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A four-compartment computer virus propagationmodel with two delays and graded infection rate is investigated in this paper.The
critical values where a Hopf bifurcation occurs are obtained by analyzing the distribution of eigenvalues of the corresponding
characteristic equation. In succession, direction and stability of the Hopf bifurcation when the two delays are not equal are
determined by using normal form theory and center manifold theorem. Finally, some numerical simulations are also carried out
to justify the obtained theoretical results.

1. Introduction

In recent years, with the fast development and populariza-
tion of computer technologies and network, Internet has
offered numerous functionalities and facilities to the world.
Meanwhile, Internet has also become a powerful mechanism
for propagating computer viruses. Computer viruses are
computer programs which have serious effects on individual
and corporate computer systems in the network, such as
modifying data and formatting disks [1, 2].

In order to analyze the propagation laws of computer
viruses in the network, many epidemiological models have
been borrowed to depict the spread of computer viruses
because of the high similarity between the computer viruses
and the biological viruses [3–5]. In [6–11], Mishra et al. pro-
posed SIRS computer virus models in different forms. Yuan
and Chen presented the SEIR computer virus propagation
model in [12] and they studied the stability of the model.
Based on the the work in [12], Dong et al. proposed the
SEIR computer virus model with time delay in [13] and they
investigated the Hopf bifurcation of the model.There are also
some other different computer virus models which have been
proposed by other scholars in recent years and one can refer
to [14–18]. However, all the computer virus models above
which incorporate the latent status of the viruses assume
that the latent computers have no infection ability. This is

not consistent with the reality, because an infected computer
which is in latency can also infect other computers through
file copying or file downloading. Based on this fact, Yang et al.
established a computer virus propagation model with graded
infection rate in [19]:𝑑𝑆 (𝑡)𝑑𝑡 = 𝜇 − 𝛽1𝑆 (𝑡) 𝐿 (𝑡) − 𝛽2𝑆 (𝑡) 𝐴 (𝑡) + 𝛼𝑅 (𝑡)− 𝜇𝑆 (𝑡) ,𝑑𝐿 (𝑡)𝑑𝑡 = 𝛽1𝑆 (𝑡) 𝐿 (𝑡) + 𝛽2𝑆 (𝑡) 𝐴 (𝑡) − 𝜀𝐿 (𝑡) − 𝜇𝐿 (𝑡) ,𝑑𝐴 (𝑡)𝑑𝑡 = 𝜀𝐿 (𝑡) − 𝛾𝐴 (𝑡) − 𝜇𝐴 (𝑡) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝛾𝐴 (𝑡) − 𝛼𝑅 (𝑡) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐿(𝑡), 𝐴(𝑡), and 𝑅(𝑡) are the percentages of sus-
ceptible computers, latent computers, active computers, and
recovered computers on the Internet, at time 𝑡, respectively. 𝜇
is the rate at which external computers are connected to the
Internet and it is also the rate at which internal computers
are disconnected from the Internet; 𝛽1 is the infected rate
of the susceptible computers by the latent computers; 𝛽2 is
the infected rate of the susceptible computers by the active
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computers; 𝛼 is the rate at which the recovered computers
become susceptibly virus-free again; 𝜀 is the rate at which
the latent computers break out; and 𝛾 is the rate at which the
active computers are cured by the antivirus software.

As pointed out in [9], one of the typical features of
computer viruses is their latent characteristic. Therefore, they
need a period to become active computers for the latent ones.
Likewise, the antivirus software needs a period to clean the
viruses in the active computers. Based on this and motivated
by the work about the dynamical system with delay in [20–
24], we incorporate two delays into system (1) and obtain the
following delayed computer virus model:𝑑𝑆 (𝑡)𝑑𝑡 = 𝜇 − 𝛽1𝑆 (𝑡) 𝐿 (𝑡) − 𝛽2𝑆 (𝑡) 𝐴 (𝑡) + 𝛼𝑅 (𝑡)− 𝜇𝑆 (𝑡) ,𝑑𝐿 (𝑡)𝑑𝑡 = 𝛽1𝑆 (𝑡) 𝐿 (𝑡) + 𝛽2𝑆 (𝑡) 𝐴 (𝑡) − 𝜀𝐿 (𝑡 − 𝜏1)− 𝜇𝐿 (𝑡) ,𝑑𝐴 (𝑡)𝑑𝑡 = 𝜀𝐿 (𝑡 − 𝜏1) − 𝛾𝐴 (𝑡 − 𝜏2) − 𝜇𝐴 (𝑡) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝛾𝐴 (𝑡 − 𝜏2) − 𝛼𝑅 (𝑡) − 𝜇𝑅 (𝑡) ,

(2)

where 𝜏1 is the latent period of the computer viruses and 𝜏2
is the period that the antivirus software needs to clean the
viruses in the active computers.

The rest of this paper is organized as follows. In Section 2,
we present the existence of the viral equilibrium and con-
ditions for the local stability of the viral equilibrium and
existence of the Hopf bifurcation are derived. Direction and
stability of the Hopf bifurcation are studied in Section 3
and some numerical simulations are performed in Section 4
to justify the obtained theoretical findings by taking some
relevant values of the parameters in system (2) and using
the Matlab software package. Finally, we end this paper with
concluding remarks in Section 5.

2. Existence of Local Hopf Bifurcation

By a simple computation, we know that if (𝜀+𝜇)(𝛾+𝜇)/(𝛽1(𝛾+𝜇) + 𝛽2𝜀) < 1 and (𝜀 + 𝜇)(𝛾 + 𝜇)/𝜀 > 𝛼𝛾/(𝛼 + 𝜇), then system
(2) has a unique viral equilibrium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗), where𝑆∗ = (𝛾 + 𝜇) (𝜀 + 𝜇)𝛽1 (𝛾 + 𝜇) + 𝛽2𝜀 ,𝐿∗ = 𝛾 + 𝜇𝜀 𝐴∗,𝑅∗ = 𝛾𝛼 + 𝜇𝐴∗,𝐴∗ = 𝐴1∗𝐴2∗ ,𝐴1∗ = 𝜇 − 𝜇 (𝜀 + 𝜇) (𝛾 + 𝜇)𝛽1 (𝛾 + 𝜇) + 𝛽2𝜀 ,𝐴2∗ = (𝜀 + 𝜇) (𝛾 + 𝜇)𝜀 − 𝛼𝛾𝛼 + 𝜇 .

(3)

Let 𝑆(𝑡) = 𝑆(𝑡) − 𝑆∗, 𝐿(𝑡) = 𝐿(𝑡) − 𝐿∗, 𝐴(𝑡) = 𝐴(𝑡) − 𝐴∗,𝑅(𝑡) = 𝑅(𝑡) − 𝑅∗. Dropping the bars, system (2) becomes

𝑑𝑆 (𝑡)𝑑𝑡 = 𝑎1𝑆 (𝑡) + 𝑎2𝐿 (𝑡) + 𝑎3𝐴 (𝑡) + 𝑎4𝑅 (𝑡)− 𝛽1𝑆 (𝑡) 𝐿 (𝑡) − 𝛽2𝑆 (𝑡) 𝐴 (𝑡) ,𝑑𝐿 (𝑡)𝑑𝑡 = 𝑎5𝑆 (𝑡) + 𝑎6𝐿 (𝑡) + 𝑎7𝐴 (𝑡) + 𝑏1𝐿 (𝑡 − 𝜏1)+ 𝛽1𝑆 (𝑡) 𝐿 (𝑡) + 𝛽2𝑆 (𝑡) 𝐴 (𝑡) ,𝑑𝐴 (𝑡)𝑑𝑡 = 𝑎8𝐴 (𝑡) + 𝑏2𝐿 (𝑡 − 𝜏1) + 𝑐1𝐴 (𝑡 − 𝜏2) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝑎9𝑅 (𝑡) + 𝑐2𝐴 (𝑡 − 𝜏2) ,
(4)

where 𝑎1 = − (𝛽1𝐿∗ + 𝛽2𝐴∗ + 𝜇) ,𝑎2 = −𝛽1𝑆∗,𝑎3 = −𝛽2𝑆∗,𝑎4 = 𝛼,𝑎5 = 𝛽1𝐿∗ + 𝛽2𝐴∗,𝑏1 = −𝜀,𝑎6 = 𝛽1𝑆∗ − 𝜇,𝑎7 = 𝛽2𝑆∗,𝑎8 = −𝜇,𝑏2 = 𝜀,𝑐1 = −𝛾,𝑎9 = − (𝛼 + 𝜇)𝑅∗,𝑐2 = 𝛾.

