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Both vaccination and quarantine strategy are adopted to control the Internet worm propagation. By considering the interaction
infection between computers and external removable devices, a worm propagation dynamical system with time delay under
quarantine strategy is constructed based on anomaly intrusion detection system (IDS). By regarding the time delay caused
by time window of anomaly IDS as the bifurcation parameter, local asymptotic stability at the positive equilibrium and local
Hopf bifurcation are discussed. Through theoretical analysis, a threshold 𝜏

0
is derived. When time delay is less than 𝜏

0
, the

worm propagation is stable and easy to predict; otherwise, Hopf bifurcation occurs so that the system is out of control and the
containment strategy does not work effectively. Numerical analysis and discrete-time simulation experiments are given to illustrate
the correctness of theoretical analysis.

1. Introduction

Internet worms, a great threat to the network security, can
spread quickly among hosts via wired or wireless networks.
In real network environment, many intelligent worms, such
as Conficker, Stuxnet, and Flamer, can also spread themselves
via external removable devices (USB drives, CD/DVD drives,
external hard drives, etc.), which have become one of the
main means of infection transmission as well as networks.
Conficker can copy itself as the autorun.inf to removable
media drives in the system, thereby forcing the executable
to be launched every time a removable drive is inserted into
a system [1, 2]. Discovered in the summer of 2010, Stuxnet
is a threat targeting a specific industrial control system
(ICS) likely in Iran, such as a gas pipeline or power plant.
Removable device is one of the main pathways for Stuxnet
to migrate from the outside world to supposedly isolated
and secure ICS [3–5]. Discovered in May 2012, Flamer can
spread via removable drives using a special folder that hides
the files and can result in automatic execution on viewing
the removable drive when combined with the Microsoft

Windows Shortcut “LNK/PIF” File Automatic File Execution
Vulnerability (CVE-2010-2568) [6, 7]. Therefore, it is time to
analyze the dynamic behavior and containment strategy of
such worms.

Worm propagation dynamical system plays an important
role in predicting the spread of worms. It aids in identifying
the weakness in the worm spreading chain and provides
accurate prediction for the purpose of damage assessment for
a new worm threat. Over decades of years, many researches
on worms’ dynamical behavior have been done. Kermack
and Mckendrick [8] proposed the classical SIR model to
explain the rapid rise and fall in the number of infected
patients observed in epidemics, which also suits the worm
spread. Based on the classical SIR model, Zou et al. derived
an Internet worm model called the two-factor model [9].
Quarantine strategy, which borrows from the method of
epidemic disease control, has been widely used in worm
containment and produced a tremendous effect on con-
trolling worm propagation [10–14]. Zou et al. proposed a
worm propagationmodel under dynamic quarantine defense
based on the principle “assume [sic] guilty before proven
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innocent” [10]. Wang et al. proposed a novel epidemic model
named SEIQVmodel which combines both vaccinations and
dynamic quarantine methods [11]. However, there is time
delay in actual network environment, which may lead to
bifurcation phenomenon. Much research has been done on
time delay and bifurcation [15–25]. Han and Tan studied
the dynamic spread behavior of worms by incorporating
the delay factor [19]. Dong et al. proposed a computer
virus model with time delay based on SEIR model and
regarded time delay as bifurcating parameter to study the
dynamical behaviors including local asymptotical stability
and local Hopf bifurcation [20]. Yao et al. constructed a
model with time delay under quarantine strategy [21]. Wu
et al. investigated the problem of sliding mode control of
Markovian jump singular time-delay systems [23]. Li and
Zhang established a delay-dependent bounded real lemma
for singular linear parameter-varying systems with time-
variant delay [24].The problems of D-stability and nonfragile
control for a class of discrete-time descriptor Takagi-Sugeno
fuzzy systems with multiple state delays are discussed in [25].

However, the above works consider less of the effect
of removable devices on worm propagation. As mentioned
above, removable devices have become a main pathway for
some worms to intrude those hosts not connected to the
Internet. Song et al. presented a worm model incorporating
specific features to worms spreading via both web-based
scanning and removable devices [26]. Zhu et al. studied
the dynamics of interaction infection between computers
and removable devices in [27]. However, time delay and
bifurcation research are not considered in their work. In this
paper, by considering the interaction infection between hosts
and removable devices, we model a delayed worm propa-
gation dynamical system which combines both vaccination
and quarantine strategy. Local asymptotic stability of the
positive equilibrium and local Hopf bifurcation are discussed
to analyze the influence of time delay on worm propagation
dynamical system.

The main contributions of this paper can be summarized
as follows.

(1) Considering the influence of removable devices on
Internet worm propagation and the time delay caused
by anomaly IDS, we propose a novel worm propaga-
tion dynamical system with time delay.

(2) We analyze the system stability at positive equilibrium
and derive the time delay threshold at which Hopf
bifurcation occurs.

(3) By numerical analysis, we illustrate the correctness of
theoretical analysis.

(4) The discrete-time simulation is adopted to simulate
the worm propagation in real network environment.
The results demonstrate the reasonableness of the
worm propagation model.

The rest of the paper is organized as follows. In Section 2,
considering the influence of removable devices, a wormprop-
agation dynamical system with time delay under quarantine
strategy is constructed. In Section 3, local stability of the

positive equilibrium and local Hopf bifurcation are investi-
gated. In Section 4, several numerical analyses supporting the
theoretical analysis are given. Section 5 makes a comparison
between simulation experiments and numerical ones. Finally,
we give our conclusions in Section 6.

