9 research outputs found

    Deep learning for paint loss detection with a multiscale, translation invariant network

    No full text
    We explore the potential of deep learning in digital painting analysis to facilitate condition reporting and to support restoration treatments. We address the problem of paint loss detection and develop a multiscale deep learning system with dilated convolutions that enables a large receptive field with limited training parameters to avoid overtraining. Our model handles efficiently multimodal data that are typically acquired in art investigation. As a case study we use multimodal data of the Ghent Altarpiece. Our results indicate huge potential of the proposed approach in terms of accuracy and also its fast execution, which allows interactivity and continuous learning

    SEMANTIC SEGMENTATION OF BENTHIC COMMUNITIES FROM ORTHO-MOSAIC MAPS

    Get PDF
    Visual sampling techniques represent a valuable resource for a rapid, non-invasive data acquisition for underwater monitoring purposes. Long-term monitoring projects usually requires the collection of large quantities of data, and the visual analysis of a human expert operator remains, in this context, a very time consuming task. It has been estimated that only the 1-2% of the acquired images are later analyzed by scientists (Beijbom et al., 2012). Strategies for the automatic recognition of benthic communities are required to effectively exploit all the information contained in visual data. Supervised learning methods, the most promising classification techniques in this field, are commonly affected by two recurring issues: the wide diversity of marine organism, and the small amount of labeled data. In this work, we discuss the advantages offered by the use of annotated high resolution ortho-mosaics of seabed to classify and segment the investigated specimens, and we suggest several strategies to obtain a considerable per-pixel classification performance although the use of a reduced training dataset composed by a single ortho-mosaic. The proposed methodology can be applied to a large number of different species, making the procedure of marine organism identification an highly adaptable task.</p

    Hourglass-ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery

    No full text
    A new convolution neural network (CNN) architecture for semantic segmentation of high resolution aerial imagery is proposed in this paper. The proposed architecture follows an hourglass-shaped network (HSN) design being structured into encoding and decoding stages. By taking advantage of recent advances in CNN designs, we use the composed inception module to replace common convolutional layers, providing the network with multi-scale receptive areas with rich context. Additionally, in order to reduce spatial ambiguities in the up-sampling stage, skip connections with residual units are also employed to feed forward encoding-stage information directly to the decoder. Moreover, overlap inference is employed to alleviate boundary effects occurring when high resolution images are inferred from small-sized patches. Finally, we also propose a post-processing method based on weighted belief propagation to visually enhance the classification results. Extensive experiments based on the Vaihingen and Potsdam datasets demonstrate that the proposed architectures outperform three reference state-of-the-art network designs both numerically and visually

    Wetland mapping and monitoring using polarimetric and interferometric synthetic aperture radar (SAR) data and tools

    Get PDF
    Wetlands are home to a great variety of flora and fauna species and provide several unique environmental functions, such as controlling floods, improving water-quality, supporting wildlife habitat, and shoreline stabilization. Detailed information on spatial distribution of wetland classes is crucial for sustainable management and resource assessment. Furthermore, hydrological monitoring of wetlands is also important for maintaining and preserving the habitat of various plant and animal species. This thesis investigates the existing knowledge and technological challenges associated with wetland mapping and monitoring and evaluates the limitations of the methodologies that have been developed to date. The study also proposes new methods to improve the characterization of these productive ecosystems using advanced remote sensing (RS) tools and data. Specifically, a comprehensive literature review on wetland monitoring using Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) techniques is provided. The application of the InSAR technique for wetland mapping provides the following advantages: (i) the high sensitivity of interferometric coherence to land cover changes is taken into account and (ii) the exploitation of interferometric coherence for wetland classification further enhances the discrimination between similar wetland classes. A statistical analysis of the interferometric coherence and SAR backscattering variation of Canadian wetlands, which are ignored in the literature, is carried out using multi-temporal, multi-frequency, and multi-polarization SAR data. The study also examines the capability of compact polarimetry (CP) SAR data, which will be collected by the upcoming RADARSAT Constellation Mission (RCM) and will constitute the main source of SAR observation in Canada, for wetland mapping. The research in this dissertation proposes a methodology for wetland classification using the synergistic use of intensity, polarimetry, and interferometry features using a novel classification framework. Finally, this work introduces a novel model based on the deep convolutional neural network (CNN) for wetland classification that can be trained in an end-to-end scheme and is specifically designed for the classification of wetland complexes using polarimetric SAR (PolSAR) imagery. The results of the proposed methods are promising and will significantly contribute to the ongoing efforts of conservation strategies for wetlands and monitoring changes. The approaches presented in this thesis serve as frameworks, progressing towards an operational methodology for mapping wetland complexes in Canada, as well as other wetlands worldwide with similar ecological characteristics

    Advanced machine learning algorithms for Canadian wetland mapping using polarimetric synthetic aperture radar (PolSAR) and optical imagery

    Get PDF
    Wetlands are complex land cover ecosystems that represent a wide range of biophysical conditions. They are one of the most productive ecosystems and provide several important environmental functionalities. As such, wetland mapping and monitoring using cost- and time-efficient approaches are of great interest for sustainable management and resource assessment. In this regard, satellite remote sensing data are greatly beneficial, as they capture a synoptic and multi-temporal view of landscapes. The ability to extract useful information from satellite imagery greatly affects the accuracy and reliability of the final products. This is of particular concern for mapping complex land cover ecosystems, such as wetlands, where complex, heterogeneous, and fragmented landscape results in similar backscatter/spectral signatures of land cover classes in satellite images. Accordingly, the overarching purpose of this thesis is to contribute to existing methodologies of wetland classification by proposing and developing several new techniques based on advanced remote sensing tools and optical and Synthetic Aperture Radar (SAR) imagery. Specifically, the importance of employing an efficient speckle reduction method for polarimetric SAR (PolSAR) image processing is discussed and a new speckle reduction technique is proposed. Two novel techniques are also introduced for improving the accuracy of wetland classification. In particular, a new hierarchical classification algorithm using multi-frequency SAR data is proposed that discriminates wetland classes in three steps depending on their complexity and similarity. The experimental results reveal that the proposed method is advantageous for mapping complex land cover ecosystems compared to single stream classification approaches, which have been extensively used in the literature. Furthermore, a new feature weighting approach is proposed based on the statistical and physical characteristics of PolSAR data to improve the discrimination capability of input features prior to incorporating them into the classification scheme. This study also demonstrates the transferability of existing classification algorithms, which have been developed based on RADARSAT-2 imagery, to compact polarimetry SAR data that will be collected by the upcoming RADARSAT Constellation Mission (RCM). The capability of several well-known deep Convolutional Neural Network (CNN) architectures currently employed in computer vision is first introduced in this thesis for classification of wetland complexes using multispectral remote sensing data. Finally, this research results in the first provincial-scale wetland inventory maps of Newfoundland and Labrador using the Google Earth Engine (GEE) cloud computing resources and open access Earth Observation (EO) collected by the Copernicus Sentinel missions. Overall, the methodologies proposed in this thesis address fundamental limitations/challenges of wetland mapping using remote sensing data, which have been ignored in the literature. These challenges include the backscattering/spectrally similar signature of wetland classes, insufficient classification accuracy of wetland classes, and limitations of wetland mapping on large scales. In addition to the capabilities of the proposed methods for mapping wetland complexes, the use of these developed techniques for classifying other complex land cover types beyond wetlands, such as sea ice and crop ecosystems, offers a potential avenue for further research
    corecore