(5)

The linear system of system (4) is

𝑑𝑆 (𝑡)𝑑𝑡 = 𝑎1𝑆 (𝑡) + 𝑎2𝐿 (𝑡) + 𝑎3𝐴 (𝑡) + 𝑎4𝑅 (𝑡) ,𝑑𝐿 (𝑡)𝑑𝑡 = 𝑎5𝑆 (𝑡) + 𝑎6𝐿 (𝑡) + 𝑎7𝐴 (𝑡) + 𝑏1𝐿 (𝑡 − 𝜏1) ,𝑑𝐴 (𝑡)𝑑𝑡 = 𝑎8𝐴 (𝑡) + 𝑏2𝐿 (𝑡 − 𝜏1) + 𝑐1𝐴 (𝑡 − 𝜏2) ,𝑑𝑅 (𝑡)𝑑𝑡 = 𝑎9𝑅 (𝑡) + 𝑐2𝐴 (𝑡 − 𝜏2) .
(6)
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The corresponding characteristic equation is𝜆4 + 𝑎03𝜆3 + 𝑎02𝜆2 + 𝑎01𝜆 + 𝑎00+ (𝑏03𝜆3 + 𝑏02𝜆2 + 𝑏01𝜆 + 𝑏00) 𝑒−𝜆𝜏1+ (𝑐03𝜆3 + 𝑐02𝜆2 + 𝑐01𝜆 + 𝑐00) 𝑒−𝜆𝜏2+ (𝑑02𝜆2 + 𝑑01𝜆 + 𝑑00) 𝑒−𝜆(𝜏1+𝜏2) = 0,
(7)

where 𝑎00 = (𝑎1𝑎6 − 𝑎2𝑎5) 𝑎8𝑎9,𝑎01 = (𝑎2𝑎5 − 𝑎1𝑎6) (𝑎8 + 𝑎9) ,𝑎02 = 𝑎1𝑎6 − 𝑎2𝑎5 + 𝑎8𝑎9 + (𝑎1 + 𝑎6) (𝑎8 + 𝑎9) ,𝑎03 = − (𝑎1 + 𝑎6 + 𝑎8 + 𝑎9) ,𝑏00 = 𝑎1𝑎8𝑎9𝑏1 + (𝑎3𝑎5 − 𝑎1𝑎7) 𝑎9𝑏2,𝑏01 = 𝑎7𝑏2 (𝑎1 + 𝑎9) − 𝑏1 (𝑎1𝑎8 + 𝑎1𝑎9 + 𝑎8𝑎9) ,𝑏02 = 𝑏1 (𝑎1 + 𝑎8 + 𝑎9) − 𝑎7𝑏2,𝑏03 = −𝑏1,𝑐00 = (𝑎1𝑎6 − 𝑎2𝑎5) 𝑎9𝑐1,𝑐01 = 𝑐1 (𝑎2𝑎5 − 𝑎1𝑎6 − 𝑎1𝑎9 − 𝑎6𝑎9) ,𝑐02 = 𝑐1 (𝑎1 + 𝑎6 + 𝑎9) ,𝑐03 = −𝑐1,𝑑00 = 𝑎1𝑎9𝑏1𝑐1 + 𝑎4𝑎5𝑏2𝑐2,𝑑01 = −𝑏1𝑐1 (𝑎1 + 𝑎9) ,𝑑02 = 𝑏1𝑐1.

(8)

Case 1 (𝜏1 = 𝜏2 = 0). For 𝜏1 = 𝜏2 = 0, (7) becomes𝜆4 + 𝑎13𝜆3 + 𝑎12𝜆2 + 𝑎11𝜆 + 𝑎10 = 0, (9)

where 𝑎10 = 𝑎00 + 𝑏00 + 𝑐00 + 𝑑00,𝑎11 = 𝑎01 + 𝑏01 + 𝑐01 + 𝑑01,𝑎12 = 𝑎02 + 𝑏02 + 𝑐02 + 𝑑02,𝑎13 = 𝑎03 + 𝑏03 + 𝑐03. (10)

Thus, according to the Routh-Hurwithz theorem, we
know that if conditions (𝐻11) 𝑎10 > 0, 𝑎13 > 0, and 𝑎13𝑎12 >𝑎11 hold, then viral equilibrium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗) of system
(2) without delay is locally asymptotically stable.

Case 2 (𝜏1 > 0, 𝜏2 = 0). For 𝜏1 > 0 and 𝜏2 = 0, we can get the
following from (7):𝜆4 + 𝑎23𝜆3 + 𝑎22𝜆2 + 𝑎21𝜆 + 𝑎20+ (𝑏23𝜆3 + 𝑏22𝜆2 + 𝑏21𝜆 + 𝑏20) 𝑒−𝜆𝜏1 = 0, (11)

where 𝑎20 = 𝑎00 + 𝑐00,𝑎21 = 𝑎01 + 𝑐01,𝑎22 = 𝑎02 + 𝑐02,𝑎23 = 𝑎03 + 𝑐03,𝑏20 = 𝑏00 + 𝑑00,𝑏21 = 𝑏01 + 𝑑01,𝑏22 = 𝑏02 + 𝑑02,𝑏23 = 𝑏03.
(12)

We assume that 𝜆 = 𝑖𝜔1 (𝜔1 > 0) is a root of (11). Then,(𝑏21𝜔1 − 𝑏23𝜔31) sin 𝜏1𝜔1 + (𝑏20 − 𝑏22𝜔21) cos 𝜏1𝜔1= 𝑎22𝜔21 − 𝜔41 − 𝑎20,(𝑏21𝜔1 − 𝑏23𝜔31) cos 𝜏1𝜔1 − (𝑏20 − 𝑏22𝜔21) sin 𝜏1𝜔1= 𝑎23𝜔31 − 𝑎21𝜔1,
(13)

which implies that𝜔81 + 𝑔23𝜔61 + 𝑔22𝜔41 + 𝑔21𝜔21 + 𝑔20 = 0, (14)

with 𝑔20 = 𝑎220 − 𝑏220,𝑔21 = 𝑎221 − 𝑏221 − 2𝑎20𝑎22 + 2𝑏20𝑏22,𝑔22 = 𝑎222 − 𝑏222 + 2𝑏21𝑏23 − 2𝑎21𝑎23 + 2𝑎20,𝑔23 = 𝑎223 − 𝑏223 − 2𝑎22.
(15)

Let 𝜔21 = V1; then (14) becomes

V41 + 𝑔23V31 + 𝑔22V21 + 𝑔21V1 + 𝑔20 = 0. (16)

Discussion about distribution of roots for (16) is similar
to that in [25]. Therefore, we directly assume that (𝐻21) (16)
has at least one positive equilibrium V10.

