939 research outputs found

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    Earthquake Early Warning and Beyond: Systems Challenges in Smartphone-based Seismic Network

    Full text link
    Earthquake Early Warning (EEW) systems can effectively reduce fatalities, injuries, and damages caused by earthquakes. Current EEW systems are mostly based on traditional seismic and geodetic networks, and exist only in a few countries due to the high cost of installing and maintaining such systems. The MyShake system takes a different approach and turns people's smartphones into portable seismic sensors to detect earthquake-like motions. However, to issue EEW messages with high accuracy and low latency in the real world, we need to address a number of challenges related to mobile computing. In this paper, we first summarize our experience building and deploying the MyShake system, then focus on two key challenges for smartphone-based EEW (sensing heterogeneity and user/system dynamics) and some preliminary exploration. We also discuss other challenges and new research directions associated with smartphone-based seismic network.Comment: 6 pages, conference paper, already accepted at hotmobile 201

    IoT Maps : Charting the Internet of Things

    Get PDF
    Internet of Things (IoT) devices are becoming increasingly ubiquitous in our everyday environments. While the number of devices and the degree of connectivity is growing, it is striking that as a society we are increasingly unaware of the locations and purposes of such devices. Indeed, much of the IoT technology being deployed is invisible and does not communicate its presence or purpose to the inhabitants of the spaces within which it is deployed. In this paper, we explore the potential benefits and challenges of constructing IoT maps that record the location of IoT devices. To illustrate the need for such maps, we draw on our experiences from multiple deployments of IoT systems.Peer reviewe

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Anticipatory Mobile Computing: A Survey of the State of the Art and Research Challenges

    Get PDF
    Today's mobile phones are far from mere communication devices they were ten years ago. Equipped with sophisticated sensors and advanced computing hardware, phones can be used to infer users' location, activity, social setting and more. As devices become increasingly intelligent, their capabilities evolve beyond inferring context to predicting it, and then reasoning and acting upon the predicted context. This article provides an overview of the current state of the art in mobile sensing and context prediction paving the way for full-fledged anticipatory mobile computing. We present a survey of phenomena that mobile phones can infer and predict, and offer a description of machine learning techniques used for such predictions. We then discuss proactive decision making and decision delivery via the user-device feedback loop. Finally, we discuss the challenges and opportunities of anticipatory mobile computing.Comment: 29 pages, 5 figure
    • …
    corecore