2. Model Formulation

The system contains both hosts and removable devices. In
this model, all hosts are in one of following five states:
susceptible (𝑆), infectious (𝐼), delayed (𝐷), quarantined (𝑄),
and removed (𝑅). All removable devices are divided into
two groups: susceptible (𝑅

𝑆
) and infectious (𝑅

𝐼
). 𝑁 and 𝑅

𝑁

denote the total number of hosts and removable devices,
respectively. That is, 𝑆 + 𝐼 + 𝐷 + 𝑄 + 𝑅 = 𝑁; 𝑅

𝑆
+ 𝑅
𝐼
=

𝑅
𝑁
. Susceptible (𝑆) hosts, which are vulnerable to the attack

fromworms, will be infected by infectious hosts or removable
devices; then theywill infect other hosts connected to themor
removable devices plugged into them. Infectious (𝐼) hosts will
be immunized by antivirus software at the rate of 𝛾

1
. Removed

(𝑅) hosts, which have been immunized by antivirus software,
will become susceptible at reassembly rate 𝜔. Hosts whose
behavior looks anomaly will be quarantined by IDS and then
they will become in a quarantined (𝑄) state. A susceptible
removable device (𝑅

𝑆
) will be infected when inserted into an

infectious host. Worm in an infectious removable device (𝑅
𝐼
)

will be eliminated when connected to removed hosts; then it
will become in a susceptible state.

The quarantine strategy is an effective measure to defend
against worms’ attack and make up the deficiency of vacci-
nation strategy. In this paper, anomaly intrusion detection
system is chosen for applying quarantine strategy. Comparing
with misuse IDS, anomaly IDS has great advantage in detect-
ing unknown intrusion or the variants of known intrusion.
However, anomaly IDS judges whether a detected behavior
is an attack or not via comparing detected behavior with the
normal or expected behavior of system anduser. If a deviation
occurs, the detected behavior is treated as an intrusion imme-
diately. Because of the difficulty in collecting and building the
normal behavior database, high false-alarm rate is considered
the main drawback of anomaly IDS. In order to reduce the
false alarm of anomaly IDS, the mechanism of time window
is adopted. A suspicious behavior will not trigger an alarm
immediately. On the contrary, anomaly IDS has a period
of time to analyze the accumulated behavior. Therefore,
an intermediate state, delayed (𝐷) state, is added into the
propagation model. The larger the value of time window,
the less the false alarm aroused by anomaly IDS, because
there is enough time for anomaly IDS to recognize whether a
behavior is an intrusion or not. However, the overlarge time
window may lead to worm propagation dynamical system
being unstable and out of control. The main notations and
definitions are listed in Table 1. The state transition diagram
is given by Figure 1.

On the basis of current research, we present a delayed
worm propagation model which combines both vaccination
and quarantine strategy. Several appropriate assumptions are
given as follows.
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Table 1: Notations and definitions of the model.

Notations Definitions
𝑁 Total number of hosts in the network
𝑅
𝑁

Total number of removable devices in the network
𝑆(𝑡) Number of susceptible hosts at time 𝑡
𝐼(𝑡) Number of infectious hosts at time 𝑡
𝐷(𝑡) Number of delayed hosts at time 𝑡
𝑄(𝑡) Number of quarantined hosts at time 𝑡 − 𝜏

𝑅(𝑡) Number of removed hosts at time 𝑡
𝑅
𝑆
(𝑡) Number of susceptible removable devices at time 𝑡

𝑅
𝐼
(𝑡) Number of infectious removable devices at time 𝑡

𝛽
1

Infection ratio of infectious hosts

𝛽
2

Contact infection rate between computers and
removable devices

𝛾
1

Recovery rate of infectious hosts
𝛾
2

Recovery rate of infectious removable devices
𝜔 Reassembly rate of immunized hosts
𝜃
1

Quarantine rate of susceptible hosts
𝜃
2

Quarantine rate of infectious hosts
𝛿 Immunization rate of quarantined hosts

𝜏
Time delay of detection by anomaly intrusion
detection system

(1) 𝛽
1
denotes the infection ratio of infectious hosts.

Therefore, at time t, the infection force of infec-
tious computers to susceptible computers is given by
𝛽
1
𝑆(𝑡)𝐼(𝑡).

(2) Infectious removable devices have the same infectious
ability as the infectious hosts. 𝛽

2
is the contact infec-

tion rate between computers and removable devices,
that is, the interactive infection ratewhen a removable
device links to a host. The probability of connecting
removable devices for every host is 𝑅

𝑁
/𝑁, and the

probability of removable device exactly being in the
infectious state is 𝑅

𝐼
(t)/𝑅
𝑁
. Therefore, the infection

force of infectious removable devices to susceptible
hosts is 𝛽

2
(𝑅
𝑁
/𝑁)(𝑅

𝐼
(𝑡)/𝑅
𝑁
)𝑆(𝑡).

(3) Susceptible removable devices will be infected when
connecting to an infectious host, and then they
will infect any other hosts to which they are con-
nected. Meanwhile, worms of infectious remov-
able devices will be eliminated when connecting
to one immunized host. That is, the infection
force of infectious hosts to susceptible removable
devices is 𝛽

2
(𝐼(𝑡)/𝑁)𝑅

𝑆
(𝑡), and the recovery force

of removed hosts to infectious removable devices is
𝛾
2
(𝑅(𝑡)/𝑁)𝑅

𝐼
(𝑡).

(4) Owing to the influence of time delay 𝜏, the increment
of the number of quarantined hosts is the ones
quarantined at time 𝑡 − 𝜏. Therefore, the increment
is 𝜃
1
𝑆(𝑡 − 𝜏) + 𝜃

2
𝐼(𝑡 − 𝜏).

(5) The timewindowmechanism leads to an intermediate
state, delayed state (𝐷). The increment of the number

of delayed hosts at time t is given by 𝜃
1
𝑆(𝑡) + 𝜃

2
𝐼(𝑡);

the decrement of delayed hosts is the number of those
being quarantined, that is, 𝜃

1
𝑆(𝑡 − 𝜏) + 𝜃

2
𝐼(𝑡 − 𝜏).