If (𝐻21) holds, we know that (14) has at least one positive
root 𝜔10 = √V10 such that (11) has a pair of purely imaginary
roots ±𝑖𝜔10. For 𝜔10,

𝜏10 = 1𝜔10 arccos ℎ21 (𝜔10)ℎ22 (𝜔10) , (17)
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whereℎ21 (𝜔10) = (𝑏22 − 𝑎23𝑏23) 𝜔610+ (𝑎21𝑏23 + 𝑎23𝑏21 − 𝑎22𝑏22 − 𝑏20) 𝜔410+ (𝑎20𝑏22 + 𝑎22𝑏20 − 𝑎21𝑏21) 𝜔210− 𝑎20𝑏20,ℎ22 (𝜔10) = 𝑏223𝜔610 + (𝑏222 − 2𝑏21𝑏23)𝜔410+ (𝑏221 − 2𝑏20𝑏22) 𝜔210 + 𝑏220.
(18)

Differentiating both sides of (11) with respect to 𝜏1, one can
obtain[ 𝑑𝜆𝑑𝜏1 ]−1 = − 4𝜆3 + 3𝑎23𝜆2 + 2𝑎22𝜆 + 𝑎21𝜆 (𝜆4 + 𝑎23𝜆3 + 𝑎22𝜆2 + 𝑎21𝜆 + 𝑎20)+ 3𝑏23𝜆2 + 2𝑏22𝜆 + 𝑏21𝜆 (𝑏23𝜆3 + 𝑏22𝜆2 + 𝑏21𝜆 + 𝑏20) − 𝜏1𝜆 . (19)

Thus,

Re [ 𝑑𝜆𝑑𝜏1 ]−1𝜏1=𝜏10 = 𝑓󸀠1 (V∗1 )ℎ22 (𝜔10) , (20)

where V∗1 = 𝜔210 and 𝑓1(V1) = V41 + 𝑔23V31 + 𝑔22V21 + 𝑔21V1 +𝑔20. Therefore, if condition (𝐻22) 𝑓󸀠1(V∗1 ) ̸= 0 holds, then
Re[𝑑𝜆/𝑑𝜏1]−1𝜏1=𝜏10 ̸= 0. Based on the discussion above and
according to the Hopf bifurcation theorem in [26], we obtain
the following.

Theorem 1. If conditions (𝐻21)-(𝐻22) hold, then
(i) viral equilibrium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗) of system (2) is

locally asymptotically stable for 𝜏1 ∈ [0, 𝜏10);
(ii) system (2) undergoes a Hopf bifurcation at viral equi-

librium𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗)when 𝜏1 = 𝜏10 and a family
of periodic solutions bifurcate from 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗).

Case 3 (𝜏1 = 0, 𝜏2 > 0). For 𝜏1 = 0 and 𝜏2 > 0, (7) becomes𝜆4 + 𝑎33𝜆3 + 𝑎32𝜆2 + 𝑎31𝜆 + 𝑎30+ (𝑐33𝜆3 + 𝑐32𝜆2 + 𝑐31𝜆 + 𝑐30) 𝑒−𝜆𝜏2 = 0, (21)

where 𝑎30 = 𝑎00 + 𝑏00,𝑎31 = 𝑎01 + 𝑏01,𝑎32 = 𝑎02 + 𝑏02,𝑎33 = 𝑎03 + 𝑏03,𝑐30 = 𝑐00 + 𝑑00,𝑐31 = 𝑐01 + 𝑑01,𝑐32 = 𝑐02 + 𝑑02,𝑐33 = 𝑐03.
(22)

Let 𝜆 = 𝑖𝜔2 (𝜔2 > 0) be a root of (21). Then,(𝑐31𝜔2 − 𝑐33𝜔32) sin 𝜏2𝜔2 + (𝑐30 − 𝑐32𝜔22) cos 𝜏2𝜔2= 𝑎32𝜔22 − 𝜔42 − 𝑎30,(𝑐31𝜔2 − 𝑐33𝜔32) cos 𝜏2𝜔2 − (𝑐30 − 𝑐32𝜔22) sin 𝜏2𝜔2= 𝑎33𝜔32 − 𝑎31𝜔2.
(23)

It follows that𝜔82 + 𝑔33𝜔62 + 𝑔32𝜔42 + 𝑔31𝜔22 + 𝑔30 = 0, (24)

with 𝑔30 = 𝑎230 − 𝑐230,𝑔31 = 𝑎231 − 𝑐231 − 2𝑎30𝑎32 + 2𝑐30𝑏32,𝑔32 = 𝑎232 − 𝑐232 + 2𝑐31𝑐33 − 2𝑎31𝑎33 + 2𝑎30,𝑔33 = 𝑎233 − 𝑏233 − 2𝑎32.
(25)

Let 𝜔22 = V2; then, we have

V42 + 𝑔33V32 + 𝑔32V22 + 𝑔31V2 + 𝑔30 = 0. (26)

Similar to Case 2, we make the following assumption.(𝐻31) (26) has at least one positive root V20. If condition (𝐻31)
holds, then there exists 𝜔20 = √V20 such that (21) has a pair
of purely imaginary roots ±𝑖𝜔20. For 𝜔20,𝜏20 = 1𝜔20 arccos ℎ31 (𝜔20)ℎ32 (𝜔20) , (27)

whereℎ31 (𝜔20) = (𝑐32 − 𝑎33𝑐33) 𝜔620+ (𝑎31𝑐33 − 𝑎32𝑐32 + 𝑎33𝑐31 − 𝑐30) 𝜔420+ (𝑎30𝑐32 − 𝑎31𝑐31 + 𝑎32𝑐30) 𝜔220− 𝑎30𝑐30,ℎ32 (𝜔20) = 𝑐233𝜔620 + (𝑏232 − 2𝑐31𝑐33) 𝜔420+ (𝑐231 − 2𝑐30𝑐32)𝜔220 + 𝑐230.
(28)

In addition, we have[ 𝑑𝜆𝑑𝜏1 ]−1 = − 4𝜆3 + 3𝑎33𝜆2 + 2𝑎32𝜆 + 𝑎31𝜆 (𝜆4 + 𝑎33𝜆3 + 𝑎32𝜆2 + 𝑎31𝜆 + 𝑎30)+ 3𝑐33𝜆2 + 2𝑐32𝜆 + 𝑐31𝜆 (𝑐33𝜆3 + 𝑐32𝜆2 + 𝑐31𝜆 + 𝑐30) − 𝜏2𝜆 . (29)

Further,

Re [ 𝑑𝜆𝑑𝜏2 ]−1𝜏2=𝜏20 = 𝑓󸀠2 (V∗2 )ℎ32 (𝜔20) , (30)
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where V∗2 = 𝜔220 and 𝑓2(V2) = V42 + 𝑔33V32 + 𝑔32V22 + 𝑔31V2 +𝑔30. Therefore, if condition (𝐻32) 𝑓󸀠2(V∗2 ) ̸= 0 holds, then
Re[𝑑𝜆/𝑑𝜏2]−1𝜏2=𝜏20 ̸= 0. Based on the discussion above and
according to the Hopf bifurcation theorem in [26], we obtain
the following.

