841 research outputs found

    Bifurcation structure of cavity soliton dynamics in a VCSEL with saturable absorber and time-delayed feedback

    Full text link
    We consider a wide-aperture surface-emitting laser with a saturable absorber section subjected to time-delayed feedback. We adopt the mean-field approach assuming a single longitudinal mode operation of the solitary VCSEL. We investigate cavity soliton dynamics under the effect of time- delayed feedback in a self-imaging configuration where diffraction in the external cavity is negligible. Using bifurcation analysis, direct numerical simulations and numerical path continuation methods, we identify the possible bifurcations and map them in a plane of feedback parameters. We show that for both the homogeneous and localized stationary lasing solutions in one spatial dimension the time-delayed feedback induces complex spatiotemporal dynamics, in particular a period doubling route to chaos, quasiperiodic oscillations and multistability of the stationary solutions

    Long Tailed Maps as a Representation of Mixed Mode Oscillatory Systems

    Full text link
    Mixed mode oscillatory (MMO) systems are known to exhibit some generic features such as the reversal of period doubling sequences and crossover to period adding sequences as bifurcation parameters are varied. In addition, they exhibit a nearly one dimensional unimodal Poincare map with a longtail. We recover these common features from a general class of two parameter family of one dimensional maps with a unique critical point that satisfy a few general constraints that determine the nature of the map. We derive scaling laws that determine the parameter widths of the dominant windows of periodic orbits sandwiched between two successive states of RL^k sequence. An example of a two parameter map with a unique critical point is introduced to verify the analytical results.Comment: 13 pages and 8 figure

    Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation

    Full text link
    Complex systems exhibiting critical transitions when one of their governing parameters varies are ubiquitous in nature and in engineering applications. Despite a vast literature focusing on this topic, there are few studies dealing with the effect of the rate of change of the bifurcation parameter on the tipping points. In this work, we consider a subcritical stochastic Hopf bifurcation under two scenarios: the bifurcation parameter is first changed in a quasi-steady manner and then, with a finite ramping rate. In the latter case, a rate-dependent bifurcation delay is observed and exemplified experimentally using a thermoacoustic instability in a combustion chamber. This delay increases with the rate of change. This leads to a state transition of larger amplitude compared to the one that would be experienced by the system with a quasi-steady change of the parameter. We also bring experimental evidence of a dynamic hysteresis caused by the bifurcation delay when the parameter is ramped back. A surrogate model is derived in order to predict the statistic of these delays and to scrutinise the underlying stochastic dynamics. Our study highlights the dramatic influence of a finite rate of change of bifurcation parameters upon tipping points and it pinpoints the crucial need of considering this effect when investigating critical transitions

    Antispiral waves are sources in oscillatory reaction-diffusion media

    Full text link
    Spiral and antispiral waves are studied numerically in two examples of oscillatory reaction-diffusion media and analytically in the corresponding complex Ginzburg-Landau equation (CGLE). We argue that both these structures are sources of waves in oscillatory media, which are distinguished only by the sign of the phase velocity of the emitted waves. Using known analytical results in the CGLE, we obtain a criterion for the CGLE coefficients that predicts whether antispirals or spirals will occur in the corresponding reaction-diffusion systems. We apply this criterion to the FitzHugh-Nagumo and Brusselator models by deriving the CGLE near the Hopf bifurcations of the respective equations. Numerical simulations of the full reaction-diffusion equations confirm the validity of our simple criterion near the onset of oscillations. They also reveal that antispirals often occur near the onset and turn into spirals further away from it. The transition from antispirals to spirals is characterized by a divergence in the wavelength. A tentative interpretaion of recent experimental observations of antispiral waves in the Belousov-Zhabotinsky reaction in a microemulsion is given.Comment: 10 pages, 8 figures, submitted to J. Phys. Chem. B on Feb. 20, 2004. A short account of the spiral-antispiral criterion has been given in PRL (see http://link.aps.org/abstract/PRL/v92/e089801
    corecore