6 research outputs found

    Stability and Hopf Bifurcation for a Delayed SLBRS Computer Virus Model

    Get PDF
    By incorporating the time delay due to the period that computers use antivirus software to clean the virus into the SLBRS model a delayed SLBRS computer virus model is proposed in this paper. The dynamical behaviors which include local stability and Hopf bifurcation are investigated by regarding the delay as bifurcating parameter. Specially, direction and stability of the Hopf bifurcation are derived by applying the normal form method and center manifold theory. Finally, an illustrative example is also presented to testify our analytical results

    An Epidemic Model of Computer Worms with Time Delay and Variable Infection Rate

    Get PDF
    With rapid development of Internet, network security issues become increasingly serious. Temporary patches have been put on the infectious hosts, which may lose efficacy on occasions. This leads to a time delay when vaccinated hosts change to susceptible hosts. On the other hand, the worm infection is usually a nonlinear process. Considering the actual situation, a variable infection rate is introduced to describe the spread process of worms. According to above aspects, we propose a time-delayed worm propagation model with variable infection rate. Then the existence condition and the stability of the positive equilibrium are derived. Due to the existence of time delay, the worm propagation system may be unstable and out of control. Moreover, the threshold τ0 of Hopf bifurcation is obtained. The worm propagation system is stable if time delay is less than τ0. When time delay is over τ0, the system will be unstable. In addition, numerical experiments have been performed, which can match the conclusions we deduce. The numerical experiments also show that there exists a threshold in the parameter a, which implies that we should choose appropriate infection rate β(t) to constrain worm prevalence. Finally, simulation experiments are carried out to prove the validity of our conclusions

    Dynamics of a Computer Virus Propagation Model with Delays and Graded Infection Rate

    Get PDF
    A four-compartment computer virus propagation model with two delays and graded infection rate is investigated in this paper. The critical values where a Hopf bifurcation occurs are obtained by analyzing the distribution of eigenvalues of the corresponding characteristic equation. In succession, direction and stability of the Hopf bifurcation when the two delays are not equal are determined by using normal form theory and center manifold theorem. Finally, some numerical simulations are also carried out to justify the obtained theoretical results

    Optimal and Nonlinear Dynamic Countermeasure under a Node-Level Model with Nonlinear Infection Rate

    Get PDF
    This paper mainly addresses the issue of how to effectively inhibit viral spread by means of dynamic countermeasure. To this end, a controlled node-level model with nonlinear infection and countermeasure rates is established. On this basis, an optimal control problem capturing the dynamic countermeasure is proposed and analyzed. Specifically, the existence of an optimal dynamic countermeasure scheme and the corresponding optimality system are shown theoretically. Finally, some numerical examples are given to illustrate the main results, from which it is found that (1) the proposed optimal strategy can achieve a low level of infections at a low cost and (2) adjusting nonlinear infection and countermeasure rates and tradeoff factor can be conductive to the containment of virus propagation with less cost

    Modeling and Bifurcation Research of a Worm Propagation Dynamical System with Time Delay

    Get PDF
    Both vaccination and quarantine strategy are adopted to control the Internet worm propagation. By considering the interaction infection between computers and external removable devices, a worm propagation dynamical system with time delay under quarantine strategy is constructed based on anomaly intrusion detection system (IDS). By regarding the time delay caused by time window of anomaly IDS as the bifurcation parameter, local asymptotic stability at the positive equilibrium and local Hopf bifurcation are discussed. Through theoretical analysis, a threshold Ï„0 is derived. When time delay is less than Ï„0, the worm propagation is stable and easy to predict; otherwise, Hopf bifurcation occurs so that the system is out of control and the containment strategy does not work effectively. Numerical analysis and discrete-time simulation experiments are given to illustrate the correctness of theoretical analysis
    corecore