Theorem 2. If conditions (𝐻31)-(𝐻32) hold, then
(i) viral equilibrium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗) of system (2) is

locally asymptotically stable for 𝜏2 ∈ [0, 𝜏20);
(ii) system (2) undergoes a Hopf bifurcation at viral equi-

librium𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗)when 𝜏2 = 𝜏20 and a family
of periodic solutions bifurcate from 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗).

Case 4 (𝜏1 = 𝜏2 = 𝜏 > 0). For 𝜏1 = 𝜏2 = 𝜏 > 0, we have𝜆4 + 𝑎43𝜆3 + 𝑎42𝜆2 + 𝑎41𝜆 + 𝑎40+ (𝑏43𝜆3 + 𝑏42𝜆2 + 𝑏41𝜆 + 𝑏40) 𝑒−𝜆𝜏+ (𝑑42𝜆2 + 𝑑41𝜆 + 𝑑40) 𝑒−2𝜆𝜏 = 0, (31)

with 𝑎40 = 𝑎00,𝑎41 = 𝑎01,𝑎42 = 𝑎02,𝑎43 = 𝑎03,𝑏40 = 𝑏00 + 𝑐00,𝑏41 = 𝑏01 + 𝑐01,𝑏42 = 𝑏02 + 𝑐02,𝑏43 = 𝑏03 + 𝑐03,𝑑40 = 𝑑00,𝑑41 = 𝑑01,𝑑42 = 𝑑02.

(32)

Multiplying by 𝑒𝜆𝜏, (31) becomes the following:𝑏43𝜆3 + 𝑏42𝜆2 + 𝑏41𝜆 + 𝑏40+ (𝜆4 + 𝑎43𝜆3 + 𝑎42𝜆2 + 𝑎41𝜆 + 𝑎40) 𝑒𝜆𝜏+ (𝑑42𝜆2 + 𝑑41𝜆 + 𝑑40) 𝑒−𝜆𝜏 = 0. (33)

Let 𝜆 = 𝑖𝜔 (𝜔 > 0) be a root of (37); it is easy to get𝑔41 (𝜔) cos 𝜏𝜔 − 𝑔42 (𝜔) sin 𝜏𝜔 = 𝑔43 (𝜔) ,𝑔44 (𝜔) sin 𝜏𝜔 + 𝑔45 (𝜔) cos 𝜏𝜔 = 𝑔46 (𝜔) , (34)

where 𝑔41 (𝜔) = 𝜔4 − (𝑎42 + 𝑑42) 𝜔2 + 𝑎40 + 𝑑40,𝑔42 (𝜔) = (𝑎41 − 𝑑41) 𝜔 − 𝑎43𝜔3,𝑔43 (𝜔) = 𝑏42𝜔2 − 𝑏40,𝑔44 (𝜔) = 𝜔4 − (𝑎42 − 𝑑42) 𝜔2 + 𝑎40 − 𝑑40,𝑔45 (𝜔) = (𝑎41 + 𝑑41) 𝜔 − 𝑎43𝜔3,𝑔46 (𝜔) = 𝑏43𝜔3 − 𝑏41𝜔.
(35)

It leads to

cos 𝜏𝜔 = 𝑔42 (𝜔) × 𝑔46 (𝜔) + 𝑔43 (𝜔) × 𝑔44 (𝜔)𝑔41 (𝜔) × 𝑔44 (𝜔) + 𝑔42 (𝜔) × 𝑔45 (𝜔) ,
sin 𝜏𝜔 = 𝑔41 (𝜔) × 𝑔46 (𝜔) − 𝑔43 (𝜔) × 𝑔45 (𝜔)𝑔41 (𝜔) × 𝑔44 (𝜔) + 𝑔42 (𝜔) × 𝑔45 (𝜔) . (36)

Thus, we can get the following equation with respect to 𝜔:
cos2𝜏𝜔 + sin2𝜏𝜔 = 1. (37)

Next, we make the following assumption. (𝐻41) (37) has
at least one positive root 𝜔0. Then, for 𝜔0, we have𝜏0 = 1𝜔0⋅ arccos 𝑔42 (𝜔0) × 𝑔46 (𝜔0) + 𝑔43 (𝜔0) × 𝑔44 (𝜔0)𝑔41 (𝜔0) × 𝑔44 (𝜔0) + 𝑔42 (𝜔0) × 𝑔45 (𝜔0) . (38)

Taking the derivative of 𝜆 with respect to 𝜏, we obtain[𝑑𝜆𝑑𝜏]−1 = −𝑔47 (𝜆)𝑔48 (𝜆) − 𝜏𝜆 , (39)

where𝑔47 (𝜆) = 3𝑏43𝜆2 + 2𝑏42𝜆 + 𝑏41+ (4𝜆3 + 3𝑎43𝜆2 + 2𝑎42𝜆 + 𝑎41) 𝑒𝜆𝜏+ (2𝑑42𝜆 + 𝑑41) 𝑒−𝜆𝜏,𝑔48 (𝜆) = (𝜆5 + 𝑎43𝜆4 + 𝑎42𝜆3 + 𝑎41𝜆2 + 𝑎40𝜆) 𝑒𝜆𝜏− (𝑑42𝜆3 + 𝑑41𝜆2 + 𝑑40𝜆) 𝑒−𝜆𝜏.
(40)

Then, we can get that

Re[𝑑𝜆𝑑𝜏]−1𝜏=𝜏0= −ℎ41 (𝜔0) × ℎ43 (𝜔0) + ℎ42 (𝜔0) × ℎ44 (𝜔0)ℎ243 (𝜔0) + ℎ244 (𝜔0) , (41)
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whereℎ41 (𝜔0)= (𝑎41 + 𝑑41 − 3𝑎43𝜔20) cos 𝜏0𝜔0− 2 ((𝑎42 − 𝑑42) 𝜔0 − 2𝜔30) sin 𝜏0𝜔0 + 𝑏41− 3𝑏43𝜔20 ,ℎ42 (𝜔0)= (𝑎41 − 𝑑41 − 3𝑎43𝜔20) sin 𝜏0𝜔0+ 2 ((𝑎42 + 𝑑42) 𝜔0 − 2𝜔30) cos 𝜏0𝜔0 + 2𝑏42𝜔0,ℎ43 (𝜔0)= (𝑎43𝜔40 − (𝑎41 + 𝑑41) 𝜔20) cos 𝜏0𝜔0− (𝜔50 − (𝑎42 + 𝑑42) 𝜔30 + (𝑎40 − 𝑑40) 𝜔0) sin 𝜏0𝜔0,ℎ44 (𝜔0)= (𝑎43𝜔40 − (𝑎41 − 𝑑41) 𝜔20) sin 𝜏0𝜔0+ (𝜔50 − (𝑎42 + 𝑑42) 𝜔30 + (𝑎40 + 𝑑40) 𝜔0) cos 𝜏0𝜔0.

(42)

We assume that (𝐻42) ℎ41(𝜔0) × ℎ43(𝜔0) + ℎ42(𝜔0) ×ℎ44(𝜔0) ̸= 0. Clearly, if condition (𝐻42) holds, then we can
conclude that Re[𝑑𝜆/𝑑𝜏]−1𝜏=𝜏0 ̸= 0. Therefore, according to the
Hopf bifurcation theorem in [26], we obtain the following.

Theorem 3. If conditions (𝐻41)-(𝐻42) hold, then
(i) viral equilibrium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗) of system (2) is

locally asymptotically stable for 𝜏 ∈ [0, 𝜏0);
(ii) system (2) undergoes a Hopf bifurcation at viral equi-

librium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗) when 𝜏 = 𝜏0 and a family
of periodic solutions bifurcate from 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗).

