12,732 research outputs found

    On implicational bases of closure systems with unique critical sets

    Get PDF
    We show that every optimum basis of a finite closure system, in D.Maier's sense, is also right-side optimum, which is a parameter of a minimum CNF representation of a Horn Boolean function. New parameters for the size of the binary part are also established. We introduce a K-basis of a general closure system, which is a refinement of the canonical basis of Duquenne and Guigues, and discuss a polynomial algorithm to obtain it. We study closure systems with the unique criticals and some of its subclasses, where the K-basis is unique. A further refinement in the form of the E-basis is possible for closure systems without D-cycles. There is a polynomial algorithm to recognize the D-relation from a K-basis. Thus, closure systems without D-cycles can be effectively recognized. While E-basis achieves an optimum in one of its parts, the optimization of the others is an NP-complete problem.Comment: Presented on International Symposium of Artificial Intelligence and Mathematics (ISAIM-2012), Ft. Lauderdale, FL, USA Results are included into plenary talk on conference Universal Algebra and Lattice Theory, June 2012, Szeged, Hungary 29 pages and 2 figure

    Ultimate approximations in nonmonotonic knowledge representation systems

    Full text link
    We study fixpoints of operators on lattices. To this end we introduce the notion of an approximation of an operator. We order approximations by means of a precision ordering. We show that each lattice operator O has a unique most precise or ultimate approximation. We demonstrate that fixpoints of this ultimate approximation provide useful insights into fixpoints of the operator O. We apply our theory to logic programming and introduce the ultimate Kripke-Kleene, well-founded and stable semantics. We show that the ultimate Kripke-Kleene and well-founded semantics are more precise then their standard counterparts We argue that ultimate semantics for logic programming have attractive epistemological properties and that, while in general they are computationally more complex than the standard semantics, for many classes of theories, their complexity is no worse.Comment: This paper was published in Principles of Knowledge Representation and Reasoning, Proceedings of the Eighth International Conference (KR2002

    On the Usability of Probably Approximately Correct Implication Bases

    Full text link
    We revisit the notion of probably approximately correct implication bases from the literature and present a first formulation in the language of formal concept analysis, with the goal to investigate whether such bases represent a suitable substitute for exact implication bases in practical use-cases. To this end, we quantitatively examine the behavior of probably approximately correct implication bases on artificial and real-world data sets and compare their precision and recall with respect to their corresponding exact implication bases. Using a small example, we also provide qualitative insight that implications from probably approximately correct bases can still represent meaningful knowledge from a given data set.Comment: 17 pages, 8 figures; typos added, corrected x-label on graph
    corecore