Based on the analyses and assumptions above, the delayed
differential equations of the model are formulated as (1). The
differential on the left of equations means the change rate of
related states at time t. Consider

𝑑𝑆 (𝑡)

𝑑𝑡

= −𝛽
1
𝑆 (𝑡) 𝐼 (𝑡) − 𝛽

2

𝑅
𝐼
(𝑡)

𝑁

𝑆 (𝑡) + 𝜔𝑅 (𝑡) − 𝜃
1
𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽
1
𝑆 (𝑡) 𝐼 (𝑡) + 𝛽

2

𝑅
𝐼
(𝑡)

𝑁

𝑆 (𝑡) − 𝛾
1
𝐼 (𝑡) − 𝜃

2
𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾
1
𝐼 (𝑡) − 𝜔𝑅 (𝑡) + 𝛿𝑄 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡

= 𝜃
1
𝑆 (𝑡) − 𝜃

1
𝑆 (𝑡 − 𝜏) + 𝜃

2
𝐼 (𝑡) − 𝜃

2
𝐼 (𝑡 − 𝜏) ,

𝑑𝑄 (𝑡)

𝑑𝑡

= 𝜃
1
𝑆 (𝑡 − 𝜏) + 𝜃

2
𝐼 (𝑡 − 𝜏) − 𝛿𝑄 (𝑡) ,

𝑑𝑅
𝑆 (
𝑡)

𝑑𝑡

= −𝛽
2

𝐼 (𝑡)

𝑁

𝑅
𝑆 (
𝑡) + 𝛾
2

𝑅 (𝑡)

𝑁

𝑅
𝐼 (
𝑡) ,

𝑑𝑅
𝐼
(𝑡)

𝑑𝑡

= 𝛽
2

𝐼 (𝑡)

𝑁

𝑅
𝑆
(𝑡) − 𝛾

2

𝑅 (𝑡)

𝑁

𝑅
𝐼
(𝑡) .

(1)

3. Stability at the Positive Equilibrium
and Bifurcation Analysis

Theorem 1. The system (1) has a unique positive equilibrium
𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑅
∗
, 𝑅
∗

𝑆
, 𝑅
∗

𝐼
), where

𝐼
∗
=

𝑏
2
𝑆
∗2

+ 𝑏
3
𝑆
∗

𝑏
4
− 𝑏
1
𝑆
∗

, 𝐷
∗
= 𝜃
1
𝑆
∗
𝜏 + 𝜃
2
𝐼
∗
𝜏,

𝑄
∗
=

𝜃
1
𝑆
∗
+ 𝜃
2
𝐼
∗

𝛿

, 𝑅
∗
=

𝛾
1
𝐼
∗
+ 𝜃
1
𝑆
∗
+ 𝜃
2
𝐼
∗

𝜔

,

𝑅
∗

𝐼
=

𝛽
2
𝑅
𝑁
𝐼
∗

𝛽
2
𝐼
∗
+ 𝛾
2
𝑅
∗
.

(2)

Proof. For system (1), according to [28], if all the derivatives
on the left of equal sign of the system are set to 0, which
implies that the system becomes stable, we can derive

𝐼 =

𝑏
2
𝑆
∗2

+ 𝑏
3
𝑆
∗

𝑏
4
− 𝑏
1
𝑆
∗

,

𝑄 =

𝜃
1
𝑆
∗
+ 𝜃
2
𝐼
∗

𝛿

,

𝑅 =

𝛾
1
𝐼
∗
+ 𝜃
1
𝑆
∗
+ 𝜃
2
𝐼
∗

𝜔

,

𝑅
𝐼
=

𝛽
2
𝑅
𝑁
𝐼
∗

𝛽
2
𝐼
∗
+ 𝛾
2
𝑅
∗
,

(3)
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Figure 1: The state transition diagram.

where

𝑏
1
= 𝜔𝛽
1
𝛽
2
+ 𝛾
1
𝛾
2
𝛽
1
+ 𝛽
1
𝛾
2
𝜃
2
,

𝑏
2
= 𝛽
1
𝛾
2
𝜃
1
, 𝑏

3
=

𝛽
2

2
𝜔𝑅
𝑁

𝑁 − 𝜃
1
𝛾
2
(𝛾
1
+ 𝜃
2
)

,

𝑏
4
= (𝛾
1
+ 𝜃
2
) (𝜔𝛽
2
+ 𝛾
1
𝛾
2
+ 𝛾
2
𝜃
2
) .

(4)

Assume that system (1) becomes stable at time 𝑇. By integrat-
ing the fourth equation of system (1) with time 𝑡 from 0 to
𝑇 + 𝜏, we can get

𝐷 = 𝜃
1
𝑆
∗
𝜏 + 𝜃
2
𝐼
∗
𝜏. (5)

Since 𝑆 + 𝐼 + 𝐷 + 𝑄 + 𝑅 = 𝑁,

𝑆
∗
+

𝑏
2
𝑆
∗2

+ 𝑏
3
𝑆
∗

𝑏
4
− 𝑏
1
𝑆
∗

+ 𝜃
1
𝑆
∗
𝜏 + 𝜃
2
𝐼
∗
𝜏

+

𝜃
1
𝑆
∗
+ 𝜃
2
𝐼
∗

𝛿

+

𝛾
1
𝐼
∗
+ 𝜃
1
𝑆
∗
+ 𝜃
2
𝐼
∗

𝜔

= 𝑁.

(6)

Obviously, (6) has one unique positive root 𝐼∗. So there is one
unique positive equilibrium𝐸

∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑅
∗
, 𝑅
∗

𝑆
, 𝑅
∗

𝐼
)

of system (1). The proof is completed.

