can be seamlessly integrated into different backbones without affecting their inference efficiency. We conduct extensive experiments over three widely used deepfake datasets - DFDC, DF-1.0, and Celeb-DF with five backbones. Our method demonstrates an average performance improvement of 6% across different backbones and performs competitively with several state-of-the-art baselines.Comment: 12 pages. Code and Dataset: https://github.com/xaCheng1996/PRL

    Domain Generalization in Computational Pathology: Survey and Guidelines

    Full text link
    Deep learning models have exhibited exceptional effectiveness in Computational Pathology (CPath) by tackling intricate tasks across an array of histology image analysis applications. Nevertheless, the presence of out-of-distribution data (stemming from a multitude of sources such as disparate imaging devices and diverse tissue preparation methods) can cause \emph{domain shift} (DS). DS decreases the generalization of trained models to unseen datasets with slightly different data distributions, prompting the need for innovative \emph{domain generalization} (DG) solutions. Recognizing the potential of DG methods to significantly influence diagnostic and prognostic models in cancer studies and clinical practice, we present this survey along with guidelines on achieving DG in CPath. We rigorously define various DS types, systematically review and categorize existing DG approaches and resources in CPath, and provide insights into their advantages, limitations, and applicability. We also conduct thorough benchmarking experiments with 28 cutting-edge DG algorithms to address a complex DG problem. Our findings suggest that careful experiment design and CPath-specific Stain Augmentation technique can be very effective. However, there is no one-size-fits-all solution for DG in CPath. Therefore, we establish clear guidelines for detecting and managing DS depending on different scenarios. While most of the concepts, guidelines, and recommendations are given for applications in CPath, we believe that they are applicable to most medical image analysis tasks as well.Comment: Extended Versio

    Meta-Learning in Neural Networks: A Survey

    Get PDF
    The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent years. Contrary to conventional approaches to AI where tasks are solved from scratch using a fixed learning algorithm, meta-learning aims to improve the learning algorithm itself, given the experience of multiple learning episodes. This paradigm provides an opportunity to tackle many conventional challenges of deep learning, including data and computation bottlenecks, as well as generalization. This survey describes the contemporary meta-learning landscape. We first discuss definitions of meta-learning and position it with respect to related fields, such as transfer learning and hyperparameter optimization. We then propose a new taxonomy that provides a more comprehensive breakdown of the space of meta-learning methods today. We survey promising applications and successes of meta-learning such as few-shot learning and reinforcement learning. Finally, we discuss outstanding challenges and promising areas for future research
    corecore