Case 5 (𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20)). Let 𝜆 = 𝑖𝜔󸀠1 be the root of (7).
Then,𝑔51 (𝜔󸀠1) sin 𝜏1𝜔󸀠1 + 𝑔52 (𝜔󸀠1) cos 𝜏1𝜔󸀠1 = 𝑔53 (𝜔󸀠1) ,𝑔51 (𝜔󸀠1) cos 𝜏1𝜔󸀠1 − 𝑔52 (𝜔󸀠1) sin 𝜏1𝜔󸀠1 = 𝑔54 (𝜔󸀠1) , (43)

where𝑔51 (𝜔󸀠1) = 𝑏01𝜔󸀠1 − 𝑏03 (𝜔󸀠1)3 + 𝑑01𝜔󸀠1 cos 𝜏2𝜔󸀠1− (𝑑00 − 𝑑02 (𝜔󸀠1)2) sin 𝜏2𝜔󸀠1,𝑔52 (𝜔󸀠1) = 𝑏00 − 𝑏02 (𝜔󸀠1)2 + 𝑑01𝜔󸀠1 sin 𝜏2𝜔󸀠1+ (𝑑00 − 𝑑02 (𝜔󸀠1)2) cos 𝜏2𝜔󸀠1,𝑔53 (𝜔󸀠1) = 𝑎02 (𝜔󸀠1)2 − (𝜔󸀠1)4 − 𝑎00− (𝑐01𝜔󸀠1 − 𝑐03 (𝜔󸀠1)3) sin 𝜏2𝜔󸀠1− (𝑐00 − 𝑐02 (𝜔󸀠1)2) cos 𝜏2𝜔󸀠1,𝑔54 (𝜔󸀠1) = 𝑎03 (𝜔󸀠1)3 − 𝑎01𝜔󸀠1− (𝑐01𝜔󸀠1 − 𝑐03 (𝜔󸀠1)3) cos 𝜏2𝜔󸀠1+ (𝑐00 − 𝑐02 (𝜔󸀠1)2) sin 𝜏2𝜔󸀠1.

(44)

Thus, one can get the following equation with respect to 𝜔󸀠1:
𝑔251 (𝜔󸀠1) + 𝑔252 (𝜔󸀠1) = 𝑔253 (𝜔󸀠1) + 𝑔254 (𝜔󸀠1) . (45)

Similar to Case 4, we assume that (𝐻51) (45) has at least
one positive root 𝜔󸀠10. Then, for 𝜔󸀠10, we have
𝜏󸀠10 = 1𝜔󸀠10
⋅ arccos 𝑔51 (𝜔󸀠10) × 𝑔54 (𝜔󸀠10) + 𝑔52 (𝜔󸀠10) × 𝑔53 (𝜔󸀠10)𝑔251 (𝜔󸀠10) + 𝑔252 (𝜔󸀠10) . (46)

Differentiating (7) with respect to 𝜏1, we get
[𝑑𝜆𝑑𝜏]−1 = 𝑔55 (𝜆)𝑔56 (𝜆) − 𝜏1𝜆 , (47)

with

𝑔55 (𝜆) = 4𝜆3 + 3𝑎03𝜆2 + 2𝑎02𝜆 + 𝑎01 + (3𝑏03𝜆2+ 2𝑏02𝜆 + 𝑏01) 𝑒−𝜆𝜏1 + [(3𝑐03 − 𝜏2𝑐02) 𝜆2 − 𝜏2𝑐03𝜆3+ (2𝑐02 − 𝜏2𝑐01) 𝜆 + 𝑐01 − 𝜏2𝑐00] 𝑒−𝜆𝜏2+ [(2𝑑02 − 𝜏2𝑑01) 𝜆 − 𝜏2𝑑02𝜆2 + 𝑑01 − 𝜏2𝑑00]⋅ 𝑒−𝜆(𝜏1+𝜏2),𝑔56 (𝜆) = (𝑐03𝜆4 + 𝑐02𝜆3 + 𝑐01𝜆2 + 𝑐00𝜆) 𝑒−𝜆𝜏2+ (𝑑02𝜆3 + 𝑑01𝜆2 + 𝑑00𝜆) 𝑒−𝜆(𝜏1+𝜏2).

(48)

Then, we obtain

Re [ 𝑑𝜆𝑑𝜏1 ]−1𝜏1=𝜏󸀠10
= ℎ51 (𝜔󸀠10) × ℎ53 (𝜔󸀠10) + ℎ52 (𝜔󸀠10) × ℎ54 (𝜔󸀠10)ℎ253 (𝜔󸀠10) + ℎ254 (𝜔󸀠10) , (49)
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whereℎ51 (𝜔󸀠10) = [2𝑏02𝜔󸀠10 + (2𝑑02 − 𝜏2𝑑01) cos 𝜏2𝜔󸀠10− (𝜏2 (𝜔󸀠10)2 + 𝑑01 − 𝜏2𝑑00) sin 𝜏2𝜔󸀠10] sin 𝜏󸀠10𝜔󸀠10+ [𝑏01 − 3𝑏03 (𝜔󸀠10)2 + (2𝑑02 − 𝜏2𝑑01) sin 𝜏2𝜔󸀠10+ (𝜏2 (𝜔󸀠10)2 + 𝑑01 − 𝜏2𝑑00) cos 𝜏2𝜔󸀠10] cos 𝜏󸀠10𝜔󸀠10+ [(2𝑐02 − 𝜏2𝑐01) 𝜔󸀠10 + 𝜏2𝑐03 (𝜔󸀠10)3] sin 𝜏2𝜔󸀠10+ [𝑐01 − 𝜏2𝑐00 − (3𝑐03 − 𝜏2𝑐02) (𝜔󸀠10)2] cos 𝜏2𝜔󸀠10+ 𝑎01 − 3𝑎03 (𝜔󸀠10)2 ,ℎ52 (𝜔󸀠10) = [2𝑏02𝜔󸀠10 + (2𝑑02 − 𝜏2𝑑01) cos 𝜏2𝜔󸀠10− (𝜏2 (𝜔󸀠10)2 + 𝑑01 − 𝜏2𝑑00) sin 𝜏2𝜔󸀠10] cos 𝜏󸀠10𝜔󸀠10− [𝑏01 − 3𝑏03 (𝜔󸀠10)2 + (2𝑑02 − 𝜏2𝑑01) sin 𝜏2𝜔󸀠10+ (𝜏2 (𝜔󸀠10)2 + 𝑑01 − 𝜏2𝑑00) cos 𝜏2𝜔󸀠10] sin 𝜏󸀠10𝜔󸀠10+ [(2𝑐02 − 𝜏2𝑐01) 𝜔󸀠10 + 𝜏2𝑐03 (𝜔󸀠10)3] cos 𝜏2𝜔󸀠10− [𝑐01 − 𝜏2𝑐00 − (3𝑐03 − 𝜏2𝑐02) (𝜔󸀠10)2] sin 𝜏2𝜔󸀠10+ 𝑎02𝜔󸀠10 − 4 (𝜔󸀠10)3 ,ℎ53 (𝜔󸀠10) = [𝑐00𝜔󸀠10 − 𝑐02 (𝜔󸀠10)3+ (𝑑00𝜔󸀠10 − 𝑑02 (𝜔󸀠10)3) cos 𝜏󸀠10𝜔󸀠10+ 𝑑01 (𝜔󸀠10)2 sin 𝜏󸀠10𝜔󸀠10] sin 𝜏2𝜔󸀠10 + [𝑐03 (𝜔󸀠10)4− 𝑐01 (𝜔󸀠10)2 + (𝑑00𝜔󸀠10 − 𝑑02 (𝜔󸀠10)3) sin 𝜏󸀠10𝜔󸀠10− 𝑑01 (𝜔󸀠10)2 cos 𝜏󸀠10𝜔󸀠10] cos 𝜏2𝜔󸀠10,ℎ54 (𝜔󸀠10) = [𝑐00𝜔󸀠10 − 𝑐02 (𝜔󸀠10)3+ (𝑑00𝜔󸀠10 − 𝑑02 (𝜔󸀠10)3) cos 𝜏󸀠10𝜔󸀠10+ 𝑑01 (𝜔󸀠10)2 sin 𝜏󸀠10𝜔󸀠10] cos 𝜏2𝜔󸀠10 − [𝑐03 (𝜔󸀠10)4− 𝑐01 (𝜔󸀠10)2 + (𝑑00𝜔󸀠10 − 𝑑02 (𝜔󸀠10)3) sin 𝜏󸀠10𝜔󸀠10− 𝑑01 (𝜔󸀠10)2 cos 𝜏󸀠10𝜔󸀠10] sin 𝜏󸀠2𝜔󸀠10.