Since 𝑆 + 𝐼 + 𝐷 + 𝑄 + 𝑅 = 𝑁, 𝑅
𝑆
+ 𝑅
𝐼
= 𝑅
𝑁
, 𝑄 = 𝑁 − 𝑆 −

𝐼 − 𝐷 − 𝑅, 𝑅
𝑆
= 𝑅
𝑁
− 𝑅
𝐼
. System (1) can be simplified to

𝑑𝑆 (𝑡)

𝑑𝑡

= −𝛽
1
𝑆 (𝑡) 𝐼 (𝑡) − 𝛽

2

𝑅
𝐼 (
𝑡)

𝑁

𝑆 (𝑡) + 𝜔𝑅 (𝑡) − 𝜃
1
𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡

= 𝛽
1
𝑆 (𝑡) 𝐼 (𝑡) + 𝛽

2

𝑅
𝐼 (
𝑡)

𝑁

𝑆 (𝑡) − 𝛾
1
𝐼 (𝑡) − 𝜃

2
𝐼 (𝑡) ,

𝑑𝑅 (𝑡)

𝑑𝑡

= 𝛾
1
𝐼 (𝑡) − 𝜔𝑅 (𝑡)

+ 𝛿 (𝑁 − 𝑆 (𝑡) − 𝐼 (𝑡) − 𝐷 (𝑡) − 𝑅 (𝑡)) ,

𝑑𝐷 (𝑡)

𝑑𝑡

= 𝜃
1
𝑆 (𝑡) − 𝜃

1
𝑆 (𝑡 − 𝜏) + 𝜃

2
𝐼 (𝑡) − 𝜃

2
𝐼 (𝑡 − 𝜏) ,

𝑑𝑅
𝐼
(𝑡)

𝑑𝑡

= 𝛽
2

𝐼 (𝑡)

𝑁

(𝑅
𝑁
− 𝑅
𝐼 (
𝑡)) − 𝛾

2

𝑅 (𝑡)

𝑁

𝑅
𝐼 (
𝑡) .

(7)
The Jacobian matrix of (7) about 𝐸∗ = (𝑆

∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) is

given by

𝐽 (𝐸
∗
) =

(
(
(
(

(

−𝛽
1
𝐼
∗
− 𝛽
2

𝑅
∗

𝐼

𝑁

− 𝜃
1

−𝛽
1
𝑆
∗

𝜔 0 −

𝛽
2
𝑆
∗

𝑁

𝛽
1
𝐼
∗
+ 𝛽
2

𝑅
∗

𝐼

𝑁

𝛽
1
𝑆
∗
− 𝛾
1
− 𝜃
2

0 0

𝛽
2
𝑆
∗

𝑁

−𝛿 𝛾
1
− 𝛿 −𝜔 − 𝛿 −𝛿 0

𝜃
1
− 𝜃
1
𝑒
−𝜆𝜏

𝜃
2
− 𝜃
2
𝑒
−𝜆𝜏

0 0 0

0

𝛽
2
(𝑅
𝑁
− 𝑅
∗

𝐼
)

𝑁

−

𝛾
2
𝑅
∗

𝐼

𝑁

0 −

𝛽
2
𝐼
∗
+ 𝛾
2
𝑅
∗

𝑁

)
)
)
)

)

. (8)

Let

𝑐
1
= 𝛽
1
𝐼
∗
+ 𝛽
2

𝑅
∗

𝐼

𝑁

, 𝑐
2
= 𝛽
1
𝑆
∗
,

𝑐
3
=

𝛽
2
𝑆
∗

𝑁

, 𝑐
4
=

𝛽
2
(𝑅
𝑁
− 𝑅
∗

𝐼
)

𝑁

,
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𝑐
5
=

𝛾
2
𝑅
∗

𝐼

𝑁

, 𝑐
6
=

𝛽
2
𝐼
∗
+ 𝛾
2
𝑅
∗

𝑁

,

𝑝
4
= 𝑐
6
− 𝑐
2
+ 𝛾
1
+ 𝜃
2
+ 𝜔 + 𝛿 + 𝑐

1
+ 𝜃
1
,

𝑝
3
= 𝑐
6
(−𝑐
2
+ 𝛾
1
+ 𝜃
2
) + (𝜔 + 𝛿 + 𝑐

1
+ 𝜃
1
) (𝑐
6
− 𝑐
2
+ 𝑟
1
+ 𝜃
2
)

+ (𝑐
1
+ 𝜃
1
) (𝜔 + 𝛿) − 𝑐

3
𝑐
4
+ 𝑐
1
𝑐
2
+ 𝛿𝜔,

𝑝
2
= 𝑐
6
(𝜔 + 𝛿 + 𝑐

1
+ 𝜃
1
) (−𝑐
2
+ 𝛾
1
+ 𝜃
2
)

+ ((𝑐
1
+ 𝜃
1
) (𝜔 + 𝛿) + 𝛿𝜔) (𝑐

6
− 𝑐
2
+ 𝛾
1
+ 𝜃
2
)

− 𝑐
3
𝑐
4
(𝜃
1
+ 𝜔 + 𝛿) + 𝑐

1
𝑐
2
(𝑐
6
+ 𝜔 + 𝛿)

+ (𝑐
1
𝜔 − 𝑐
3
𝑐
5
) (𝛿 − 𝛾

1
) + 𝛿 (𝑐

3
+ 𝜔𝜃
1
) ,

𝑝
1
= (𝑐
6
(𝑐
1
+ 𝜃
1
) (𝜔 + 𝛿) + 𝑐

6
𝛿𝜔 + 𝛿𝑐

3
) (−𝑐
2
+ 𝛾
1
+ 𝜃
2
)

+ (𝑐
1
𝑐
2
𝑐
6
− 𝜃
1
𝑐
3
𝑐
4
) (𝜔 + 𝛿) + (𝑐

1
𝑐
6
𝜔 − 𝜃
1
𝑐
3
𝑐
5
) (𝛿 − 𝛾

1
)

− 𝛿𝜔 (𝑐
3
𝑐
4
+ 𝜃
2
+ 𝜃
1
(𝑐
6
− 𝑐
2
+ 𝛾
1
+ 𝜃
2
))

+ 𝛿𝑐
5
(𝑐
2
𝑐
3
+ 𝑐
3
𝜃
1
− 𝜃
2
𝜃
3
) ,

𝑝
0
= 𝛿𝜔 (𝜃

2
𝑐
6
− 𝜃
1
𝑐
3
𝑐
4
+ 𝜃
1
𝑐
6
(−𝑐
2
+ 𝛾
1
+ 𝜃
2
))

+ 𝛿𝑐
5
(𝜃
1
𝑐
2
𝑐
3
+ 𝜃
2
𝑐
1
𝑐
3
+ 𝑐
3
𝜃
1
(−𝑐
2
+ 𝛾
1
+ 𝜃
2
)

−𝑐
3
𝜃
2
(𝑐
1
+ 𝜃
1
)) ,

𝑞
2
= −𝛿𝜃

1
𝜔,

𝑞
1
= −𝛿𝜔 (𝜃

2
+ 𝜃
1
(𝑐
6
− 𝑐
2
+ 𝛾
1
+ 𝜃
2
)) − 𝛿𝑐

5
(𝑐
3
𝜃
1
− 𝑐
3
𝜃
2
) ,

𝑞
0
= 𝛿𝜔 (𝜃

2
𝑐
6
− 𝜃
1
𝑐
3
𝑐
4
+ 𝑐
6
𝜃
1
(−𝑐
2
+ 𝛾
1
+ 𝜃
2
))

+ 𝛿𝑐
5
(𝜃
1
𝑐
2
𝑐
3
+ 𝜃
2
𝑐
1
𝑐
3
+ 𝜃
1
𝑐
3
(−𝑐
2
+ 𝛾
1
+ 𝜃
2
)

−𝑐
3
𝜃
2
(𝑐
1
+ 𝜃
1
)) .

(9)
The characteristic equation of system (8) can be obtained by

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= 0, (10)
where

𝑃 (𝜆) = 𝜆
5
+ 𝑝
4
𝜆
4
+ 𝑝
3
𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
,

𝑄 (𝜆) = 𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
.

(11)

Theorem 2. The positive equilibrium 𝐸
∗ is locally asymptoti-

cally stable without time delay, if condition (𝐻
1
) is satisfied:

𝐻
1
: 𝑝
4
> 0, 𝑑

1
> 0, 𝑑

2
> 0,

(𝑝
2
+ 𝑞
2
) 𝑑
1
− 𝑝
2

4
𝑑
2
> 0,

(12)

where
𝑑
1
= 𝑝
3
𝑝
4
− (𝑝
2
+ 𝑞
2
) , 𝑑

2
= 𝑝
1
+ 𝑞
1
. (13)

Proof. When 𝜏 = 0, (10) reduces to

𝜆
5
+ 𝑝
4
𝜆
4
+ 𝑝
3
𝜆
3
+ (𝑝
2
+ 𝑞
2
) 𝜆
2

+ (𝑝
1
+ 𝑞
1
) 𝜆 + (𝑝

0
+ 𝑞
0
) = 0.

(14)

According to Routh-Hurwitz criterion, all roots of (14)
have negative real parts. Therefore, it can be concluded
that the positive equilibrium 𝐸

∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) is

locally asymptotically stable without time delay. The proof is
completed.

If 𝜆 = 𝑖𝜔 (𝜔 > 0) is the root of (10), separating the
real and imaginary parts, the following two equations can be
obtained:

𝑝
4
𝜔
4
− 𝑝
2
𝜔
2
+ 𝑝
0
+ 𝑞
1
𝜔 sin (𝜔𝜏)

− 𝑞
2
𝜔
2 cos (𝜔𝜏) + 𝑞

0
cos (𝜔𝜏) = 0,

𝜔
5
− 𝑝
3
𝜔
3
+ 𝑝
1
𝜔 + 𝑞
1
𝜔 cos (𝜔𝜏)

+ 𝑞
2
𝜔
2 sin (𝜔𝜏) − 𝑞

0
sin (𝜔𝜏) = 0.

(15)

From (15), the following equation can be obtained:

𝑞
2

1
𝜔
2
+ (𝑞
0
− 𝑞
2
𝜔
2
)

2

= (𝑝
4
𝜔
4
− 𝑝
2
𝜔
2
+ 𝑝
0
)

2

+ (𝜔
5
− 𝑝
3
𝜔
3
+ 𝑝
1
𝜔)

2

.

(16)

That is,

𝜔
8
+ 𝐷
3
𝜔
6
+ 𝐷
2
𝜔
4
+ 𝐷
1
𝜔
2
+ 𝐷
0
= 0, (17)

where

𝐷
3
= 𝑝
2

4
− 2𝑝
3
, 𝐷

2
= 𝑝
2

3
+ 2𝑝
1
− 2𝑝
2
𝑝
4
,

𝐷
1
= 𝑝
2

2
− 𝑞
2

2
+ 2𝑝
0
𝑝
4
− 2𝑝
1
𝑝
3
,

𝐷
0
= 𝑝
2

1
− 𝑞
2

1
+ 2𝑞
0
𝑞
2
− 2𝑝
0
𝑝
2
.

(18)

Letting 𝑧 = 𝜔
2, (17) can be written as

ℎ (𝑧) = 𝑧
4
+ 𝐷
3
𝑧
3
+ 𝐷
2
𝑧
2
+ 𝐷
1
𝑧 + 𝐷

0
. (19)

Zhang et al. [18] obtained the following results on the
distribution of roots of (19). Denote

𝑚 =

1

2

𝐷
2
−

3

16

𝐷
2

3
, 𝑛 =

1

32

𝐷
3

3
−

1

8

𝐷
3
𝐷
2
+ 𝐷
1
,

Δ = (

𝑛

2

)

2

+ (

𝑚

3

)

3

, 𝜎 =

−1 + √3𝑖

2

,

𝑦
1
=
3
√−

𝑛

2

+ √Δ +
3
√−

𝑛

2

− √Δ,

𝑦
2
=
3
√−

𝑛

2

+ √Δ𝜎 +
3
√−

𝑛

2

− √Δ𝜎
2
,
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𝑦
3
=
3
√−

𝑛

2

+ √Δ𝜎
2
+
3
√−

𝑛

2

− √Δ𝜎,

𝑧
𝑖
= 𝑦
𝑖
−

3𝐷
3

4

, (𝑖 = 1, 2, 3) .