(50)

We assume that (𝐻52) ℎ51(𝜔󸀠10) × ℎ53(𝜔󸀠10) + ℎ52(𝜔󸀠10) ×ℎ54(𝜔󸀠10) ̸= 0. Thus, we know that Re[𝑑𝜆/𝑑𝜏1]−1𝜏1=𝜏󸀠10 ̸= 0,

if condition (𝐻52) holds. Therefore, according to the Hopf
bifurcation theorem in [26], we obtain the following.

Theorem 4. If conditions (𝐻51)-(𝐻52) hold and 𝜏2 ∈ (0, 𝜏20),
then

(i) viral equilibrium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗) of system (2) is
locally asymptotically stable for 𝜏1 ∈ [0, 𝜏󸀠10);

(ii) system (2) undergoes a Hopf bifurcation at viral equi-
librium 𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗)when 𝜏1 = 𝜏󸀠10 and a family
of periodic solutions bifurcate from𝐸∗(𝑆∗, 𝐿∗, 𝐴∗, 𝑅∗).

3. Properties of the Hopf Bifurcation

In this section, we shall investigate direction of the Hopf
bifurcation and stability of the bifurcating periodic solution
of system (2) when 𝜏1 = 𝜏󸀠10 and 𝜏2 = 𝜏󸀠20 ∈ (0, 𝜏20) by using
the center manifold theorem and the normal form theory
which has been developed by Hassard et al. [26].

Let 𝜏1 = 𝜏󸀠10 + 𝜇, 𝑢1 = 𝑆(𝜏1𝑡), 𝑢2 = 𝐿(𝜏1𝑡), 𝑢3 = 𝐴(𝜏1𝑡),𝑢4 = 𝑅(𝜏1𝑡), 𝜇 ∈ 𝑅. Then, 𝜇 = 0 is the Hopf bifurcation value
of system (2) and system (2) can be rewritten as𝑢̇ (𝑡) = 𝐿𝜇 (𝑢𝑡) + 𝐹 (𝜇, 𝑢𝑡) , (51)

where 𝑢(𝑡) = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝑇 ∈ 𝐶 = 𝐶([−1, 0], 𝑅4) and 𝐿𝜇:𝐶 → 𝑅4 and 𝐹 : 𝑅 × 𝐶 → 𝑅4 are given, respectively, by𝐿𝜇𝜙= (𝜏󸀠10 + 𝜇)(𝐴∗𝜙 (0) + 𝐶∗𝜙(−𝜏󸀠20𝜏󸀠10) + 𝐵∗𝜙 (−1)) , (52)

with

𝐴∗ = [[[[[[
𝑎1 𝑎2 𝑎3 𝑎4𝑎5 𝑎6 𝑎7 00 0 𝑎8 00 0 0 𝑎9

]]]]]] ,
𝐵∗ = [[[[[[

0 0 0 00 𝑏1 0 00 𝑏2 0 00 0 0 0
]]]]]] ,

𝐶∗ = [[[[[[
0 0 0 00 0 0 00 0 𝑐1 00 0 𝑐2 0

]]]]]] ,𝐹1 = −𝛽1𝜙1 (0) 𝜙2 (0) − 𝛽2𝜙1 (0) 𝜙3 (0) ,𝐹2 = 𝛽1𝜙1 (0) 𝜙2 (0) + 𝛽2𝜙1 (0) 𝜙3 (0) ,𝜙 = (𝜙1, 𝜙2, 𝜙3, 𝜙4)𝑇 ∈ 𝐶 ([−1, 0] , 𝑅4) .

(53)
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Using Riesz representation theorem, there exists matrix𝜂(𝜃, 𝜇) : [−1, 0] → 𝑅4 such that𝐿𝜇𝜙 = ∫0
−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅4) . (54)

In fact, choose𝜂 (𝜃, 𝜇)
=
{{{{{{{{{{{{{{{{{{{{{{{{{{{

(𝜏󸀠10 + 𝜇) (𝐴∗ + 𝐵∗ + 𝐶∗) , 𝜃 = 0,(𝜏󸀠10 + 𝜇) (𝐵󸀠 + 𝐶∗) , 𝜃 ∈ [−𝜏󸀠20𝜏󸀠10 , 0) ,(𝜏󸀠10 + 𝜇) 𝐵∗, 𝜃 ∈ (−1, −𝜏󸀠20𝜏󸀠10) ,0, 𝜃 = −1.
(55)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅4), define
𝐴 (𝜇) 𝜙 = {{{{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , −1 ≤ 𝜃 < 0,
∫0
−1
𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {{{0, −1 ≤ 𝜃 < 0,𝐹 (𝜇, 𝜙) , 𝜃 = 0.
(56)

Then, system (51) can be rewritten in the following form:𝑢̇ (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡. (57)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅4), 𝜑 ∈ 𝐶1([−1, 0], (𝑅4)∗),
𝐴∗ (𝜑) = {{{{{{{{{

−𝑑𝜑 (𝑠)𝑑𝑠 , 0 < 𝑠 ≤ 1,
∫0
−1
𝑑𝜂𝑇 (𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0, (58)

and bilinear form⟨𝜑, 𝜙⟩ = 𝜑 (0) 𝜙 (0)− ∫0
𝜃=−1

∫𝜃
𝜉=0

𝜑 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (59)

are defined, where 𝜂(𝜃) = 𝜂(𝜃, 0), 𝐴 = 𝐴(0), and 𝐴∗ are
adjoint operators.