(20)

Lemma 3. For the polynomial equation (19),

(1) if𝐷
0
< 0, then (19) has at least one positive root;

(2) if 𝐷
0
≥ 0 and Δ ≥ 0, then (19) has positive root if and

only if 𝑧
1
> 0 and ℎ(𝑧

1
) < 0;

(3) if 𝐷
0
≥ 0 and Δ < 0, then (19) has positive root if and

only if there exists at least one 𝑧∗ ∈ (𝑧
1
, 𝑧
2
, 𝑧
3
), such

that 𝑧∗ > 0 and ℎ(𝑧∗) ≤ 0.

Lemma 4. Suppose that condition𝐻
1
: 𝑝
4
> 0, 𝑑

1
> 0, 𝑑

2
> 0,

(𝑝
2
+ 𝑞
2
)𝑑
1
− 𝑝
2

4
𝑑
2
> 0 is satisfied.

(1) If one of the followings holds, (a) 𝐷
0
< 0; (b) 𝐷

0
≥

0, Δ ≥ 0, 𝑧
1
> 0 , and ℎ(𝑧

1
) < 0; (c) 𝐷

0
≥ 0, and

Δ < 0, and there exits at least a 𝑧
∗
∈ (𝑧
1
, 𝑧
2
, 𝑧
3
) such

that 𝑧∗ > 0 and ℎ(𝑧
∗
) ≤ 0, then all roots of (10) have

negative real parts when 𝜏 ∈ [0, 𝜏
0
); here, 𝜏

0
is a certain

positive constant.

(2) If conditions (a)–(c) of (1) are not satisfied, then all roots
of (10) have negative real parts for all 𝜏 ≥ 0.

Proof. When 𝜏 = 0, (10) can be reduced to

𝜆
4
+ 𝑝
4
𝜆
3
+ 𝑝
3
𝜆
2
+ (𝑝
2
+ 𝑞
2
) 𝜆 + (𝑝

1
+ 𝑞
1
) = 0. (21)

According to the Routh-Hurwitz criterion, all roots of
(21) have negative real parts if and only if 𝑝

4
> 0, 𝑑

1
> 0,

𝑑
2
> 0, and (𝑝

2
+ 𝑞
2
)𝑑
1
− 𝑝
2

4
𝑑
2
> 0.

From Lemma 3, it can be known that if (a)–(c) are not
satisfied, then (10) has no roots with zero real part for all 𝜏 ≥

0; if one of (a)–(c) holds, when 𝜏 ̸= 𝜏
(𝑗)

𝑘
, 𝑘 = 1, 2, 3, 4, 𝑗 > 1,

(10) has no roots with zero real part and 𝜏
0
is the minimum

value of 𝜏, so (10) has purely imaginary roots. According to
[18], one obtains the conclusion of the lemma.

Let 𝜆(𝜏) = V(𝜏) + 𝑖𝜔(𝜏) be the root of (10), V(𝜏
0
) = 0 and

𝜔(𝜏
0
) = 𝜔
0
.

From Lemmas 3 and 4, the following are obtained.

When conditions (a)–(c) of Lemma 4(1) are not sat-
isfied, ℎ(𝑧) always has no positive root. Therefore, under
these conditions, (10) has no purely imaginary roots for
any 𝜏 > 0, which implies that the positive equilibrium
𝐸
∗

= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) of system (7) is absolutely stable.

Therefore, the following theorem on the stability of pos-
itive equilibrium 𝐸

∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) can be easily

obtained.
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Figure 3: Propagation trend of the two kinds of removable devices
when 𝜏 < 𝜏

0
.

Theorem 5. Supposing that condition (𝐻
1
) is satisfied, (a)

𝐷
0
≥ 0, Δ ≥ 0, 𝑧

1
< 0, and ℎ(𝑧

1
) > 0; (b) 𝐷

0
≥ 0 and Δ < 0,

and there is no 𝑧∗ ∈ (𝑧
1
, 𝑧
2
, 𝑧
3
) such that 𝑧∗ > 0 and ℎ(𝑧

∗
) ≤

0, then the positive equilibrium 𝐸
∗

= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) of

system (7) is absolutely stable.
In what follows, it is assumed that the coefficients in ℎ(𝑧)

satisfy the condition
(𝐻
2
) (a) 𝐷

0
≥ 0, Δ ≥ 0, 𝑧

1
< 0, and ℎ(𝑧

1
) > 0; (b) 𝐷

0
≥

0, Δ < 0, and there is no 𝑧∗ ∈ (𝑧
1
, 𝑧
2
, 𝑧
3
) such that 𝑧∗ > 0 and

ℎ(𝑧
∗
) ≤ 0.
According to [29], it is known that (19) has at least a positive

root 𝜔
0
, which implies that characteristic equation (10) has a

pair of purely imaginary roots ±𝑖𝜔
0
.
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Since (10) has a pair of purely imaginary roots ±𝑖𝜔
0
, the

corresponding 𝜏
𝑘
> 0 is given by (15). Consider

𝜏
𝑘
=

1

𝜔
0

arccos [ ((𝑞
0
− 𝑞
2
𝜔
2
) (𝑝
2
𝜔
2

0
− 𝑝
4
𝜔
4

0
− 𝑝
0
)

+𝑞
1
𝜔
0
(𝑝
3
𝜔
3

0
− 𝜔
5

0
− 𝑝
1
𝜔
0
))

×((𝑞
0
− 𝑞
2
𝜔
2
)

2

+ 𝑞
2

1
𝜔
2

0
)

−1

] +

2𝑘𝜋

𝜔
0

,

(𝑘 = 0, 1, 2, 3, . . .) .

(22)
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Figure 6: The number of infectious hosts when 𝜏 is changed in one
coordinate.

Let 𝜆(𝜏) = V(𝜏) + 𝑖𝜔(𝜏) be the root of (10). V(𝜏
𝑘
) = 0 and

𝜔(𝜏
𝑘
) = 𝜔
0
are satisfied when 𝜏 = 𝜏

𝑘
.

Lemma 6. Suppose that ℎ(𝑧
0
) ̸= 0. If 𝜏 = 𝜏

0
, then ±𝑖𝜔

0
is

a pair of purely imaginary roots of (10). In addition, if the
conditions of Lemma 4(1) are satisfied, then 𝑑Re 𝜆(𝜏

0
)/𝑑𝜏 > 0.