Based on the discussion above, one can conclude that±𝑖𝜔󸀠10𝜏󸀠10 are common eigenvalues of 𝐴(0) and 𝐴∗. The
eigenvectors of 𝐴(0) and 𝐴∗ can be calculated correspond-
ing to +𝑖𝜔󸀠10𝜏󸀠10 and −𝑖𝜔󸀠10𝜏󸀠10, respectively. Let 𝑞(𝜃) =(1, 𝑞2, 𝑞3, 𝑞4)𝑇𝑒𝑖𝜔󸀠10𝜏󸀠10𝜃 be the eigenvector of 𝐴(0) correspond-
ing to +𝑖𝜔󸀠10𝜏󸀠10 and 𝑞∗(𝜃) = 𝐾(1, 𝑞∗2 , 𝑞∗3 , 𝑞∗4 )𝑒𝑖𝜔󸀠10𝜏󸀠10𝑠 be

the eigenvector of 𝐴∗ corresponding to −𝑖𝜔󸀠10𝜏󸀠10. By some
complex computations, we obtain

𝑞2 = 𝑎5𝑞20 ,𝑞3 = 𝑏2𝑒−𝑖𝜏󸀠10𝜔󸀠10𝑞2𝑖𝜔󸀠10 − 𝑎8 − 𝑐1𝑒−𝑖𝜏󸀠20𝜔󸀠10 ,𝑞4 = 𝑐2𝑒−𝑖𝜏󸀠20𝜔󸀠10𝑞3𝑖𝜔󸀠10 − 𝑎9 ,𝑞∗2 = −𝑖𝜔󸀠10 + 𝑎1𝑎5 ,
𝑞∗3 = 𝑎2 + (𝑖𝜔󸀠10 + 𝑎6 + 𝑏1𝑒𝑖𝜏󸀠10𝜔󸀠10) 𝑞∗2𝑏2𝑒𝑖𝜏󸀠10𝜔󸀠10 ,
𝑞∗4 = −𝑎3 + 𝑎7𝑞∗2 + (𝑖𝜔󸀠10 + 𝑎8 + 𝑐1𝑒𝑖𝜏󸀠20𝜔󸀠10) 𝑞∗3𝑐2𝑒𝑖𝜏󸀠20𝜔󸀠10 ,

(60)

with

𝑞20 = 𝑖𝜔󸀠10 − 𝑎6 − 𝑏1𝑒−𝑖𝜏󸀠10𝜔󸀠10 − 𝑎7𝑏2𝑒−𝑖𝜏󸀠10𝜔󸀠10𝑖𝜔󸀠10 − 𝑎8 − 𝑐1𝑒−𝑖𝜏󸀠20𝜔󸀠10 . (61)

From (59), we get

𝐾 = [1 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝑞4𝑞∗4+ 𝜏󸀠10𝑒−𝑖𝜔󸀠10𝜏󸀠10𝑞2 (𝑏1𝑞∗2 + 𝑏2𝑞∗3 )+ 𝜏󸀠20𝑒−𝑖𝜔󸀠10𝜏󸀠10𝑞3 (𝑐1𝑞∗3 + 𝑐2𝑞∗4 )]−1 , (62)

such that ⟨𝑞∗, 𝑞⟩ = 1. In what follows, we can obtain the
coefficients by using the method introduced in [26]:

𝑔20 = 2𝜏󸀠10𝐾 (𝑞∗2 − 1) (𝛽1𝑞2 + 𝛽2𝑞3) ,𝑔11 = 𝜏󸀠10𝐾 (𝑞∗2 − 1) (𝛽1 Re {𝑞2} + 𝛽2 Re {𝑞3}) ,𝑔02 = 2𝜏󸀠10𝐾 (𝑞∗2 − 1) (𝛽1𝑞2 + 𝛽2𝑞3) ,𝑔21 = 2𝜏󸀠10𝐾 (𝑞∗2 − 1) (𝛽1 (𝑊(1)11 (0) 𝑞2 + 12𝑊(1)20 (0) 𝑞2+𝑊(2)11 (0) + 12𝑊(2)20 (0)) + 𝛽2 (𝑊(1)11 (0) 𝑞3+ 12𝑊(1)20 (0) 𝑞3 +𝑊(3)11 (0) + 12𝑊(3)20 (0))) ,
(63)
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with

𝑊20 (𝜃) = 𝑖𝑔20𝑞 (0)𝜏󸀠10𝜔󸀠10 𝑒𝑖𝜏󸀠10𝜔󸀠10𝜃 + 𝑖𝑔02𝑞 (0)3𝜏󸀠10𝜔󸀠10 𝑒−𝑖𝜏󸀠10𝜔󸀠10𝜃+ 𝐸1𝑒2𝑖𝜏󸀠10𝜔󸀠10𝜃,𝑊11 (𝜃) = − 𝑖𝑔11𝑞 (0)𝜏󸀠10𝜔󸀠10 𝑒𝑖𝜏󸀠10𝜔󸀠10𝜃 + 𝑖𝑔11𝑞 (0)𝜏󸀠10𝜔󸀠10 𝑒−𝑖𝜏󸀠10𝜔󸀠10𝜃+ 𝐸2,
(64)

where

𝐸1 = 2((
𝑎1∗ −𝑎2 −𝑎3 −𝑎4−𝑎5 𝑎6∗ 𝑎7 00 −𝑏2𝑒−𝑖𝜏󸀠10𝜔󸀠10 𝑎8∗ 00 0 −𝑐2𝑒−𝑖𝜏󸀠20𝜔󸀠10 𝑎9∗

)
)
−1

⋅(−𝛽1𝑞2 − 𝛽2𝑞3𝛽1𝑞2 + 𝛽2𝑞300 ),

𝐸2 = −(𝑎1 𝑎2 𝑎3 𝑎4𝑎5 𝑎6 + 𝑏1 𝑎7 00 𝑏2 𝑎8 + 𝑐1 00 0 𝑐2 𝑎9)
−1

⋅(−𝛽1 Re {𝑞2} − 𝛽2 Re {𝑞3}𝛽1 Re {𝑞2} + 𝛽2 Re {𝑞3}00 ),

(65)

with

𝑎1∗ = 2𝑖𝜔󸀠10 − 𝑎1,𝑎6∗ = 2𝑖𝜔󸀠10 − 𝑎6 − 𝑏1𝑒−𝑖𝜏󸀠10𝜔󸀠10 ,𝑎8∗ = 2𝑖𝜔󸀠10 − 𝑎8 − 𝑐1𝑒−𝑖𝜏󸀠20𝜔󸀠10 ,𝑎9∗ = 2𝑖𝜔󸀠10 − 𝑎9.
(66)

Thus, we can compute the following coefficients:𝐶1 (0) = 𝑖2𝜔󸀠10𝜏󸀠10 (𝑔11𝑔20 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 )
+ 𝑔212 ,𝜇2 = − Re {𝐶1 (0)}
Re {𝜆󸀠 (𝜏󸀠10)} ,𝛽2 = 2Re {𝐶1 (0)} ,𝑇2 = − Im {𝐶1 (0)} + 𝜇2 Im {𝜆󸀠 (𝜏󸀠10)}𝜔󸀠10𝜏󸀠10 .

(67)

In conclusion, we have the following results in this section.

Theorem 5. For system (2),

(i) the direction of the Hopf bifurcation is determined by𝜇2: if 𝜇2 > 0, the Hopf bifurcation is supercritical; if𝜇2 < 0, the Hopf bifurcation is subcritical;
(ii) the stability of the bifurcating periodic solutions is

determined by 𝛽2: if 𝛽2 < 0, the bifurcating periodic
solutions are stable; if 𝛽2 > 0, the bifurcating periodic
solutions are unstable;

(iii) the period of the bifurcating periodic solution is deter-
mined by 𝑇2: if 𝑇2 > 0, the period of the bifurcating
periodic solutions increases; if 𝑇2 < 0, the period of the
bifurcating periodic solutions decreases.