It is claimed that

sgn [𝑑Re 𝜆
𝑑𝜏

]

𝜏=𝜏𝑘

= sgn {ℎ (𝜔2
0
)} . (23)

This signifies that there is at least one eigenvalue with positive
real part for 𝜏 > 𝜏

𝑘
.

Differentiating two sides of (10) with respect to 𝜏, it can be
written as

(

𝑑𝜆

𝑑𝜏

)

−1

= ((5𝜆
4
+ 4𝑝
4
𝜆
3
+ 3𝑝
3
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
)

+ (2𝑞
2
𝜆 + 𝑞
1
) 𝑒
−𝜆𝜏

− (𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝜏𝑒
−𝜆𝜏

)

× ((𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒
−𝜆𝜏

)

−1

=

(5𝜆
4
+ 4𝑝
4
𝜆
3
+ 3𝑝
3
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) 𝑒
𝜆𝜏

(𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝜆

+

2𝑞
2
𝜆 + 𝑞
1

(𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝜆

−

𝜏

𝜆

.

(24)
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Figure 7: The number of infectious hosts when 𝜏 is changed in four coordinates.
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Figure 9: The projection of the phase portrait of system (1) in (𝑆, 𝐼, 𝑅)-space.

Therefore

sgn [𝑑Re 𝜆
𝑑𝜏

]

𝜏=𝜏𝑘

= sgn[Re(𝑑𝜆

𝑑𝜏

)

−1

]

𝜆=𝑖𝜔0

= sgn[Re(
(5𝜆
4
+ 4𝑝
4
𝜆
3
+ 3𝑝
3
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) 𝑒
𝜆𝜏

(𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝜆

+

2𝑞
2
𝜆 + 𝑞
1

(𝑞
2
𝜆
2
+ 𝑞
1
𝜆 + 𝑞
0
) 𝜆

−

𝜏

𝜆

)]

𝜆=𝑖𝜔0

= sgnRe{ ((5𝜔
4

0
− 4𝑝
4
𝜔
3

0
𝑖 − 3𝑝

3
𝜔
2

0
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2
𝜔
0
𝑖 + 𝑝
1
)

× [cos (𝜔
0
𝜏
𝑘
) + 𝑖 sin (𝜔

0
𝜏
𝑘
)] )

× ((𝑞
1
𝜔
0
𝑖 + 𝑞
0
− 𝑞
2
𝜔
2
) 𝜔
0
𝑖)

−1

+

2𝑞
2
𝜔
0
𝑖 + 𝑞
1

(𝑞
1
𝜔
0
𝑖 + 𝑞
0
− 𝑞
2
𝜔
2
) 𝜔
0
𝑖

}

= sgn
𝜔
2

0

𝐾

[4𝜔
6

0
+ (3𝑝

2

4
− 6𝑝
3
) 𝜔
4

0

+ (2𝑝
2

3
+ 4𝑝
1
− 4𝑝
2
𝑝
4
) 𝜔
2

0

+ (𝑝
2

2
+ 2𝑝
0
𝑝
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− 2𝑝
1
𝑝
3
)]

= sgn
𝜔
2

0

Γ

= sgn
𝜔
2

0

Γ

{ℎ

(𝜔
2

0
)} = sgn {ℎ (𝜔2

0
)} ,

(25)

where𝐾 = 𝑞
2

1
𝜔
4

0
+(𝑞
0
𝜔
0
−𝑞
2
𝜔
3

0
)
2. It follows from the hypothesis

(𝐻
2
) that ℎ(𝜔2

0
) ̸= 0 and therefore the transversality condition

holds. It can be obtained that

𝑑(Re 𝜆)
𝑑𝜏








𝜏=𝜏𝑘

> 0. (26)
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Figure 10: Bifurcation diagram of system (1) with 𝜏 ranging from 1
to 90.

The root of characteristic equation (10) crosses from the
left to the right on the imaginary axis as 𝜏 continuously varies
from a value less than 𝜏

𝑘
to one greater than 𝜏

𝑘
according

to Rouche’s theorem [15]. Therefore, according to the Hopf
bifurcation theorem [30] for functional differential equations,
the transversality condition holds and the conditions for Hopf
bifurcation are satisfied at 𝜏 = 𝜏

𝑘
. Then the following result can

be obtained.

Theorem 7. Supposing that condition (𝐻
1
) is satisfied,

(1) if 𝜏 ∈ [0, 𝜏
0
), then the positive equilibrium 𝐸

∗
=

(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) of system (7) is asymptotically

stable and unstable when 𝜏 > 𝜏
0
;

(2) if condition (𝐻
2
) is satisfied, system (7) will undergo

a Hopf bifurcation at the positive equilibrium 𝐸
∗

=

(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) when 𝜏 = 𝜏

𝑘
(𝑘 = 0, 1, 2, . . .),

where 𝜏
𝑘
is defined by (22).

This implies that when the time delay 𝜏 < 𝜏
0
, the system

will stabilize at its infection equilibrium point, which is
beneficial for us to implement a containment strategy; when
time delay 𝜏 > 𝜏

0
, the system will be unstable and worms

cannot be effectively controlled.
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Figure 11: Comparisons between numerical curves and simulation curves when 𝜏 < 𝜏
0
.

4. Numerical Analysis

In this section, several numerical results are presented to
prove the correctness of theoretical analysis above. 750,000
hosts and 50,000 removable devices are selected as the
population size; the worm’s average scan rate is 𝜂 = 4000

per second. The worm infection rate can be calculated as 𝛼 =

𝜂𝑁/2
32

= 0.698, which means that average 0.698 hosts of all
the hosts can be scanned by one infectious host.The infection
ratio is 𝛽

1
= 𝜂/2

32
= 0.00000093. The contact infection rate

between hosts and removable devices is 𝛽
2
= 0.0045. The

recovery rates of infectious hosts and removable devices are
𝛾
1
= 0.02 and 𝛾

2
= 0.005, respectively. The immunization

rate of quarantined hosts is 𝛿 = 0.05 and the reassembly rate
of immunization hosts is 𝜔 = 0.08. At the beginning, there

are 50 infectious hosts and 20 infectious removable devices,
while the rest of hosts and removable devices are susceptible.

In anomaly intrusion detection system, the rate at which
infected hosts are detected and quarantined is 𝜃

2
= 0.2 per

second. It means that an infected host can be detected and
quarantined in about 5 s. The rate at which susceptible hosts
are detected and quarantined is 𝜃

1
= 0.00002315 per second;

that is, about two false alarms are generated by the anomaly
intrusion detection system per day.

When 𝜏 = 5 < 𝜏
0
, Figure 2 presents the changes

of the number of five kinds of hosts and Figure 3 shows
the curves of two kinds of removable devices. According to
Theorem 5, the positive equilibrium𝐸

∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
)

is asymptotically stable when 𝜏 ∈ [0, 𝜏
0
), which is illustrated

by the numerical simulations in Figures 2 and 3. Finally, the
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Figure 12: Comparisons between numerical curves and simulation curves when 𝜏 > 𝜏
0
.

number of every kind of host and removable device keeps
stable.

When 𝜏 gets increased and passes through the threshold
𝜏
0
, the positive equilibrium 𝐸

∗
= (𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑅
∗
, 𝑅
∗

𝐼
) will

lose its stability and a Hopf bifurcation will occur. A family
of periodic solution bifurcates from the positive equilibrium
𝐸
∗. When 𝜏 = 45 > 𝜏

0
, Figure 4 shows the curves of

susceptible, infectious, quarantined, and removed hosts and
the numerical simulation results of two kinds of removable
devices are depicted by Figure 5. FromFigures 4 and 5, we can
clearly see that every state of hosts and removable devices is
unstable. Figure 4 shows that the number of infectious hosts
will outburst after a short period of peace and repeat again
and again.

In order to state the influence of time delay, the delay 𝜏

is set to a different value each time with other parameters

remaining unchanged. Figure 6 shows four curves of the
number of infectious hosts in the same coordinate with four
delays: 𝜏 = 5, 𝜏 = 15, 𝜏 = 45, and 𝜏 = 90, respectively. Figures
7(a)–7(c) show four curves of the number of infectious hosts
in four coordinates. Initially, the four curves are overlapped
which means that the time delay has little effect on the initial
state of worm spread. With the increase of the time T, the
time delay affects the number of infectious hosts. With the
increase of time delay, the curve begins to oscillate. The
system becomes unstable as time delay passes through the
critical value 𝜏

0
. At the same time, it can be discovered that

the amplitude and period of the number of infectious hosts
gradually increase.

Figures 8(a) and 8(b) show the phase portraits of suscep-
tible hosts 𝑆(𝑡) and infectious hosts 𝐼(𝑡) with 𝜏 = 30 < 𝜏

0

and 𝜏 = 60 > 𝜏
0
, respectively. Figures 9(a) and 9(b) show
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the projection of the phase portrait of system (1) in (𝑆, 𝐼, 𝑅)-
space when 𝜏 = 30 < 𝜏

0
and 𝜏 = 60 > 𝜏

0
, respectively. It is

clear that the curve converges to a fixed point when 𝜏 < 𝜏
0
,

whichmeans that the system is stable.When 𝜏 > 𝜏
0
, the curve

converges to a limit circle, which implies that the system is
unstable and the worm propagation is out of control.

Figure 10 shows the bifurcation diagram with 𝜏 from 1 to
90. It is clear that Hopf bifurcation will occur when 𝜏 = 𝜏

0
=

35.

5. Simulation Experiments

In our simulation experiments, the discrete-time simulation
is adopted because of its accuracy and is less time-consuming.
The discrete-time simulation is an expanded version of Zou’s
program simulating Code Red worm propagation. All of the
parameters are consistent with the numerical experiments.

Figures 11(a)–11(d) show the comparisons between
numerical and simulation curves of susceptible, infectious,
quarantined, and removed hosts when 𝜏 = 5 < 𝜏

0
,

respectively. It is clearly seen that the simulation curves
match the numerical ones very well. Figures 12(a)–12(d)
show the comparisons between numerical and simulation
results of four kinds of hosts when 𝜏 = 90 > 𝜏

0
. In this

figure, two curves are still matched well. It fully illustrates
the correctness of our theoretical analysis.

6. Conclusions

In this paper, considering the influence of removable devices,
a delayed worm propagation dynamical system based on
anomaly IDS has been constructed. By regarding the time
delay caused by time window of anomaly IDS as the bifur-
cation parameter, the local asymptotic stability at the posi-
tive equilibrium and local Hopf bifurcation were discussed.
Through theoretical analysis and related experiments, the
main conclusions can be summarized as follows.

(a) The critical time delay 𝜏
0
where Hopf bifurcation

appears is derived:

𝜏
0
=

1

𝜔
0

arccos [ ((𝑞
0
− 𝑞
2
𝜔
2
) (𝑝
2
𝜔
2

0
− 𝑝
4
𝜔
4

0
− 𝑝
0
)

+𝑞
1
𝜔
0
(𝑝
3
𝜔
3

0
− 𝜔
5

0
− 𝑝
1
𝜔
0
))

×((𝑞
0
− 𝑞
2
𝜔
2
)

2

+ 𝑞
2

1
𝜔
2

0
)

−1

] .

(27)

(b) When the time delay 𝜏 < 𝜏
0
, worm propagation sys-

tem is stable and worms’ behavior is easy to predict,
which is beneficial for us to implement containment
strategy to control and eliminate the worm.

(c) When time delay 𝜏 ≥ 𝜏
0
, Hopf bifurcation occurs,

which implies that the system will be unstable and
containment strategy does not work effectively.

Thus, in order to control and even eliminate the worm,
the size of time window of anomaly IDS must be less than

𝜏
0
. In real network environment, various factors can affect

worm propagation.This paper concentrates on analyzing the
influence of time delay caused by anomaly IDS; other factors
having an impact on worm propagation will be the center of
our future study.
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