4. Numerical Simulations

In this section, we present some numerical simulation results
of system (2) to illustrate our theoretical results. We choose a
set of parameters as follows: 𝜇 = 0.001, 𝛽1 = 0.1, 𝛽2 = 0.15,𝛼 = 0.05, 𝜀 = 0.05, and 𝛾 = 0.02. Then, we get the following
system:𝑑𝑆 (𝑡)𝑑𝑡 = 0.001 − 0.1𝑆 (𝑡) 𝐿 (𝑡) − 0.15𝑆 (𝑡) 𝐴 (𝑡)+ 0.05𝑅 (𝑡) − 0.001𝑆 (𝑡) ,𝑑𝐿 (𝑡)𝑑𝑡 = 0.1𝑆 (𝑡) 𝐿 (𝑡) + 0.15𝑆 (𝑡) 𝐴 (𝑡)− 0.05𝐿 (𝑡 − 𝜏1) − 0.001𝐿 (𝑡) ,𝑑𝐴 (𝑡)𝑑𝑡 = 0.05𝐿 (𝑡 − 𝜏1) − 0.02𝐴 (𝑡 − 𝜏2)− 0.001𝐴 (𝑡) ,𝑑𝑅 (𝑡)𝑑𝑡 = 0.02𝐴 (𝑡 − 𝜏2) − 0.05𝑅 (𝑡) − 0.001𝑅 (𝑡) .

(68)

It is easy to verify that (𝜀 + 𝜇)(𝛾 + 𝜇)/(𝛽1(𝛾 + 𝜇) +𝛽2𝜀) < 1 and (𝜀 + 𝜇)(𝛾 + 𝜇)/𝜀 > 𝛼𝛾/(𝛼 + 𝜇), which ensures
the fact that system (68) has a unique viral equilibrium𝐸∗(0.1116, 0.2073, 0.4936, 0.1936).
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Figure 1: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏1 = 22.36 <28.4522 = 𝜏10.
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Figure 2: The phase plot of states 𝑆∗, 𝐿∗ , and 𝐴∗ with 𝜏1 = 22.36 <28.4522 = 𝜏10.
For 𝜏1 = 𝜏2 = 0, by direct computation by Matlab 7.0, we

can get 𝑎10 > 0, 𝑎13 > 0, and 𝑎13𝑎12 > 𝑎11, which means that
viral equilibrium 𝐸∗(0.1116, 0.2073, 0.4936, 0.1936) is locally
asymptotically stable.

For 𝜏1 > 0, 𝜏2 = 0, we obtain that (16) has a unique
positive root V10 = 0.0013 and (14) has a unique positive
root 𝜔10 = 0.0363. Further, we get the critical value of delay𝜏10 = 28.4522 and 𝑓󸀠1(V∗1 ) = 0.0612 > 0. Thus, we can
see that the conditions in Theorem 1 hold true. It follows
that viral equilibrium 𝐸∗(0.1116, 0.2073, 0.4936, 0.1936) is
locally asymptotically stable for 𝜏1 ∈ [0, 28.4522) and
system (68) undergoes aHopf bifurcation at viral equilibrium𝐸∗(0.1116, 0.2073, 0.4936, 0.1936) when 𝜏1 = 28.4522. This
property can be depicted in Figures 1–4. Similarly, we can also
obtain 𝜔20 = 0.2756, 𝜏20 = 95.9606 for 𝜏1 = 0, 𝜏2 > 0 and𝜔0 = 0.7114, 𝜏0 = 24.2508 for 𝜏1 = 𝜏2 = 𝜏 > 0, respectively.
The corresponding phase plots are depicted in Figures 5–8
and Figures 9–12, respectively.

For 𝜏1 > 0 and 𝜏2 = 65.25 ∈ (0, 𝜏20), we obtain𝜔󸀠10 = 0.0089, 𝜏󸀠10 = 18.6255. The simulation results can
be seen in Figures 13–16. In addition, we obtain 𝐶1(0) =−0.2107 + 0.0062𝑖, 𝜆󸀠(𝜏󸀠10) = 0.0031 − 0.1086𝑖 by some
complex computations. Further, we have 𝜇2 = 67.9677 > 0,𝛽2 = −0.4214 < 0, 𝑇2 = 44.4907 > 0. Therefore, we
can conclude that the Hopf bifurcation is supercritical; the
bifurcating periodic solutions are stable; and the period of the
bifurcating periodic solutions increases.
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Figure 3: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏1 = 29.49 >28.4522 = 𝜏10.
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Figure 4: The phase plot of states 𝑆∗, 𝐿∗, and 𝐴∗ with 𝜏1 = 29.49 >28.4522 = 𝜏10.
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Figure 5: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏2 = 58.48 <95.9606 = 𝜏20.
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Figure 6: The phase plot of states 𝑆∗, 𝐿∗, and 𝐴∗ with 𝜏2 = 58.48 <95.9606 = 𝜏20.
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Figure 7:The phase plot of states 𝑆∗,𝐴∗, and𝑅∗ with 𝜏2 = 110.96 >95.9606 = 𝜏20.
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Figure 8:The phase plot of states 𝑆∗, 𝐿∗, and𝐴∗ with 𝜏2 = 110.96 >95.9606 = 𝜏20.
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Figure 9: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏 = 21.35 <24.2508 = 𝜏0.
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Figure 10: The phase plot of states 𝑆∗, 𝐿∗, and 𝐴∗ with 𝜏 = 21.35 <24.2508 = 𝜏0.
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Figure 11: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏 = 25.47 >24.2508 = 𝜏0.
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Figure 12: The phase plot of the states 𝑆∗, 𝐿∗, and 𝐴∗ with 𝜏 =25.47 > 24.2508 = 𝜏0.
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Figure 13: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏1 = 8.65 <18.6255 = 𝜏󸀠10 and 𝜏2 = 65.25.
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Figure 14: The phase plot of states 𝑆∗, 𝐿∗, and 𝐴∗ with 𝜏1 = 8.65 <18.6255 = 𝜏󸀠10 and 𝜏2 = 65.25.
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Figure 15: The phase plot of states 𝑆∗, 𝐴∗, and 𝑅∗ with 𝜏1 =22.4057 > 18.6255 = 𝜏󸀠10 and 𝜏2 = 65.25.
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Figure 16: The phase plot of states 𝑆∗, 𝐿∗ , and 𝐴∗ with 𝜏1 =22.4057 > 18.6255 = 𝜏󸀠10 and 𝜏2 = 65.25.
5. Conclusions

In the present paper, an improved model for propagation
of computer virus propagation model in the network is
introduced and studied by incorporating the delay due to the
latent period of the computer viruses and the delay due to the
period that the antivirus software needs to clean the viruses
in the active computers into the model proposed in [19]. We
mainly investigate effect of the two delays on the model.

By choosing different combination of the two delays as
a bifurcation parameter, it has been found that both the
two delays can change the stability of the viral equilibrium
of the model under some conditions. When the value of
the delay is below corresponding critical value, the model
is locally asymptotically stable which indicates that the law
of propagation of the computer viruses in system (2) can
be predicted. However, when the value of the delay is
above the corresponding critical value, a Hopf bifurcation
occurs and a family of periodic solutions bifurcate from
the viral equilibrium, which suggests that the percentages
of susceptible, latent, active, and recovered computers in
system (2) will fluctuate periodically in a range. This is not
helpful in predicting the law of propagation of the computer
viruses. Therefore, we should control the occurrence of the
Hopf bifurcation by using some bifurcation control strategies
and we leave this as our near future work. Furthermore,
the properties of the Hopf bifurcation when 𝜏1 > 0 and𝜏2 ∈ (0, 𝜏20) have been investigated in detail. Finally,

some numerical simulations are also included to support the
theoretical results obtained in the paper.
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